Adulteration of Herbal Products: Bamboo Tea Authentication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Plant Extracts on Microbial Population, Methane Emission and Ruminal Fermentation Characteristics in in Vitro
806 Asian-Aust. J. Anim. Sci. Vol. 25, No. 6 : 806 - 811 June 2012 www.ajas.info http://dx.doi.org/10.5713/ajas.2011.11447 Effects of Plant Extracts on Microbial Population, Methane Emission and Ruminal Fermentation Characteristics in In vitro E. T. Kim, C. -H. Kim1, K. -S. Min2 and S. S. Lee* Division of Applied Life Science (BK21 program), Graduate School of Gyeongsang National University, IALS, Jinju, 660-701, Korea ABSTRACT: This study was conducted to evaluate effects of plant extracts on methanogenesis and rumen microbial diversity in in vitro. Plant extracts (Artemisia princeps var. Orientalis; Wormwood, Allium sativum for. Pekinense; Garlic, Allium cepa; Onion, Zingiber officinale; Ginger, Citrus unshiu; Mandarin orange, Lonicera japonica; Honeysuckle) were obtained from the Plant Extract Bank at Korea Research Institute of Bioscience and Biotechnology. The rumen fluid was collected before morning feeding from a fistulated Holstein cow fed timothy and commercial concentrate (TDN; 73.5%, crude protein; 19%, crude fat; 3%, crude fiber; 12%, crude ash; 10%, Ca; 0.8%, P; 1.2%) in the ratio of 3 to 2. The 30 ml of mixture, comprising McDougall buffer and rumen liquor in the ratio of 4 to 1, was dispensed anaerobically into serum bottles containing 0.3 g of timothy substrate and plant extracts (1% of total volume, respectively) filled with O2-free N2 gas and capped with a rubber stopper. The serum bottles were held in a shaking incubator at 39C for 24 h. Total gas production in all plant extracts was higher (p<0.05) than that of the control, and total gas production of ginger extract was highest (p<0.05). -
Development of SCAR Marker for Discrimination of Artemisia Princeps and A
April 2006 Biol. Pharm. Bull. 29(4) 629—633 (2006) 629 Development of SCAR Marker for Discrimination of Artemisia princeps and A. argyi from Other Artemisia Herbs a b b a b Mi Young LEE, Eui Jeong DOH, Chae Haeng PARK, Young Hwa KIM, Eung Soo KIM, a ,b Byong Seob KO, and Seung-Eun OH* a Korea Insititute of Oriental Medicine; Daejon 305–811, Korea: and b Department of Biological Sciences, Konkuk University; Seoul 143–701, Korea. Received September 21, 2005; accepted January 11, 2006 Some Artemisia herbs are used for medicinal purposes. In particular, A. princeps and A. argyi are classified as ‘Aeyup’ and are used as important medicinal material in traditional Korean medicine. On the other hand, A. capillaris and A. iwayomogi, which are classified as ‘Injinho’ and ‘Haninjin’, respectively, are used for other pur- poses distinct from those of ‘Aeyup’. However, sometimes ‘Aeyup’ is not clearly discriminated from ‘Injinho’ and/or ‘Haninjin’. Furthermore, Artemisia capillaris and/or A. iwayomogi have been used in place of A. princeps and A. argyi. In this study, we developed an efficient method to discriminate A. argyi and A. princeps from other Artemisia plants. The RAPD (random amplified polymorphic DNA) method efficiently discriminated various Artemisia herbs. In particular, non-specific primer 329 (5-GCG AAC CTC C-3), which shows polymorphism among Artemisia herbs, amplified 838 bp products, which are specific to A. princeps and A. argyi only. Based on (nucleotide sequence of the primer 329 product, we designed a Fb (5-CAT CAA CCA TGG CTT ATC CT-3 -and R7 (5-GCG AAC CTC CCC ATT CCA-3) primer-set to amplify a 254 bp sized SCAR (sequence character ized amplified regions) marker, through which A. -
A New Genus of Temperate Woody Bamboos
