The Origin of Life Oceans: the Cradle of Life? Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Origin of Life Oceans: the Cradle of Life? Cells Oceans: the cradle of life? • Highest diversity of life, particularly archae, bacteria, and animals The origin of life • Will start discussion of life in the ocean with prokaryote microorganisms • Prokaryotes are also believed to be the first cellular organisms on earth • How might life on earth have started? • From molecules to the first cell Cells: a sense of scale Head of a needle Fig 25-UN8 Simple biological molecules can 1.2 bya: form under prebiotic conditions First multicellular eukaryotes 535–525 mya: Cambrian explosion 500 mya: (great increase • Conditions on earth during first billion 2.1 bya: Colonization in diversity of First eukaryotes (single-celled) of land by animal forms) fungi, plants years and animals 3.5 billion years ago (bya): • No free oxygen, no ozone layer to absorb First prokaryotes (single-celled) UV radiation • Atmosphere = CO 2, CH 4, NH 3, H 2 t 0 0 0 0 0 0 0 0 n 0 0 0 0 0 0 0 0 • Violent weather = eruptions, lightning, e 0 5 5 0 0 5 0 5 , , , , , , , s 4 1 1 3 3 2 2 e r torrential rains Millions of years ago (mya) P Simple organic molecules Laboratory are likely to “created” have been molecules produced under such conditions • nucleobases Sugars such as ribose Formation of polymers from Spontaneous polymerization of simple organic compounds random polymers • Amino acids (aa) can join by forming peptide bonds • Nucleotides (nt) can join by forming phosphodiester bonds • In present day cells - polypeptides (proteins) are from aa, polynucleotides (RNA and DNA) are from nt. Earliest polymers were of variable length and random Autocatalytic systems sequence • Mechanism of formation • Origin of life requires that some polymers – Heating of dry organic compounds must have a crucial property: the ability to – Catalytic activity of inorganic polyphosphates catalyze reactions that lead to the or other mineral catalysts production of more molecules of itself. • Polymers can influence subsequent • This can be accomplished by reactions by acting as a catalyst polynucleotides Complementary templating Ribozymes • Catalytic RNA molecule • Believed to be the basis for the first autocatalytic systems • Acts as both template and catalyst • Eventually specialization where DNA is the template and proteins are catalysts Self-replicating RNA systems • Start with a catalytic RNA molecule that polymerizes nucleotides to reproduce itself Self-replicating RNA systems The beginning of evolution • 3.5 to 4 billion years ago - mixture of self- • Next step: replicating RNA systems and organic family of molecule precursors mutually • Systems with different sets of polymers supportive competed for the available precursors catalytic RNA molecules. • Success depended on the accuracy and One catalyzes speed with which the copies were made the and the stability of these copies reproduction of the others From polynucleotides to Primative RNA/protein systems peptides • Polynucleotides are well suited for • Would have an advantage over RNA only information and storage but have limited systems due to better catalysis facilitated catalytic properties by proteins • Proteins have much greater catalytic capabilities • In modern cells, synthesis of proteins is catalyzed by ribosomes (proteins and RNA) from RNA templates. Membranes defined the first cell • An illustration of a protocell, composed of a fatty acid membrane encapsulating RNA ribozymes. Membranes defined the first cell • The development of an outer membrane was a crucial event • Proteins synthesized by a certain species of RNA would not increase reproduction of that RNA species unless they remained in the neighborhood of the RNA • Proteins could diffuse away and benefit competing RNA molecules The need for containment is filled by amphipathic molecules • Amphipathic - property where one part of the molecule is hydrophobic and the other part is hydrophilic. • In present-day cells, these amphipathic molecules are primarily phospholipids. Membranes are readily formed • A simple fatty acid (far left) may have been a major componenent of early cell membranes. To the right of from amphipathic molecules the fatty acid is a phospholipid, which is the primary component of modern cell membranes. Vesicles and • Example: phospholipids micelles, shown on the right, are structures that can be – Hydrophobic tail group formed by fatty acids or phospholipids. Mouse-over the vesicle or micelle to see the whole structure – Hydrophilic head group • Mix in water and membranes spontaneously form Summary of the hypothetical evolution of the first cells DNA based systems have All present-day cells use DNA advantages over RNA based as their hereditary material systems • DNA acts as a permanent repository of genetic