Racemobambos Ceramica S. Dransfield. Reinwardtia, 9(4): 386 (1980)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seed Ecology Iii
SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst -
Species of the Box-Gum Woodlands and Derived Native Grasslands
White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland Ecological Community Species List White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland Ecological Community Species List This species list is designed to provide information about plant species that can be found in the White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland ecological community listed under the Environment Protection and Biodiversity Conservation Act 1999. The species list was developed to complement the Listing Information Guide, and should be read in that context. It provides information on scientific and common names of the species, the kind of plant the species is, whether it is an ‘important’ species for the purposes of this ecological community and whether it is exotic or native, perennial or annual. The list is not exhaustive and not all of the species listed will occur in every patch of White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland. If there are any species that you think should be added to the list, removed from the list, or that are categorised incorrectly, please contact [email protected]. As such, this document may change over time and you should check that you are referring to the most recent version of the list. Caveat: This list has been compiled from a range of sources. While reasonable efforts have been made to ensure the accuracy of the information, no guarantee is given, nor responsibility taken, by the Commonwealth for its accuracy, currency or completeness. -
Poaceae: Bambusoideae) Lynn G
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 26 2007 Phylogenetic Relationships Among the One- Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University, Ames Soejatmi Dransfield Royal Botanic Gardens, Kew, UK Jimmy Triplett Iowa State University, Ames J. Gabriel Sánchez-Ken Iowa State University, Ames Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Clark, Lynn G.; Dransfield, Soejatmi; Triplett, Jimmy; and Sánchez-Ken, J. Gabriel (2007) "Phylogenetic Relationships Among the One-Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 26. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/26 Aliso 23, pp. 315–332 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS AMONG THE ONE-FLOWERED, DETERMINATE GENERA OF BAMBUSEAE (POACEAE: BAMBUSOIDEAE) LYNN G. CLARK,1,3 SOEJATMI DRANSFIELD,2 JIMMY TRIPLETT,1 AND J. GABRIEL SA´ NCHEZ-KEN1,4 1Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA; 2Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 3Corresponding author ([email protected]) ABSTRACT Bambuseae (woody bamboos), one of two tribes recognized within Bambusoideae (true bamboos), comprise over 90% of the diversity of the subfamily, yet monophyly of -
Indigenous Plants of Bendigo
Produced by Indigenous Plants of Bendigo Indigenous Plants of Bendigo PMS 1807 RED PMS 432 GREY PMS 142 GOLD A Gardener’s Guide to Growing and Protecting Local Plants 3rd Edition 9 © Copyright City of Greater Bendigo and Bendigo Native Plant Group Inc. This work is Copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the City of Greater Bendigo. First Published 2004 Second Edition 2007 Third Edition 2013 Printed by Bendigo Modern Press: www.bmp.com.au This book is also available on the City of Greater Bendigo website: www.bendigo.vic.gov.au Printed on 100% recycled paper. Disclaimer “The information contained in this publication is of a general nature only. This publication is not intended to provide a definitive analysis, or discussion, on each issue canvassed. While the Committee/Council believes the information contained herein is correct, it does not accept any liability whatsoever/howsoever arising from reliance on this publication. Therefore, readers should make their own enquiries, and conduct their own investigations, concerning every issue canvassed herein.” Front cover - Clockwise from centre top: Bendigo Wax-flower (Pam Sheean), Hoary Sunray (Marilyn Sprague), Red Ironbark (Pam Sheean), Green Mallee (Anthony Sheean), Whirrakee Wattle (Anthony Sheean). Table of contents Acknowledgements ...............................................2 Foreword..........................................................3 Introduction.......................................................4 -
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. -
The Genera of Bambusoideae (Gramineae) in the Southeastern United States Gordon C
Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 1988 The genera of Bambusoideae (Gramineae) in the southeastern United States Gordon C. Tucker Eastern Illinois University, [email protected] Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Tucker, Gordon C., "The eg nera of Bambusoideae (Gramineae) in the southeastern United States" (1988). Faculty Research & Creative Activity. 181. http://thekeep.eiu.edu/bio_fac/181 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. TUCKER, BAMBUSOIDEAE 239 THE GENERA OF BAMBUSOIDEAE (GRAMINEAE) IN THE SOUTHEASTERN UNITED STATESu GoRDON C. T ucKER3 Subfamily BAMBUSOIDEAE Ascherson & Graebner, Synop. Mitteleurop. Fl. 2: 769. 1902. Perennial or annual herbs or woody plants of tropical or temperate forests and wetlands. Rhizomes present or lacking. Stems erect or decumbent (some times rooting at the lower nodes); nodes glabrous, pubescent, or puberulent. Leaves several to many, glabrous to sparsely pubescent (microhairs bicellular); leaf sheaths about as long as the blades, open for over tf2 their length, glabrous; ligules wider than long, entire or fimbriate; blades petiolate or sessile, elliptic to linear, acute to acuminate, the primary veins parallel to-or forming an angle of 5-10• wi th-the midvein, transverse veinlets numerous, usually con spicuous, giving leaf surface a tessellate appearance; chlorenchyma not radiate (i.e., non-kranz; photosynthetic pathway C.,). -
Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae)
SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 68 Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae) Emmet J. Judziewicz and Thomas R. Soderstrom SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1989 ABSTRACT Judziewicz, Emmet J., and Thomas R. Soderstrom. Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae). Smithsonian Contributions to Botany, number 68,52 pages, 24 figures, 1 table, 1989.-Although resembling the core group of the bambusoid grasses in many features of leaf anatomy, the Neotropical rainforest grass genera Anomochloa and Streptochaeta share characters that are unusual in the subfamily: lack of ligules, exceptionally long microhairs with an unusual morphology, a distinctive leaf blade midrib structure, and 5-nerved coleoptiles. Both genera also possess inflorescences that are difficult to interpret in conventional agrostological terms. Anomochloa is monotypic, and A. marantoidea, described in 1851 by Adolphe Brongniart from cultivated material of uncertain provenance, was rediscovered in 1976 in the wet forests of coastal Bahia, Brazil. The inflorescence terminates in a spikelet and bears along its rachis several scorpioid cyme-like partial inflorescences. Each axis of a partial inflorescence is subtended by a keeled bract and bears as its first appendages two tiny, unvascularized bracteoles attached at slightly different levels. The spikelets are composed of an axis that bears two bracts and terminates in a flower. The lower, chlorophyllous, deciduous spikelet bract is separated from the coriaceous, persistent, corniculate upper bract by a cylindrical, indurate internode. The flower consists of a low membrane surmounted by a dense ring of brown cilia (perigonate annulus) surrounding the andrecium of four stamens, and an ovary bearing a single hispid stigma. -
Rytidosperma Popinensis (Blue Wallabygrass) Rytidosperma Popinensis
Notesheet for Rytidosperma popinensis (blue wallabygrass) Rytidosperma popinensis blue wallabygrass T A S M A N I A N F L O R A S P E C I E S N O T E S H E E T Image by Adam Smith Scientific name: Rytidosperma popinensis (D.I.Morris) A.M.Humphreys & H.P.Linder, Ann. Missouri Bot. Gard. 97: 359-360 (2010) Common name: blue wallabygrass (Wapstra et al. 2005) Group: vascular plant, monocotyledon, family Poaceae Name history: Austrodanthonia popinensis, Danthonia popinensis (now Rytidosperma fulvum) Status: Threatened Species Protection Act 1995: delisted April 2016 Environment Protection and Biodiversity Conservation Act 1999: Not listed Distribution: Endemic status: endemic to Tasmania Tasmanian NRM Region: North, South Figure 1. The distribution of Rytidosperma popinensis Plate 1. Rytidosperma popinensis: habit (image by Louise Gilfedder) 1 Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Notesheet for Rytidosperma popinensis (blue wallabygrass) IDENTIFICATION AND ECOLOGY majority of subpopulations occur on roadside Rytidosperma popinensis is a tufted glabrous verges in the Southern and Northern Midlands. perennial grass in the Poaceae family that grows These sites are generally on flat or gently up to 45 cm high (Morris 1990, Curtis & Morris sloping ground, on rock-free soils with a sandy 1994). It is endemic to Tasmania’s Midlands loam or sandy clay loam topsoil (Gilfedder & and lower Derwent Valley (Figure 1), growing Kirkpatrick 1997). The underlying substrate for the most part along roadside verges. includes Jurassic dolerite, Triassic sandstone and Quaternary wind-blown sands. Elevation The species is characterised by its bluish foliage ranges from 15 to 200 m above sea level. -
Molecular Phylogeny of Tribolium (Danthonioideae: Poaceae) and Its Taxonomic Implications
BOLUS LIBRARY C24 0007 9273 MOLECULAR PHYLOGENY OF TRIBOLIUM (DANTHONIOIDEAE: POACEAE) AND ITS TAXONOMIC IMPLICATIONS REFILOE NTSOHI NTSREF002 SYSTEMATICS HONOURS PROJECT, 2003 SUPERVISOR: TONY VERBOOM University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town ABSTRACT Molecular sequence data from two noncoding regions of D A (ITS AND TRNL-F) Were used to produce a phylogeny for the genus Tribolium and its African and Australasian allies. Topological comparisons of the combined molecular data with th e appended existing morphological tree were made. A significant incongruence was I revealed. Molecular data indicate that Tribolium is paraphyletic. The formally defined sections: Uniolae, Acutiflorae and Tribolium have been retrieved by the molecular data. The analysis retrieved Karroochloa as polyphyletic. Monophyly of Schismus is strongly supported. The Australasian species form a monophyletic clade. Data support early divergence of the Merxmuellera species and Pseudopentameris macrantha. I I I I 2 INTRODUCTION Tribolium is a genus of annual and perennial temperate, C3 grasses, currently comprising a total of ten species (Linder and Davidse, 1997). The genus is restricted to southern Africa, where the species are endemic to the winter rainfall region of the western Cape, which includes the Cape Floristic and Namaqualand regions. Here it forms part of the fynbos and succulent Karoo floras, with marginal populations of the most widespread species occurring in the neighbouring biomes. -
