International Standard Iso 21625:2020(E)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Poaceae: Bambusoideae) Lynn G
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 26 2007 Phylogenetic Relationships Among the One- Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University, Ames Soejatmi Dransfield Royal Botanic Gardens, Kew, UK Jimmy Triplett Iowa State University, Ames J. Gabriel Sánchez-Ken Iowa State University, Ames Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Clark, Lynn G.; Dransfield, Soejatmi; Triplett, Jimmy; and Sánchez-Ken, J. Gabriel (2007) "Phylogenetic Relationships Among the One-Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 26. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/26 Aliso 23, pp. 315–332 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS AMONG THE ONE-FLOWERED, DETERMINATE GENERA OF BAMBUSEAE (POACEAE: BAMBUSOIDEAE) LYNN G. CLARK,1,3 SOEJATMI DRANSFIELD,2 JIMMY TRIPLETT,1 AND J. GABRIEL SA´ NCHEZ-KEN1,4 1Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA; 2Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 3Corresponding author ([email protected]) ABSTRACT Bambuseae (woody bamboos), one of two tribes recognized within Bambusoideae (true bamboos), comprise over 90% of the diversity of the subfamily, yet monophyly of -
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. -
Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae)
SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 68 Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae) Emmet J. Judziewicz and Thomas R. Soderstrom SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1989 ABSTRACT Judziewicz, Emmet J., and Thomas R. Soderstrom. Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae). Smithsonian Contributions to Botany, number 68,52 pages, 24 figures, 1 table, 1989.-Although resembling the core group of the bambusoid grasses in many features of leaf anatomy, the Neotropical rainforest grass genera Anomochloa and Streptochaeta share characters that are unusual in the subfamily: lack of ligules, exceptionally long microhairs with an unusual morphology, a distinctive leaf blade midrib structure, and 5-nerved coleoptiles. Both genera also possess inflorescences that are difficult to interpret in conventional agrostological terms. Anomochloa is monotypic, and A. marantoidea, described in 1851 by Adolphe Brongniart from cultivated material of uncertain provenance, was rediscovered in 1976 in the wet forests of coastal Bahia, Brazil. The inflorescence terminates in a spikelet and bears along its rachis several scorpioid cyme-like partial inflorescences. Each axis of a partial inflorescence is subtended by a keeled bract and bears as its first appendages two tiny, unvascularized bracteoles attached at slightly different levels. The spikelets are composed of an axis that bears two bracts and terminates in a flower. The lower, chlorophyllous, deciduous spikelet bract is separated from the coriaceous, persistent, corniculate upper bract by a cylindrical, indurate internode. The flower consists of a low membrane surmounted by a dense ring of brown cilia (perigonate annulus) surrounding the andrecium of four stamens, and an ovary bearing a single hispid stigma. -
Poaceae: Panicoideae: Paniceae) Silvia S
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 41 2007 Phylogenetic Relationships of the Decumbentes Group of Paspalum, Thrasya, and Thrasyopsis (Poaceae: Panicoideae: Paniceae) Silvia S. Denham Instituto de Botánica Darwinion, San Isidro, Argentina Fernando O. Zuloaga Instituto de Botánica Darwinion, San Isidro, Argentina Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Denham, Silvia S. and Zuloaga, Fernando O. (2007) "Phylogenetic Relationships of the Decumbentes Group of Paspalum, Thrasya, and Thrasyopsis (Poaceae: Panicoideae: Paniceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 41. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/41 Aliso 23, pp. 545–562 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS OF THE DECUMBENTES GROUP OF PASPALUM, THRASYA, AND THRASYOPSIS (POACEAE: PANICOIDEAE: PANICEAE) SILVIA S. DENHAM1 AND FERNANDO O. ZULOAGA Instituto de Bota´nica Darwinion, Labarde´n 200, Casilla de Correo 22, San Isidro, Buenos Aires B1642HYD, Argentina 1Corresponding author ([email protected]) ABSTRACT Paspalum (Poaceae: Panicoideae: Paniceae) includes 330 species distributed mainly in tropical and subtropical regions of America. Due to the large number of species and convergence in many char- acters, an adequate infrageneric classification is still needed. Studies on Paniceae based on molecular and morphological data have suggested that Paspalum is paraphyletic, including the genus Thrasya, but none of these analyses have included a representative sample of these two genera. In this study, phylogenetic relationships among the informal group Decumbentes of Paspalum, plus subgenera and other informal groups, and the genera Thrasya and Thrasyopsis were estimated. -