information – Is found principally in a double-stranded form which is more robust and stable – If there is breakage, there is a repair mechanism that uses the intact strand as a template. • DNA templates can become more complex From self-replicating RNA to From procaryotes to eucaryotes present day cells • RNA preceded DNA and proteins, having • 1.5 billion years ago there was a transition both catalytic and genetic properties. from relatively simple procaryotic cells to • Proteins eventually became the major larger more complex eucaryotic cells. catalysts • DNA became the primary genetic material • RNA continues to function in coding for proteins (mRNA) and catalysis (rRNA). The earliest procaryotes were Procaryotes generally have no like present day bacteria obvious internal structures • Bacteria – Simplest organisms – Spherical or rod shaped several microns long – Tough protective coat (cell wall) – Plasma membrane enclosing a single cytoplasmic compartment • DNA, RNA, proteins, and small molecules Originally, there was little need Metabolic reactions evolve for so many metabolic reactions • A bacterium growing in a simple solution • Cells with simple chemistry could survive containing glucose must carry out and grow on the molecules in their hundreds of different reactions. surroundings. • Glucose used for chemical energy and as • Eventually these molecules would become a precursor for all organic molecules the limited and cells devised ways to cell requires. manufacture what they couldn’t acquire. • This led to metabolic complexity. Glycolysis, the oldest metabolic Cyanobacteria can fix CO 2 and pathway N2 • A strong selective advantage would • Degradation of sugar phosphates in the eventually be gained by organisms able to absence of oxygen occurs by glycolysis use C and N directly from the atmosphere. • Glycolysis is similar in all kinds of • CO 2 and N 2 are very stable and require a organisms -- suggesting an extremely large amount of energy as well as ancient origin complicated chemical reactions to convert • Metabolism evolved by sequential them to organic molecules addition of new enzymatic reactions to existing ones. • In present-day organisms hundreds of chemical processes are linked to Photosynthesis and nitrogen Atmospheric oxygen and the fixation course of evolution • Process that used energy from sunlight to convert CO 2 and N 2 into organic compounds. • Cyanobacteria (blue-green) algae are the most self-sufficient organisms that now exist. • The metabolic activity of these organisms set the stage for the evolution of more complex organisms Origin of eucaryotic cells with Aerobic respiration distinct organelles • Accumulation of oxygen in the atmosphere • What happened to the anaerobic led to the ability to oxidize more organisms? completely ingested molecules – Many found low oxygen niches • Also oxygen was toxic to many early • Some acquired aerobic cells as anaerobic organisms intracellular symbionts giving rise to • By around 1.5 billion years ago, organisms eucaryotes with aerobic respiration became widespread Features of eucaryotic cells Features of eucaryotic cells • Outside the nucleus is the cytoplasm where most of the cell’s metabolic • Have a reactions occur. nucleus containing • The cytoplasm contains distinctive most of the organelles cell’s DNA – Prominent organelles are chloroplasts and mitochondria – Each is enclosed in its own membrane Eucaryotic cells depend on mitochondria for aerobic Mitochondria respiration • Similar to free-living prokaryotic cells • Mitochondria • Resemble bacteria in size and shape are found in • Contain DNA, make protein, and virtually all reproduce by dividing in two eukaryotic • Without mitochondria eukaryotic cells cells would be anaerobic organisms including • By engulfing mitochondria, internal oxygen plants and concentrations are kept low animals Acquisition of mitochondria may Some present day organisms have allowed evolution of new may resemble the hypothetical features ancestral eucaryote precursor • Plasma membrane of mitochondria and • They have nuclei but lack mitochondria procaryotes is heavily committed to energy • Example the diplomonad Giardia metabolism • In contrast eucaryote membrane is not. • Eucaryote membrane developed new features – Example: ion channels allowing electrical signaling Giardia • Live as parasites in the guts of animals (including humans) – Low oxygen environment – Rich in nutrients allowing them to survive on inefficient anaerobic metabolism Chloroplasts are descendants of an engulfed procaryotic cell • Similarities to cyanobacteria – Carry out photosynthesis – Structural resemblance (size, stacked membranes) – Reproduce by dividing – Contain DNA nearly indistinguishable from portions of a bacterial chromosome Some present-day cells contain authentic cyanobacteria • Cyanophora paradoxa Fig.