A peer-reviewed open-access journal PhytoKeys 109: 67–76 (2018) A new genus of temperate woody bamboos... 67 doi: 10.3897/phytokeys.109.27566 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research A new genus of temperate woody bamboos (Poaceae, Bambusoideae, Arundinarieae) from a limestone montane area of China Yu-Xiao Zhang1,2, Peng-Fei Ma2, De-Zhu Li2 1 Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan 650224, China 2 Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China Corresponding author: De-Zhu Li ([email protected]) Academic editor: C. Morden | Received 19 June 2018 | Accepted 12 September 2018 | Published 12 October 2018 Citation: Zhang Y-X, Ma P-F, Li D-Z (2018) A new genus of temperate woody bamboos (Poaceae, Bambusoideae, Arundinarieae) from a limestone montane area of China. PhytoKeys 109: 67–76. https://doi.org/10.3897/ phytokeys.109.27566 Abstract Ampelocalamus calcareus is a climbing and slender bamboo, known from south Guizhou, China. This species grows in broadleaved forests of limestone montane areas. Recent molecular phylogenetic analyses demonstrated that A. calcareus was sister to all other lineages of the tribe Arundinarieae rather than a member of Ampelocalamus. The morphological features and habitats of A. calcareus and related genera including Ampelocalamus, Drepanostachyum and Himalayacalamus were compared and discussed. The characteristics of the branch complements, nodes and foliage leaves distinguish A. calcareus from morpho- logically similar taxa. On the basis of molecular and morphological evidence, we propose to establish a new genus, Hsuehochloa, to accommodate A. -
The Genus Artemisia: a 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils
medicines Review The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils Abhay K. Pandey ID and Pooja Singh * Bacteriology & Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University Gorakhpur, Uttar Pradesh 273009, India; [email protected] * Correspondence: [email protected]; Tel.: +91-941-508-3883 Academic Editors: Gerhard Litscher and Eleni Skaltsa Received: 8 August 2017; Accepted: 5 September 2017; Published: 12 September 2017 Abstract: Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity. Keywords: Artemisia; essential oil; chemical composition; antimicrobial; insecticidal; antioxidant 1. -
Investigation of Mitochondrial-Derived Plastome Sequences in the Paspalum Lineage (Panicoideae; Poaceae) Sean V
Burke et al. BMC Plant Biology (2018) 18:152 https://doi.org/10.1186/s12870-018-1379-1 RESEARCH ARTICLE Open Access Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae) Sean V. Burke1* , Mark C. Ungerer2 and Melvin R. Duvall1 Abstract Background: The grass family (Poaceae), ca. 12,075 species, is a focal point of many recent studies that aim to use complete plastomes to reveal and strengthen relationships within the family. The use of Next Generation Sequencing technology has revealed intricate details in many Poaceae plastomes; specifically the trnI - trnL intergenic spacer region. This study investigates this region and the putative mitochondrial inserts within it in complete plastomes of Paspalum and other Poaceae. Results: Nine newly sequenced plastomes, seven of which contain an insert within the trnI - trnL intergenic spacer, were combined into plastome phylogenomic and divergence date analyses with 52 other species. A robust Paspalum topology was recovered, originating at 10.6 Ma, with the insert arising at 8.7 Ma. The alignment of the insert across Paspalum reveals 21 subregions with pairwise homology in 19. In an analysis of emergent self- organizing maps of tetranucleotide frequencies, the Paspalum insert grouped with mitochondrial DNA. Conclusions: A hypothetical ancestral insert, 17,685 bp in size, was found in the trnI - trnL intergenic spacer for the Paspalum lineage. A different insert, 2808 bp, was found in the same region for Paraneurachne muelleri. Seven different intrastrand deletion events were found within the Paspalum lineage, suggesting selective pressures to remove large portions of noncoding DNA. Finally, a tetranucleotide frequency analysis was used to determine that the origin of the insert in the Paspalum lineage is mitochondrial DNA. -
Pharmacology, Taxonomy and Phytochemistry of the Genus Artemisia Specifically from Pakistan: a Comprehensive Review
