Managing Marine Litter: Exploring the Evolving Role of International and European Law in Confronting a Persistent Environmental Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contaminated Soil in Gardens
Contaminated Soil in Gardens How to avoid the harmful effects EUR/ICP/LVNG 03 01 02(A) E64737 EUROPEAN HEALTH21 TARGET 11 HEALTHIER LIVING By the year 2015, people across society should have adopted healthier patterns of living (Adopted by the WHO Regional Committee for Europe at its forty-eighth session, Copenhagen, September 1998) Abstract In many cities, gardens are located on old, abandoned landfills and dumping sites. Cities have expanded by filling up spaces around the city with garbage, rubble and earth. The places where old landfills were have often become gardens where citizens can get away and enjoy the open air away from the noise and racket of cities. Normal garbage and rubble in landfills do not present a problem, however industrial and chemical waste can present a health hazard, especially when concentrations of contaminants are above acceptable limits. Some special precautions are proposed in this booklet so that the potential ill effects of contaminated soil can be avoided. Keywords SOIL POLLUTANTS RISK MANAGEMENT GUIDELINES URBAN HEALTH Contents The soil is contaminated – what then? .......................................................1 What is in the ground under us?.................................................................2 How harmful substances may affect the body ............................................3 How to reduce the risk................................................................................4 The best way to garden..............................................................................5 -
Evaluation of Turkish Mine Waste Management Policy with Respect to Marine Pollution
© by PSP Volume 26 – No. 10/2017 pages 6149-6158 Fresenius Environmental Bulletin EVALUATION OF TURKISH MINE WASTE MANAGEMENT POLICY WITH RESPECT TO MARINE POLLUTION Esin Esen* SRK Consulting Turan Gunes Bulvari No: 86/3, 06550 Yildiz, Ankara Turkey ABSTRACT Large volumes of wastes are produced by the mining activities and mine waste management is one of the most important environmental issues which di- rectly affect the feasibility of the mine related to per- mitting. The slurries or waste materials left over after mineral is extracted from ore via physico-chemical processing are called tailings which must be safely disposed to prevent the release of contaminates into the environment. Tailings are generally stored on- land surface impoundments; can be used in backfill- ing the voids in exhausted underground mines and/or transferred through pipes and disposed to a water- course under the water level subaqueously. In deep sea tailings placement (DSTP) method, the tailings FIGURE 1 are disposed to deep sea zones far from the shore. General Flow Scheme for Mining [8] The environmental legislations are improving, forc- ing the mining industry to take strict measures re- Tailings may contain suspended solid particles garding tailings management. The Turkish Regula- consisting of economically worthless minerals and a tion on Mining Wastes have been published in 2015 small amount of valuable minerals, dissolved solids, and is going to be in force by July 15, 2017 where metal ions, chemical reactives and reaction products DSTP is adressed as a possibility for non-hazardous [9]. The heavy metals, which are important in terms wastes disposed to anoxic layer of Black Sea. -
Marine Litt Er Regional Action Plan
Marine Litter Regional Action Plan Marine Litter 1 Regional Action Plan for Prevention and Management of Marine Litter in the North-East Atlantic This Regional Action Plan (RAP) sets out the policy context for OSPAR’s work on marine litter, describes the various types of actions that OSPAR will work on over the coming years and provides a timetable to guide the achievement of these actions. The RAP is organised in four sections: SECTION I follows the brief introduction below and sets the objectives, the geographical scope, principles and approaches that should frame implementation. SECTION II presents the actions to be implemented. The actions have been grouped in four themes as follows: A. the reduction of litter from sea-based sources and B. the reduction of litter from land- based sources, C. the removal of existing litter from the marine environment and D. education and outreach on the topic of marine litter. SECTION III describes the necessary monitoring and assessment. SECTION IV outlines how the plan will be implemented and followed up by OSPAR. 2 © Eleanor Partridge/Marine Photobank Marine Litter Marine litter covers any solid material which has been deliberately discarded, or unintentionally lost on beaches and on shores or at sea, including materials transported into the marine environment from land by rivers, draining or sewage systems or winds. It includes any persistent, manufactured or processed solid material. Marine litter originates from different sea- and land-based sources and is largely based on the prevailing production and consumption pattern. Marine litter consists of a wide range of materials, including plastic, metal, wood, rubber, glass and paper. -