Recommended publications
  • The First Cells Were Most Likely Very Simple Prokaryotic Forms. Ra- Spirochetes
    T HE O RIGIN OF E UKARYOTIC C ELLS The first cells were most likely very simple prokaryotic forms. Ra- spirochetes. Ingestion of prokaryotes that resembled present-day diometric dating indicates that the earth is 4 to 5 billion years old cyanobacteria could have led to the endosymbiotic development of and that prokaryotes may have arisen more than 3.5 billion years chloroplasts in plants. ago. Eukaryotes are thought to have first appeared about 1.5 billion Another hypothesis for the evolution of eukaryotic cells proposes years ago. that the prokaryotic cell membrane invaginated (folded inward) to en- The eukaryotic cell might have evolved when a large anaerobic close copies of its genetic material (figure 1b). This invagination re- (living without oxygen) amoeboid prokaryote ingested small aerobic (liv- sulted in the formation of several double-membrane-bound entities ing with oxygen) bacteria and stabilized them instead of digesting them. (organelles) in a single cell. These entities could then have evolved This idea is known as the endosymbiont hypothesis (figure 1a) and into the eukaryotic mitochondrion, nucleus, and chloroplasts. was first proposed by Lynn Margulis, a biologist at Boston Univer- Although the exact mechanism for the evolution of the eu- sity. (Symbiosis is an intimate association between two organisms karyotic cell will never be known with certainty, the emergence of of different species.) According to this hypothesis, the aerobic bac- the eukaryotic cell led to a dramatic increase in the complexity and teria developed into mitochondria, which are the sites of aerobic diversity of life-forms on the earth. At first, these newly formed eu- respiration and most energy conversion in eukaryotic cells.
    [Show full text]
  • Bioenergetics and Metabolism Mitochondria Chloroplasts
    Bioenergetics and metabolism Mitochondria Chloroplasts Peroxisomes B. Balen Chemiosmosis common pathway of mitochondria, chloroplasts and prokaryotes to harness energy for biological purposes → chemiosmotic coupling – ATP synthesis (chemi) + membrane transport (osmosis) Prokaryotes – plasma membrane → ATP production Eukaryotes – plasma membrane → transport processes – membranes of cell compartments – energy-converting organelles → production of ATP • Mitochondria – fungi, animals, plants • Plastids (chloroplasts) – plants The essential requirements for chemiosmosis source of high-energy e- membrane with embedded proton pump and ATP synthase energy from sunlight or the pump harnesses the energy of e- transfer to pump H+→ oxidation of foodstuffs is proton gradient across the membrane used to create H+ gradient + across a membrane H gradient serves as an energy store that can be used to drive ATP synthesis Figures 14-1; 14-2 Molecular Biology of the Cell (© Garland Science 2008) Electron transport processes (A) mitochondrion converts energy from chemical fuels (B) chloroplast converts energy from sunlight → electron-motive force generated by the 2 photosystems enables the chloroplast to drive electron transfer from H2O to carbohydrate → chloroplast electron transfer is opposite of electron transfer in a mitochondrion Figure 14-3 Molecular Biology of the Cell (© Garland Science 2008) Carbohydrate molecules and O2 are products of the chloroplast and inputs for the mitochondrion Figure 2-41; 2-76 Molecular Biology of the Cell (© Garland
    [Show full text]
  • Origin and Evolution of Plastids and Mitochondria : the Phylogenetic Diversity of Algae