Poaceae: Panicoideae: Paniceae) Silvia S
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 41 2007 Phylogenetic Relationships of the Decumbentes Group of Paspalum, Thrasya, and Thrasyopsis (Poaceae: Panicoideae: Paniceae) Silvia S. Denham Instituto de Botánica Darwinion, San Isidro, Argentina Fernando O. Zuloaga Instituto de Botánica Darwinion, San Isidro, Argentina Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Denham, Silvia S. and Zuloaga, Fernando O. (2007) "Phylogenetic Relationships of the Decumbentes Group of Paspalum, Thrasya, and Thrasyopsis (Poaceae: Panicoideae: Paniceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 41. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/41 Aliso 23, pp. 545–562 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS OF THE DECUMBENTES GROUP OF PASPALUM, THRASYA, AND THRASYOPSIS (POACEAE: PANICOIDEAE: PANICEAE) SILVIA S. DENHAM1 AND FERNANDO O. ZULOAGA Instituto de Bota´nica Darwinion, Labarde´n 200, Casilla de Correo 22, San Isidro, Buenos Aires B1642HYD, Argentina 1Corresponding author ([email protected]) ABSTRACT Paspalum (Poaceae: Panicoideae: Paniceae) includes 330 species distributed mainly in tropical and subtropical regions of America. Due to the large number of species and convergence in many char- acters, an adequate infrageneric classification is still needed. Studies on Paniceae based on molecular and morphological data have suggested that Paspalum is paraphyletic, including the genus Thrasya, but none of these analyses have included a representative sample of these two genera. In this study, phylogenetic relationships among the informal group Decumbentes of Paspalum, plus subgenera and other informal groups, and the genera Thrasya and Thrasyopsis were estimated. -
THE BAMBOOS of NEPAL and BHUTAN PART III: Drepanostachyum, Himalayacalamus, Ampelocalamus, Neomicrocalamus and Chimonobambusa (Gramineae: Poaceae, Bambusoideae)
EDINB. J. BOT. 51(3): 301–330 (1994) THE BAMBOOS OF NEPAL AND BHUTAN PART III: Drepanostachyum, Himalayacalamus, Ampelocalamus, Neomicrocalamus and Chimonobambusa (Gramineae: Poaceae, Bambusoideae) C. M. A. S TAPLETON * This paper completes the systematic treatment of the bamboos of Nepal and Bhutan, covering five genera from subtropical to lower temperate zones. Three further genera from the subtribe Arundinariinae Bentham are included: Drepanostachyum Keng f., Himalayacalamus Keng f., and Ampelocalamus Chen, Wen & Sheng . They have semelauctant ebracteate inflorescences, pachymorph rhizomes, and 3 stamens. Neomicrocalamus Keng f. has semel- auctant bracteate inflorescences and 6 stamens, and is in the new subtribe described here, Racemobambosinae. Chimonobambusa Makino has bracteate inflorescences and 3 stamens and is the only Himalayan genus in the subtribe Shibataeinae (Nakai) Soderstrom & Ellis. A new Drepanostachyum species from Bhutan is described as D. annulatum. Himalayacalamus , which was originally described as a monotypic genus, is enlarged by the description of five new species, H. asper , H. brevinodus , H. cupreus , H. fimbriatus , and H. porcatus , all from Nepal. A Himalayan representative of the genus Ampelocalamus , A. patellaris , is transferred from Dendrocalamus. Neomicrocalamus andro- pogonifolius from eastern Bhutan is transferred from Bambusa . STATUS AND S EPARATION OF THE G ENERA These genera have all been considered to be part of Arundinaria Michaux at one time. The type species of the genera Drepanostachyum Keng f. , Ampelocalamus Chen, Wen & Sheng, Neomicrocalamus Keng f., and Chimonobambusa Makino were originally described as species of Arundinaria Michaux, while the type species of Himalayacalamus was initially described as a species of Thamnocalamus Munro, before being transferred into Arundinaria . -
The Red List of Rhododendrons
The Red List of Rhododendrons Douglas Gibbs, David Chamberlain and George Argent BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) is a membership organization linking botanic gardens in over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. Published by Botanic Gardens Conservation FAUNA & FLORA INTERNATIONAL (FFI) , founded in 1903 and the International, Richmond, UK world’s oldest international conservation organization, acts to conserve © 2011 Botanic Gardens Conservation International threatened species and ecosystems worldwide, choosing solutions that are sustainable, are based on sound science and take account of ISBN: 978-1-905164-35-6 human needs. Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. THE GLOBAL TREES CAMPAIGN is undertaken through a partnership between FFI and BGCI, working with a wide range of other The designation of geographical entities in this document and the presentation of the material do not organizations around the world, to save the world’s most threatened trees imply any expression on the part of the authors and the habitats in which they grow through the provision of information, or Botanic Gardens Conservation International delivery of conservation action and support for sustainable use.