Land Application of Industrial Waste
Land Application of Industrial Waste This document is intended for use by persons or operations that generate industrial waste suitable for land application to help them determine what type(s) of regulatory oversight and/or permit is required for land application. Land application of sewage sludge (biosolids), animal manure, and petroleum contaminated soil are regulated separately from other wastes and are not the focus of this document. 1. Is the material a fertilizer or soil conditioner? Is the material managed as a valuable commodity, i.e. does the generator sell the material? Element Percent Is the intent of land applying the material to replace or offset the use of more traditional fertilizers or soil Calcium (Ca) 1.00 conditioners? Are claims or guaranties made to land owners Magnesium (Mg) 0.50 concerning the nutrient value? Sulfur (S) 1.00 Do the N, P, and K, values equal 20 when added Boron (B) 0.02 together? Chlorine (Cl) 0.10 Is the material capable of changing the pH of the soil? Cobalt (Co) 0.0005 When added to the soil or applied to plants would the Copper (Cu) 0.05 material produce a favorable growth, yield or quality of Iron (Fe) 0.10 crop or soil flora or fauna or other improved soil Manganese (Mn) 0.05 characteristics? Molybdenum (Mo) 0.0005 Does the material provide any of the following plant Sodium (Na) 0.10 nutrients at or above the level indicated in the chart Zinc (Zn) 0.05 above? If the answer to one or more of these questions is “yes” then it is possible the material could be registered and regulated by the Iowa Department of Agriculture and Land Stewardship as a fertilizer or soil conditioner and not a waste. -
Marine Litter Legislation: a Toolkit for Policymakers
Marine Litter Legislation: A Toolkit for Policymakers The views expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations Environment Programme. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, DCPI, UNEP, P.O. Box 30552, Nairobi, Kenya. Acknowledgments This report was developed by the Environmental Law Institute (ELI) for the United Nations Environment Programme (UNEP). It was researched, drafted, and produced by Carl Bruch, Kathryn Mengerink, Elana Harrison, Davonne Flanagan, Isabel Carey, Thomas Casey, Meggan Davis, Elizabeth Hessami, Joyce Lombardi, Norka Michel- en, Colin Parts, Lucas Rhodes, Nikita West, and Sofia Yazykova. Within UNEP, Heidi Savelli, Arnold Kreilhuber, and Petter Malvik oversaw the development of the report. The authors express their appreciation to the peer reviewers, including Catherine Ayres, Patricia Beneke, Angela Howe, Ileana Lopez, Lara Ognibene, David Vander Zwaag, and Judith Wehrli. Cover photo: Plastics floating in the ocean The views expressed in this report do not necessarily reflect those of the United Nations Environment Programme. © 2016. United Nations Environment Programme. Marine Litter Legislation: A Toolkit for Policymakers Contents Foreword .................................................................................................. -
The Convention for the Protection of the Marine
The Convention for the Protection of the Marine Environment of the North-East Atlantic (the “OSPAR Convention”) was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Union and Spain. La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l’Irlande, l’Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d’Irlande du Nord, la Suède et la Suisse et approuvée par l’Espagne et l'Union européenne. © OSPAR Commission, 2000. Updated 2004. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated. © Commission OSPAR, 2000. Mise à jour 2004. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l’Editeur, sous réserve que l’origine de l’extrait soit clairement mentionnée. ISBN 0 946956 54 5 OSPAR Commission 2000 (2004 Update) OSPAR Background Document on Mercury and Organic Mercury Compounds Contents Secretariat Note: ............................................................................................................................................... -
How a Landfill Works Presented By: American Environmental Landfill, Inc