Available online at http://pbr.mazums.ac.ir PBR Review Article Pharmaceutical and Biomedical Research Pharmacology, taxonomy and phytochemistry of the genus Artemisia specifically from Pakistan: a comprehensive review Sobia Zeb5, Ashaq Ali18, Wajid Zaman2,3,8*, Sidra Zeb6, Shabana Ali7, Fazal Ullah2, Abdul Shakoor8* 1Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China 2Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan 3State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China 4Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China 5Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan 6Department of Microbiology, Abdulwali Khan University Mardan, Pakistan 7National institute of Genomics and Advance biotechnology, National Agriculture Research Centre 8University of Chinese Academy of Sciences, Beijing, China A R T I C L E I N F O A B S T R A C T *Corresponding author: The genus Artemisia belongs to family Asteraceae and commonly used for ailments of multiple lethal diseases. [email protected] Twenty-nine species of the genus have been identified from Pakistan which are widely used as pharmaceutical, agricultural, cosmetics, sanitary, perfumes and food industries. In this review we studied the medicinal uses, Article history: taxonomy, essential oils as well as phytochemistry were compiled. Data was collected from the original research Received: Oct 12, 2018 articles, texts books and review papers including globally accepted search engines i.e. PubMed, ScienceDirect, Accepted: Dec 21, 2018 Scopus, Google Scholar and Web of Science. Species found of Artemisia in Pakistan with their medicinal properties and phytochemicals were recorded. -
Hilu Paper (New)
KEW BULLETIN 62: 355–373 (2007) 355 A century of progress in grass systematics Khidir W. Hilu1 Summary. This paper presents an overview of progress in grass systematics with a focus on the past century and assesses its current status and future outlook. In concert with systematic biology, progress in grass systematics has gone through some leaps caused by the introduction of new approaches or emphasis on existing ones. Chromosome cytology, anatomy and chemistry provided useful information, but major recent contributions have come from advances in bioinformatics and molecular biology. Consequently, grass systematics has moved from an initial intuitive classification and phylogenetics to one incorporating analytical phenetic approaches, and culminating in the current stage of analytic phylogeny. As a result, a refined picture of grass phylogeny is emerging with good resolution at the base, but the tree lacks robustness in some places such as the monophyly of the “BEP” subfamilies and the relationships within the PACCAD clade. Systematic structure of a number of subfamilies is better understood now, but further studies are needed. With the rapid advancement in molecular systematic and bioinformatic tools, and in conjunction with a wealth of literature available on structural characters, a more refined picture of grass taxonomy and evolution is expected. However, caution needs to be exercised in our interpretations to avoid hasty decisions that can translate into regress rather than progress. This is an exciting time in the history of grass systematics and, undoubtedly, is a period of collaborative rather than individual effort. Key words. Poaceae, grasses, systematics, phylogenetics, history, evolution. Introduction valuable resources used in furthering our Although the c. -