A New Genus of Temperate Woody Bamboos
A peer-reviewed open-access journal PhytoKeys 109: 67–76 (2018) A new genus of temperate woody bamboos... 67 doi: 10.3897/phytokeys.109.27566 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research A new genus of temperate woody bamboos (Poaceae, Bambusoideae, Arundinarieae) from a limestone montane area of China Yu-Xiao Zhang1,2, Peng-Fei Ma2, De-Zhu Li2 1 Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan 650224, China 2 Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China Corresponding author: De-Zhu Li ([email protected]) Academic editor: C. Morden | Received 19 June 2018 | Accepted 12 September 2018 | Published 12 October 2018 Citation: Zhang Y-X, Ma P-F, Li D-Z (2018) A new genus of temperate woody bamboos (Poaceae, Bambusoideae, Arundinarieae) from a limestone montane area of China. PhytoKeys 109: 67–76. https://doi.org/10.3897/ phytokeys.109.27566 Abstract Ampelocalamus calcareus is a climbing and slender bamboo, known from south Guizhou, China. This species grows in broadleaved forests of limestone montane areas. Recent molecular phylogenetic analyses demonstrated that A. calcareus was sister to all other lineages of the tribe Arundinarieae rather than a member of Ampelocalamus. The morphological features and habitats of A. calcareus and related genera including Ampelocalamus, Drepanostachyum and Himalayacalamus were compared and discussed. The characteristics of the branch complements, nodes and foliage leaves distinguish A. calcareus from morpho- logically similar taxa. On the basis of molecular and morphological evidence, we propose to establish a new genus, Hsuehochloa, to accommodate A. -
Investigation of Mitochondrial-Derived Plastome Sequences in the Paspalum Lineage (Panicoideae; Poaceae) Sean V
Burke et al. BMC Plant Biology (2018) 18:152 https://doi.org/10.1186/s12870-018-1379-1 RESEARCH ARTICLE Open Access Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae) Sean V. Burke1* , Mark C. Ungerer2 and Melvin R. Duvall1 Abstract Background: The grass family (Poaceae), ca. 12,075 species, is a focal point of many recent studies that aim to use complete plastomes to reveal and strengthen relationships within the family. The use of Next Generation Sequencing technology has revealed intricate details in many Poaceae plastomes; specifically the trnI - trnL intergenic spacer region. This study investigates this region and the putative mitochondrial inserts within it in complete plastomes of Paspalum and other Poaceae. Results: Nine newly sequenced plastomes, seven of which contain an insert within the trnI - trnL intergenic spacer, were combined into plastome phylogenomic and divergence date analyses with 52 other species. A robust Paspalum topology was recovered, originating at 10.6 Ma, with the insert arising at 8.7 Ma. The alignment of the insert across Paspalum reveals 21 subregions with pairwise homology in 19. In an analysis of emergent self- organizing maps of tetranucleotide frequencies, the Paspalum insert grouped with mitochondrial DNA. Conclusions: A hypothetical ancestral insert, 17,685 bp in size, was found in the trnI - trnL intergenic spacer for the Paspalum lineage. A different insert, 2808 bp, was found in the same region for Paraneurachne muelleri. Seven different intrastrand deletion events were found within the Paspalum lineage, suggesting selective pressures to remove large portions of noncoding DNA. Finally, a tetranucleotide frequency analysis was used to determine that the origin of the insert in the Paspalum lineage is mitochondrial DNA. -
Adulteration of Herbal Products: Bamboo Tea Authentication