How a Landfill Works Presented by: American Environmental Landfill, Inc. 1420 W. 35th Street, Suite B Tulsa, OK 74107 Phone: 918-245-7786 Fax: 918-245-7774 How a Landfill Works So you have just finished your meal at a fast food restaurant and you throw your uneaten food, food wrappers, drink cup, utensils and napkins into the trash can. Odds are you don’t think about that waste again. On trash pickup day in your neighborhood, you push your can out to the curb, and workers dump the contents into a big truck and haul it away. You don’t have to think about that waste again, either. But maybe you have wondered, as you watch the trash truck pull away, just where that garbage ends up. Americans generate trash at an astonishing rate of four to seven pounds per day per person, which translates to at least 600,000 tons per day or at least 210 million tons per year! This is almost twice as much trash per person as most other major countries. What happens to this trash? Some gets recycled or recovered and some is burned, but the majority is buried in landfills. In this overview of how a landfill works, we will examine how a landfill is made, what happens to the trash in landfills, what risks are associated with a landfill and how these risks are solved. How is Trash Disposed of? The trash production in the United States has almost tripled since 1960 (Figure 2). This trash is handled in various ways. About 27 % of the trash is recycled or composted, 16% is burned and 57% is buried in landfills. -
EPA's Guide for Industrial Waste Management
Guide for Industrial Waste Management Protecting Land Ground Water Surface Water Air Building Partnerships Introduction EPA’s Guide for Industrial Waste Management Introduction Welcome to EPA’s Guide for Industrial Waste Management. The pur- pose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-haz- ardous industrial wastes. The Guide can help facility managers make environmentally responsible decisions while working in partnership with state and tribal regulators and the public. It can serve as a handy implementation reference tool for regulators to complement existing programs and help address any gaps. The Guide can also help the public become more informed and more knowledgeable in addressing waste management issues in the community. In the Guide, you will find: • Considerations for siting industrial waste management units • Methods for characterizing waste constituents • Fact sheets and Web sites with information about individual waste constituents • Tools to assess risks that might be posed by the wastes • Principles for building stakeholder partnerships • Opportunities for waste minimization • Guidelines for safe unit design • Procedures for monitoring surface water, air, and ground water • Recommendations for closure and post-closure care Each year, approximately 7.6 billion tons of industrial solid waste are generated and disposed of at a broad spectrum of American industrial facilities. State, tribal, and some local governments have regulatory responsibility for ensuring proper management of these wastes, and their pro- grams vary considerably. In an effort to establish a common set of industrial waste management guidelines, EPA and state and tribal representatives came together in a partnership and developed the framework for this voluntary Guide. -
Home and Garden Pesticides
HAZARDOUS WASTES G3453 Home and garden pesticides DISPOSING OF This publication describes the proper General information way to dispose of general-use pesticides, ome and garden pesticides are disinfectants, no-pest strips, moth flakes chemicals used to kill or repel and mothballs, wood preservatives, pet FROM THE HOME pests. They include many common H flea and tick powders, pet collars, and pet Jonathan Rivin household products that you may not shampoos. If you have questions about and Elaine Andrews consider particularly hazardous, such as how to dispose of specific home and disinfectants and flea collars, and they are garden products not described in this of five main types, fact sheet, please call your local or county • herbicides, which kill plants, public health department, solid waste • insecticides, which kill insects, department, or call the UW Extension Solid & Hazardous Waste Education Center. To • fungicides, which kill fungi or mold, Home and garden learn about alternatives to pesticide use, • rat poisons, which kill rats, and contact your county agriculture extension pesticides pose a health • disinfectants, which kill infectious agent. microorganisms. Please note: Toxicity guidelines change All home and garden pesticides are rapidly, so do not rely entirely on this fact hazard if misused, and if poisonous to some degree. Do not dispose sheet for information about hazardous of these toxic substances in the home drain materials. For additional advice, contact disposed of improperly or storm sewer. Share them with someone your county extension office, the Pesticide else who can use them, or save them for Program within the Wisconsin Department a household hazardous waste collection of Agriculture, Trade and Consumer can contaminate drinking program. -