    Cah. Biol. Mar. (2001) 42 : 11-24 Origin and evolution of plastids and mitochondria : the phylogenetic diversity of algae Catherine BOYEN*, Marie-Pierre OUDOT and Susan LOISEAUX-DE GOER UMR 1931 CNRS-Goëmar, Station Biologique CNRS-INSU-Université Paris 6, Place Georges-Teissier, BP 74, F29682 Roscoff Cedex, France. *corresponding author Fax: 33 2 98 29 23 24 ; E-mail: [email protected] Abstract: This review presents an account of the current knowledge concerning the endosymbiotic origin of plastids and mitochondria. The importance of algae as providing a large reservoir of diversified evolutionary models is emphasized. Several reviews describing the plastidial and mitochondrial genome organization and gene content have been published recently. Therefore we provide a survey of the different approaches that are used to investigate the evolution of organellar genomes since the endosymbiotic events. The importance of integrating population genetics concepts to understand better the global evolution of the cytoplasmically inherited organelles is especially emphasized. Résumé : Cette revue fait le point des connaissances actuelles concernant l’origine endosymbiotique des plastes et des mito- chondries en insistant plus particulièrement sur les données portant sur les algues. Ces organismes représentent en effet des lignées eucaryotiques indépendantes très diverses, et constituent ainsi un abondant réservoir de modèles évolutifs. L’organisation et le contenu en gènes des génomes plastidiaux et mitochondriaux chez les eucaryotes ont été détaillés exhaustivement dans plusieurs revues récentes. Nous présentons donc une synthèse des différentes approches utilisées pour comprendre l’évolution de ces génomes organitiques depuis l’événement endosymbiotique. En particulier nous soulignons l’importance des concepts de la génétique des populations pour mieux comprendre l’évolution des génomes à transmission cytoplasmique dans la cellule eucaryote.
    [Show full text]
  • Localization of the Mitochondrial Ftsz Protein in a Dividing Mitochondrion Mitochondria Are Ubiquitous Organelles That Play Crit
    C2001 The Japan Mendel Society Cytologia 66: 421-425, 2001 Localization of the Mitochondrial FtsZ Protein in a Dividing Mitochondrion Manabu Takahara*, Haruko Kuroiwa, Shin-ya Miyagishima, Toshiyuki Mori and Tsuneyoshi Kuroiwa Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan Accepted November 2, 2001 Summary FtsZ protein is essential for bacterial cell division, and is also involved in plastid and mitochondrial division. However, little is known of the function of FtsZ in the mitochondrial division process. Here, using electron microscopy, we revealed that the mitochondrial FtsZ (CmFtsZ 1) local- izes at the constricted isthmus of a dividing mitochondrion on the inner (matrix-side) surface of the mitochondrion. These results strongly suggest that the mitochondrial FtsZ acts as a ring structure on the inner surface of mitochondria. Key words Cyanidionschyzon merolae, FtsZ, FtsZ ring, mitochondria, mitochondrion-dividing ring (MD ring) . Mitochondria are ubiquitous organelles that play critical roles in respiration and ATP synthesis in almost all eukaryotic cells. Mitochondria are thought to have originated from a-proteobacteria through an endosymbiont event. Like bacteria, they multiply by the binary fission of pre-existing mitochondria. Although the role of mitochondria in respiration and ATP production is well under- stood, little is known about the proliferation of mitochondria in cells. In plastids, which also arose from prokaryotic endosymbionts, the ring structure that appears at the constricted isthmus of a dividing plastid (the plastid-dividing ring or PD ring) has been iden- tified as the plastid division apparatus (Mita et al. 1986). The PD ring is widespread among plants and algae, and consists of an outer (cytosolic) ring and an inner (stromal) ring in most species.