Phylogenetics and Evolution of the Paleotropical Woody Bamboos (Poaceae: Bambusoideae: Bambuseae) Hathairat Chokthaweepanich Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Phylogenetics and Evolution of the Paleotropical Woody Bamboos (Poaceae: Bambusoideae: Bambuseae) Hathairat Chokthaweepanich Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Systems Biology Commons Recommended Citation Chokthaweepanich, Hathairat, "Phylogenetics and Evolution of the Paleotropical Woody Bamboos (Poaceae: Bambusoideae: Bambuseae)" (2014). Graduate Theses and Dissertations. 13778. https://lib.dr.iastate.edu/etd/13778 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Phylogenetics and Evolution of the Paleotropical Woody Bamboos (Poaceae: Bambusoideae: Bambuseae) by Hathairat Chokthaweepanich A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee: Lynn G. Clark, Major Professor Gregory W. Courtney Robert S. Wallace Dennis V. Lavrov William R. Graves Iowa State University Ames, Iowa 2014 Copyright © Hathairat Chokthaweepanich 2014. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES viii ABSTRACT x CHAPTER 1. OVERVIEW 1 Organization of the Thesis 1 Literature Review 2 Research Objectives 10 Literature Cited 10 CHAPTER 2. PHYLOGENY AND CLASSIFICATION OF THE PALEOTROPICAL WOODY BAMBOOS (POACEAE: BAMBUSOIDEAE: BAMBUSEAE) BASED ON SIX PLASTID MARKERS. A manuscript to be submitted to the journal Molecular Phylogenetics and Evolution. -
Evolution of the Bamboos
Wysocki et al. BMC Evolutionary Biology (2015) 15:50 DOI 10.1186/s12862-015-0321-5 RESEARCH ARTICLE Open Access Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis William P Wysocki1*, Lynn G Clark2, Lakshmi Attigala2, Eduardo Ruiz-Sanchez3 and Melvin R Duvall1 Abstract Background: Bambusoideae (Poaceae) comprise three distinct and well-supported lineages: tropical woody bamboos (Bambuseae), temperate woody bamboos (Arundinarieae) and herbaceous bamboos (Olyreae). Phylogenetic studies using chloroplast markers have generally supported a sister relationship between Bambuseae and Olyreae. This suggests either at least two origins of the woody bamboo syndrome in this subfamily or its loss in Olyreae. Results: Here a full chloroplast genome (plastome) phylogenomic study is presented using the coding and noncoding regions of 13 complete plastomes from the Bambuseae, eight from Olyreae and 10 from Arundinarieae. Trees generated using full plastome sequences support the previously recovered monophyletic relationship between Bambuseae and Olyreae. In addition to these relationships, several unique plastome features are uncovered including the first mitogenome-to-plastome horizontal gene transfer observed in monocots. Conclusions: Phylogenomic agreement with previous published phylogenies reinforces the validity of these studies. Additionally, this study presents the first published plastomes from Neotropical woody bamboos and the first full plastome phylogenomic study performed within the herbaceous bamboos. Although the phylogenomic tree presented in this study is largely robust, additional studies using nuclear genes support monophyly in woody bamboos as well as hybridization among previous woody bamboo lineages. The evolutionary history of the Bambusoideae could be further clarified using transcriptomic techniques to increase sampling among nuclear orthologues and investigate the molecular genetics underlying the development of woody and floral tissues. -
Inhibitory Activity of Caffeoylquinic Acids from the Aerial Parts Of
J. Korean Soc. Appl. Biol. Chem. 52(6), 655-662 (2009) Article Inhibitory Activity of Caffeoylquinic Acids from the Aerial Parts of Artemisia princeps on Rat Lens Aldose Reductase and on the Formation of Advanced Glycation End Products Cheng-Bi Cui1, Seung Kyoung Jeong2, Yeon Sil Lee3, Soon Ok Lee4, Il-Jun Kang2,3*, and Soon Sung Lim2,3* 1Department of Agriculture, Yanbian University, Yan Ji 133000, Jilin Prov, China 2Medical & Bio-material Research Center and Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Republic of Korea 3Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, Chuncheon 200-702, Republic of Korea 4Department of Hotel Cuisine, Korea Tourism College, Icheon 467-745, Republic of Korea Received October 1, 2009; Accepted November 5, 2009 Caffeoylquinic acids -3,4-di-O-caffeoylquinic acid (1); 1,3,5-tri-O-caffeoylquinic acid (2); and 3,4,5- tri-O-caffeoylqunic acid (3)- were isolated from an acetone-soluble fraction of the aerial parts of Artemisia princeps. Their structures were determined spectroscopically