An Integrated Review of Concepts and Initiatives for Mining the Technosphere: Towards a New Taxonomy
An integrated review of concepts and initiatives for mining the technosphere: towards a new taxonomy Nils Johansson, Joakim Krook, Mats Eklund and Björn Berglund Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Nils Johansson, Joakim Krook, Mats Eklund and Björn Berglund, An integrated review of concepts and initiatives for mining the technosphere:towards a new taxonomy, 2013, Journal of Cleaner Production, (55), 35-44. http://dx.doi.org/10.1016/j.jclepro.2012.04.007 Copyright: Elsevier http://www.elsevier.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77301 10 439 words An Integrated Review of Concepts and Initiatives for Mining the Technosphere: Towards a New Taxonomy Nils Johanssona*; Joakim Krooka, Mats Eklunda, and Björn Berglunda. *Corresponding author: Department of Management and Engineering, Environmental Technology and Management Linköping University, SE-581 83 Linköping, Sweden. [email protected], +46(0)13 285629. a Department of Management and Engineering, Environmental Technology and Management Linköping University, SE-581 83 Linköping, Sweden. [email protected], [email protected], [email protected]. 1 10 439 words Abstract Stocks of finite resources in the technosphere continue to grow due to human activity, at the expense of decreasing in-ground deposits. Human activity, in other words, is changing the prerequisites for mineral extraction. For that reason, mining will probably have to adapt accordingly, with more emphasis on exploitation of previously extracted minerals. This study reviews the prevailing concepts for mining the technosphere as well as actual efforts to do so, the objectives for mining, the scale of the initiatives, and what makes them different from other reuse and recycling concepts. -
What Is Marine Debris?
from boating and shoreline recreational activities such as picnicking on beaches. on picnicking as such activities recreational shoreline and boating from washes down storm drains into rivers, and then into the sea. Marine debris also comes comes also debris Marine sea. the into then and rivers, into drains storm down washes A majority of the trash and debris on coasts comes from littering or dumping, where it it where dumping, or littering from comes coasts on debris and trash the of majority A abandoned into the marine environment or the Great Lakes. Great the or environment marine the into abandoned processed and directly or indirectly, intentionally or unintentionally, disposed of or or of disposed unintentionally, or intentionally indirectly, or directly and processed Marine debris is defined as any persistent solid material that is manufactured or or manufactured is that ? material solid persistent any as defined is debris Marine PLASTIC vessels. abandoned and gear fishing derelict to bags plastic and MARINE DEBRIS GARBAGE bottles soda from ranging debris, marine of variety wide a with polluted is ocean Our Plastic is the most common type of marine PATCHES DEBRIS debris in the ocean. Globally, we are consuming more and more single-use Currents and winds move marine debris plastic items, but many countries lack throughout the ocean, sometimes far the waste infrastructure to process it. In from its origin. “Garbage patches” are MARINE places where there is good infrastructure, areas in the ocean where marine debris intentional littering or improper disposal accumulates because of converging may add to the problem. currents. These areas are not solid islands of trash that you can see easily IS Plastic does not biodegrade in the ocean. -
Environmental Impact of Oil and Gas Activities Other Than Pollution
Offshore Industry Series --------------------------------------------------------------------------------------------------------------------- Environmental Impact of Oil and Gas Activities other than Pollution OSPAR Commission 2004 OSPAR Commission, 2004: Background Document on Environmental Impact of Oil and Gas Activities other than Pollution _____________________________________________________________________________________________ The Convention for the Protection of the Marine Environment of the North-East Atlantic (the “OSPAR Convention”) was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Community and Spain. La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l’Irlande, l’Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. © OSPAR Commission, 2004. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated. © Commission OSPAR, 2004. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l’Editeur, sous réserve que l’origine de l’extrait soit clairement mentionnée.