    [Show full text]
  • A True Symbiosis for the Mitochondria Evolution
    : O tics pe ge n r A e c n c e e o s i s B Morelli et al, Bioenergetics 2016, 5:2 Bioenergetics: Open Access DOI: 10.4172/2167-7662.1000137 ISSN: 2167-7662 Letter to Editor Open Access A True Symbiosis for the Mitochondria Evolution Alessandro Morelli1* and Camillo Rosano2 1University of Genova, School of Medical and Pharmaceutical Sciences, Department of Pharmacy, Biochemistry Laboratory, Italy 2UO Proteomics, IRCCS AOU San Martino, IST National Institute for Cancer Research, Largo Rosanna Benzi, Genova, Italy *Corresponding author: Alessandro Morelli, University of Genova, School of Medical and Pharmaceutical Sciences, Department of Pharmacy, Biochemistry Laboratory, Italy, Tel: +39 010 3538153; E-mail: [email protected] Rec Date: June 10, 2016; Acc Date: June 22, 2016; Pub Date: June 24, 2016 Copyright: © 2016 Morelli A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Morelli A, Rosano C (2016) A True Symbiosis for the Mitochondria Evolution. Bioenergetics 5: 228. doi:10.4172/2167-7662.1000137 Introduction assimilated within eukaryotic cells much later than what initially thought [10]. Endosymbiotic theory (or Symbiogenesis) is an evolutionary theory that was initially proposed more than 100 years ago [1] to explain the These revolutionary data together with the hypothesis by our and origins of eukaryotic cells from the prokaryotic ones. This theory others groups about the possible existence of “extra-mitochondrial” postulated that several key organelles of eukaryotes could have been structures in Eukaryotes with OXPHOS and ATP synthesis perfectly originated as a symbiosis between separate organisms.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • Characterization of a Novel Mitovirus of the Sand Fly Lutzomyia Longipalpis Using Genomic and Virus–Host Interaction Signatures
    viruses Article Characterization of a Novel Mitovirus of the Sand Fly Lutzomyia longipalpis Using Genomic and Virus–Host Interaction Signatures Paula Fonseca 1 , Flavia Ferreira 2, Felipe da Silva 3, Liliane Santana Oliveira 4,5 , João Trindade Marques 2,3,6 , Aristóteles Goes-Neto 1,3, Eric Aguiar 3,7,*,† and Arthur Gruber 4,5,8,*,† 1 Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; [email protected] (P.F.); [email protected] (A.G-N.) 2 Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; [email protected] (F.F.); [email protected] (J.T.M.) 3 Bioinformatics Postgraduate Program, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; [email protected] 4 Bioinformatics Postgraduate Program, Universidade de São Paulo, São Paulo 05508-000, Brazil; [email protected] 5 Department of Parasitology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil 6 CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084 Strasbourg, France 7 Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus 45652-900, Brazil 8 European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany * Correspondence: [email protected] (E.A.); [email protected] (A.G.) † Both corresponding authors contributed equally to this work. Citation: Fonseca, P.; Ferreira, F.; da Silva, F.; Oliveira, L.S.; Marques, J.T.; Goes-Neto, A.; Aguiar, E.; Gruber, Abstract: Hematophagous insects act as the major reservoirs of infectious agents due to their intimate A.