A peer-reviewed version of this preprint was published in PeerJ on 8 December 2016. View the peer-reviewed version (peerj.com/articles/2781), which is the preferred citable publication unless you specifically need to cite this preprint. Horn T, Häser A. 2016. Bamboo tea: reduction of taxonomic complexity and application of DNA diagnostics based on rbcL and matK sequence data. PeerJ 4:e2781 https://doi.org/10.7717/peerj.2781 Adulteration of herbal products: Bamboo tea authentication Thomas Horn Corresp., 1 , Annette Häser 1 1 Molecular Cellbiology, Karlsruhe Institute of Technology, Karlsruhe, Germany Corresponding Author: Thomas Horn Email address: [email protected] Background. Names for ”substances” used in food products are rarely precise. The term bamboo (Bambusoideae, Poaceae) comprises over 1600 distinct species of which only few are well established sources for food products on the European market (i.e. bamboo sprouts). Methods. We analysed bamboo species and tea products containing an exotic ingredient (bamboo leaves) using anatomical leaf characters and DNA sequence data. Our primary concern was to determine the taxonomic origin of bamboo leaves to establish a baseline for EU legislation, to introduce a simple PCR based test to distinguish bamboo from other Poaceae leaf components and to assess the diagnostic potential of DNA Barcoding markers to resolve taxonomic entities within the bamboo subfamily and tribes. Results. Based on anatomical and DNA data we can pinpoint the taxonomic origin of genuine bamboo leaves used in commercial products to the genera Phyllostachys and Pseudosasa from the temperate ”woody” bamboo tribe (Arundinarieae). We detected adulteration by carnation in 4 of 8 tea products and, after adapting our objectives, could trace the taxonomic origin of the adulterant to Dianthus chinensis (Caryophyllaceae), a well known traditional Chinese medicine with counter indications for pregnant women. -
Cryptochloa Stapfii (Poaceae: Bambusoideae: Olyreae)
FLORE Repository istituzionale dell'Università degli Studi di Firenze Cryptochloa stapfii (Poaceae: Bambusoideae: Olyreae), a new neotropical herbaceous bamboo from Panama Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione: Original Citation: Cryptochloa stapfii (Poaceae: Bambusoideae: Olyreae), a new neotropical herbaceous bamboo from Panama / Riccardo M. Baldini; Orlando O. Ortiz. - In: PHYTOTAXA. - ISSN 1179-3155. - STAMPA. - 203(3)(2015), pp. 271-278. [10.11646/phytotaxa.203.3.6] Availability: This version is available at: 2158/990806 since: Published version: DOI: 10.11646/phytotaxa.203.3.6 Terms of use: Open Access La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf) Publisher copyright claim: (Article begins on next page) 29 September 2021 Phytotaxa 203 (3): 271–278 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.203.3.6 Cryptochloa stapfii (Poaceae: Bambusoideae: Olyreae), a new neotropical herbaceous bamboo from Panama RICCARDO M. BALDINI1* & ORLANDO O. ORTIZ2 1Department of Biology & Tropical Herbarium FT, University of Florence (Italy); Smithsonian Tropical Research Institute Fellowship, Balboa, Panama City, Republic of Panama e-mail: [email protected] 2Universidad de Panamá, Herbario PMA, Estafeta Universitaria, Panama City, Republic of Panama; Missouri Botanical Garden, St. Louis, MO, USA, Fellowship *author for correspondence Abstract Cryptochloa stapfii, a new herbaceous bamboo species from Panama is described. -
Late Cretaceous Origin of the Rice Tribe Provides Evidence for Early Diversification in Poaceae
ARTICLE Received 9 Jun 2010 | Accepted 17 Aug 2011 | Published 20 Sep 2011 DOI: 10.1038/ncomms1482 Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae V. Prasad1, C.A.E. Strömberg2, A.D. Leaché2, B. Samant3, R. Patnaik4, L. Tang5, D.M. Mohabey6, S. Ge5 & A. Sahni7 Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67–65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern sub- clades PACMAD (Panicoideae–Aristidoideae–Chloridoideae–Micrairoideae–Arundinoideae– Danthonioideae) and BEP (Bambusoideae–Ehrhartoideae–Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography. 1 Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. 2 Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington 98195, USA. 3 Postgraduate Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440001, India. 4 Centre for Petroleum and Applied Geology, Panjab University, Chandigarh 160014, India. -
Hilu Paper (New)