using 1D- and 2D-nuclear magnetic resonance (NMR) studies, as well as by comparing the NMR results with previously published structures. All the isolates were subjected to in vitro bioassays to evaluate their efficacy in inhibiting rat lens aldose reductase (RLAR) activity and the formation of advanced glycation end products (AGEs). We found 1,3,5-tri-O-caffeoylquinic acid (2) to be the most potent AGE inhibitor, and the concentration that resulted in 50% inhibition (IC50) was 22.18 ±1.46 mM, as compared to the aminoguanidine and chlorogenic acid controls, which had IC50 values of 1,093.11±10.95 and 117.63±0.20 mM, respectively. -
Poaceae: Bambusoideae) Reveals Ten Major Lineages and Low Rate of Molecular Divergence
Molecular Phylogenetics and Evolution 56 (2010) 821–839 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Large multi-locus plastid phylogeny of the tribe Arundinarieae (Poaceae: Bambusoideae) reveals ten major lineages and low rate of molecular divergence Chun-Xia Zeng a,b,c,1, Yu-Xiao Zhang a,b,c,1, Jimmy K. Triplett d, Jun-Bo Yang a,c, De-Zhu Li a,c,* a Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, PR China b Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China c Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming, Yunnan 650204, PR China d Department of Biology, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA article info abstract Article history: The temperate bamboos (tribe Arundinarieae) are notorious for being taxonomically extremely difficult. Received 30 December 2009 China contains some of the world’s greatest diversity of the tribe Arundinarieae, with most genera and Revised 31 March 2010 species endemic. Previous investigation into phylogenetic relationships of the temperate bamboos Accepted 31 March 2010 revealed several major clades, but emphasis on the species-level relationships among taxa in North Available online 8 April 2010 America and Japan. To further elucidate relationships among the temperate bamboos, a very broad sam- pling of Chinese representatives was examined. We produced 9463 bp of sequences from eight non-cod- Keywords: ing chloroplast regions for 146 species in 26 genera and 5 outgroups. -
Tall-Statured Grasses: a Useful Functional Group for Invasion Science
Biol Invasions https://doi.org/10.1007/s10530-018-1815-z (0123456789().,-volV)(0123456789().,-volV) REVIEW Tall-statured grasses: a useful functional group for invasion science Susan Canavan . Laura A. Meyerson . Jasmin G. Packer . Petr Pysˇek . Noe¨lie Maurel . Vanessa Lozano . David M. Richardson . Giuseppe Brundu . Kim Canavan . Angela Cicatelli . Jan Cˇ uda . Wayne Dawson . Franz Essl . Francesco Guarino . Wen-Yong Guo . Mark van Kleunen . Holger Kreft . Carla Lambertini . Jan Pergl . Hana Ska´lova´ . Robert J. Soreng . Vernon Visser . Maria S. Vorontsova . Patrick Weigelt . Marten Winter . John R. U. Wilson Received: 13 March 2018 / Accepted: 9 August 2018 Ó Springer Nature Switzerland AG 2018 Abstract Species in the grass family (Poaceae) have statured grasses (TSGs; defined as grass species that caused some of the most damaging invasions in natural maintain a self-supporting height of 2 m or greater) to ecosystems, but plants in this family are also among the non-TSGs using the Global Naturalised Alien Flora most widely used by humans. Therefore, it is important database. We review the competitive traits of TSGs and to be able to predict their likelihood of naturalisation and collate risk assessments conducted on TSGs. Of the c. impact. We explore whether plant height is of particular 11,000 grass species globally, 929 qualify (c. 8.6%) as importance in determining naturalisation success and TSGs. 80.6% of TSGs are woody bamboos, with the impact in Poaceae by comparing naturalisation of tall- remaining species scattered among 21 tribes in seven subfamilies. When all grass species were analysed, TSGs and non-TSGs did not differ significantly in the Electronic supplementary material The online version of probability of naturalisation.