    [Show full text]
  • The Mitochondrion
    The mitochondrion: the powerhouse behind Professor Elizabeth Jonas neurotransmission ‘We think we have found a key molecule that forms a major cell death-inducing mitochondrial ion channel’ THE MITOCHONDRION: THE POWERHOUSE BEHIND NEUROTRANSMISSION Professor Elizabeth Jonas and her colleagues at Yale University study the function of cell components called Ca2+ Ca2+ Ca2+ mitochondria and their role in neurotransmission. In particular, Professor Jonas is interested in characterising how 3. Calcium is released from mitochondria. 2. Repeated action potentials (tetanus) invade When another action potential invades 1. An1. action An action potential potential invades inv adesthe terminal. the 2. Repeated action potentials 3. Calcium is released from channels in the mitochondrial membrane affect neuronal function during processes like memory formation and terminal. the terminal, the increased calcium levels Someterminal. vesicles fuse, releasing (tetanus) invade terminal. mitochondria. learning, and how they enhance or reduce neuronal viability during disease. Many vesicles fuse. from mitochondrial release plus plasma neurotransmitter.Some vesicles fuse, releasing Many vesicles fuse. When another action potential neurotransmitter. CalciumCalcium is ta isk takenen up up into into mitochondria. invadesmembrane the terminal, Ca2+ influx increase vesicle mitochondria. the fusion,increased potentiating calcium levelsneurotransmission. from mitochondrial release plus plasma membrane Ca2+ influx Neurotransmission – firing on all can have profound effects on neuronal but they participate in carefully regulating increase vesicle fusion, cylinders. function and viability, and implications in calcium levels during neurotransmission. and calcium dynamics of neurotransmission the mitochondrial permeability transition potentiatingand its classical neurotr roleansmission. is to prevent other disease. This process also has important effects on and on studying how these interact, like pore.
    [Show full text]
  • Eukaryotic Origins: How and When Was the Mitochondrion Acquired?
    Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Eukaryotic Origins: How and When Was the Mitochondrion Acquired? Anthony M. Poole1,2,3 and Simonetta Gribaldo4 1School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand 2Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand 3Allan Wilson Centre for Molecular Ecology and Evolution, University of Canterbury, Christchurch 8140, New Zealand 4Institut Pasteur, Unite´ Biologie Mole´culaire du Gene chez les Extreˆmophiles, De´partement de Microbiologie, Paris 75724, France Correspondence: [email protected]; [email protected] Comparative genomics has revealed that the last eukaryotic common ancestor possessed the hallmark cellular architecture of modern eukaryotes. However, the remarkable success of such analyses has created a dilemma. If key eukaryotic features are ancestral to this group, then establishing the relative timing of their origins becomes difficult. In discussions of eukaryote origins, special significance has been placed on the timing of mitochondrial ac- quisition. In one view, mitochondrial acquisition was the trigger for eukaryogenesis. Others argue that development of phagocytosis was a prerequisite to acquisition. Results from comparative genomics and molecular phylogeny are often invoked to support one or the other scenario. We show here that the associations between specific cell biological models of eukaryogenesis and evolutionary genomic data are not as strong as many suppose. Disen- tangling these eliminates many of the arguments that polarize current debate. dvances across the biological sciences have this methodology, yet at the same time, it reveals Ain recent years shed considerable light on its Achilles’ heel; what emerges is a LECA that the evolution of the eukaryote cell.
    [Show full text]
  • Autonomously Replicating RNA in Mitochondria of Maize Plants with S
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 5175-5179, July 1986 Genetics Autonomously replicating RNA in mitochondria of maize plants with S-type cytoplasm (cytoplasmnic male sterility/genetic RNA/RNA plasmids/double-stranded RNA/in organello RNA synthesis) PATRICK M. FINNEGAN AND GREGORY G. BROWN Centre for Plant Molecular Biology, Department of Biology, McGill University, Montreal, PQ, Canada H3A iB1 Communicated by Hewson Swift, March 17, 1986 ABSTRACT Mitochondria isolated from maize plants with in organello RNA synthesis system to search for differences S-type male-sterile cytoplasms are capable of synthesizing four in mitochondrial gene expression among the various maize species of RNA at concentrations of actinomycin D that cytoplasmic types. We have made the surprising discovery eliminate all DNA-directed RNA synthesis. No RNA synthesis that several R$As unique to the S cytoplasm are synthesized occurs under the same conditions with mitochondria from in a DNA-independent manner. Our observations indicate plants possessing normal (N) cytoplasm or with other that these RNAs represent an RNA-based genetic system subcellular fractions from plants with S cytoplasm. The that is endogenous to the mitochondnron. No other such actinomycin D-resistant RNA synthesis occurs within the system has been found in an organelle. Because these RNAs mitochondria since the labeling ofthese species is unaffected by replicate independently of cellular chromosomes, we have inclusion of RNase in the incubation medium and since they termed them RNA plasmids. become completely sensitive to RNase upon lysis of the mitochondria with low concentrations of Triton'X-100. Two of the actinomycin D-resistant products are double stranded.