KEW BULLETIN 62: 355–373 (2007) 355 A century of progress in grass systematics Khidir W. Hilu1 Summary. This paper presents an overview of progress in grass systematics with a focus on the past century and assesses its current status and future outlook. In concert with systematic biology, progress in grass systematics has gone through some leaps caused by the introduction of new approaches or emphasis on existing ones. Chromosome cytology, anatomy and chemistry provided useful information, but major recent contributions have come from advances in bioinformatics and molecular biology. Consequently, grass systematics has moved from an initial intuitive classification and phylogenetics to one incorporating analytical phenetic approaches, and culminating in the current stage of analytic phylogeny. As a result, a refined picture of grass phylogeny is emerging with good resolution at the base, but the tree lacks robustness in some places such as the monophyly of the “BEP” subfamilies and the relationships within the PACCAD clade. Systematic structure of a number of subfamilies is better understood now, but further studies are needed. With the rapid advancement in molecular systematic and bioinformatic tools, and in conjunction with a wealth of literature available on structural characters, a more refined picture of grass taxonomy and evolution is expected. However, caution needs to be exercised in our interpretations to avoid hasty decisions that can translate into regress rather than progress. This is an exciting time in the history of grass systematics and, undoubtedly, is a period of collaborative rather than individual effort. Key words. Poaceae, grasses, systematics, phylogenetics, history, evolution. Introduction valuable resources used in furthering our Although the c. -
Phylogenetics and Evolution of the Paleotropical Woody Bamboos (Poaceae: Bambusoideae: Bambuseae) Hathairat Chokthaweepanich Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Phylogenetics and Evolution of the Paleotropical Woody Bamboos (Poaceae: Bambusoideae: Bambuseae) Hathairat Chokthaweepanich Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Systems Biology Commons Recommended Citation Chokthaweepanich, Hathairat, "Phylogenetics and Evolution of the Paleotropical Woody Bamboos (Poaceae: Bambusoideae: Bambuseae)" (2014). Graduate Theses and Dissertations. 13778. https://lib.dr.iastate.edu/etd/13778 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Phylogenetics and Evolution of the Paleotropical Woody Bamboos (Poaceae: Bambusoideae: Bambuseae) by Hathairat Chokthaweepanich A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee: Lynn G. Clark, Major Professor Gregory W. Courtney Robert S. Wallace Dennis V. Lavrov William R. Graves Iowa State University Ames, Iowa 2014 Copyright © Hathairat Chokthaweepanich 2014. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES viii ABSTRACT x CHAPTER 1. OVERVIEW 1 Organization of the Thesis 1 Literature Review 2 Research Objectives 10 Literature Cited 10 CHAPTER 2. PHYLOGENY AND CLASSIFICATION OF THE PALEOTROPICAL WOODY BAMBOOS (POACEAE: BAMBUSOIDEAE: BAMBUSEAE) BASED ON SIX PLASTID MARKERS. A manuscript to be submitted to the journal Molecular Phylogenetics and Evolution. -
Evolution of the Bamboos
Wysocki et al. BMC Evolutionary Biology (2015) 15:50 DOI 10.1186/s12862-015-0321-5 RESEARCH ARTICLE Open Access Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis William P Wysocki1*, Lynn G Clark2, Lakshmi Attigala2, Eduardo Ruiz-Sanchez3 and Melvin R Duvall1 Abstract Background: Bambusoideae (Poaceae) comprise three distinct and well-supported lineages: tropical woody bamboos (Bambuseae), temperate woody bamboos (Arundinarieae) and herbaceous bamboos (Olyreae). Phylogenetic studies using chloroplast markers have generally supported a sister relationship between Bambuseae and Olyreae. This suggests either at least two origins of the woody bamboo syndrome in this subfamily or its loss in Olyreae. Results: Here a full chloroplast genome (plastome) phylogenomic study is presented using the coding and noncoding regions of 13 complete plastomes from the Bambuseae, eight from Olyreae and 10 from Arundinarieae. Trees generated using full plastome sequences support the previously recovered monophyletic relationship between Bambuseae and Olyreae. In addition to these relationships, several unique plastome features are uncovered including the first mitogenome-to-plastome horizontal gene transfer observed in monocots. Conclusions: Phylogenomic agreement with previous published phylogenies reinforces the validity of these studies. Additionally, this study presents the first published plastomes from Neotropical woody bamboos and the first full plastome phylogenomic study performed within the herbaceous bamboos. Although the phylogenomic tree presented in this study is largely robust, additional studies using nuclear genes support monophyly in woody bamboos as well as hybridization among previous woody bamboo lineages. The evolutionary history of the Bambusoideae could be further clarified using transcriptomic techniques to increase sampling among nuclear orthologues and investigate the molecular genetics underlying the development of woody and floral tissues.