    [Show full text]
  • Liquid-Crystalline Phase Transitions in Lipid Droplets Are Related to Cellular States and Specific Organelle Association
    Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association Julia Mahamida,1,2, Dimitry Tegunova,3, Andreas Maiserb, Jan Arnolda, Heinrich Leonhardtb, Jürgen M. Plitzkoa, and Wolfgang Baumeistera,2 aDepartment of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; and bDepartment of Biology II, Ludwig- Maximilians-Universität München, 81377 Munich, Germany Contributed by Wolfgang Baumeister, June 28, 2019 (sent for review March 6, 2019; reviewed by Jennifer Lippincott-Schwartz and Michael K. Rosen) Lipid droplets (LDs) are ubiquitous organelles comprising a central (conventional transmission electron microscopy [TEM]) (5, 6). hub for cellular lipid metabolism and trafficking. This role is tightly These technical limitations have restricted our understanding of associated with their interactions with several cellular organelles. LD native organization and their interaction mechanisms with Here, we provide a systematic and quantitative structural descrip- cellular organelles at the molecular-structural level. To overcome tion of LDs in their native state in HeLa cells enabled by cellular this problem and achieve a more realistic view of these organelles, cryoelectron microscopy. LDs consist of a hydrophobic neutral lipid we obtained high-resolution cryoelectron microscopy (cryo-EM) mixture of triacylglycerols (TAG) and cholesteryl esters (CE), sur- images of LDs within cells unaltered by sample preparation for rounded by a single monolayer of phospholipids. We show that EM. Cryoelectron tomography (cryo-ET) is currently the only under normal culture conditions, LDs are amorphous and that they method providing in situ structural information at molecular res- transition into a smectic liquid-crystalline phase surrounding an olution, covering the widest range of dimensions from whole cells amorphous core at physiological temperature under certain cell- to individual macromolecules (7, 8).
    [Show full text]
  • Why Chloroplasts and Mitochondria Retain Their Own Genomes and Genetic Systems
    PAPER Why chloroplasts and mitochondria retain their own COLLOQUIUM genomes and genetic systems: Colocation for redox regulation of gene expression John F. Allen1 Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom Edited by Patrick J. Keeling, University of British Columbia, Vancouver, BC, Canada, and accepted by the Editorial Board April 26, 2015 (received for review January 1, 2015) Chloroplasts and mitochondria are subcellular bioenergetic organ- control. Fig. 2B illustrates the two possible pathways of synthesis elles with their own genomes and genetic systems. DNA replica- of each of the three token proteins, A, B, and C. Synthesis may tion and transmission to daughter organelles produces cytoplasmic begin with transcription of genes in the endosymbiont or of gene inheritance of characters associated with primary events in photo- copies acquired by the host. CoRR proposes that gene location synthesis and respiration. The prokaryotic ancestors of chloroplasts by itself has no structural or functional consequence for the and mitochondria were endosymbionts whose genes became mature form of any protein whereas natural selection never- copied to the genomes of their cellular hosts. These copies gave theless operates to determine which of the two copies is retained. Selection favors continuity of redox regulation of gene A, and rise to nuclear chromosomal genes that encode cytosolic proteins ’ and precursor proteins that are synthesized in the cytosol for import this regulation is sufficient to render the host s unregulated copy into the organelle into which the endosymbiont evolved. What redundant. In contrast, there is a selective advantage to location of genes B and C in the genome of the host (5), and thus it is the accounts for the retention of genes for the complete synthesis endosymbiont copies of B and C that become redundant and are within chloroplasts and mitochondria of a tiny minority of their lost.
    [Show full text]