Nanonization and Characterization of Three Non-Steroidal Anti-Inflammatory Drugs (Ketoprofen, Dexibuprofen and Indomethacin)

Total Page:16

File Type:pdf, Size:1020Kb

Nanonization and Characterization of Three Non-Steroidal Anti-Inflammatory Drugs (Ketoprofen, Dexibuprofen and Indomethacin) NANONIZATION AND CHARACTERIZATION OF THREE NON-STEROIDAL ANTI-INFLAMMATORY DRUGS (KETOPROFEN, DEXIBUPROFEN AND INDOMETHACIN) A DISSERTATION SUBMITTED TO THE UNIVERSITY OF SARGODHA, SARGODHA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHARMACEUTICS BY JAHANGIR KHAN COLLEGE OF PHARMACY FACULTY OF PHARMACY UNIVERSITY OF SARGODHA, SARGODHA Session 2011-2014 I DEDICATE THIS THESIS TO MY BROTHERS, SISTERS AND WIFE iii APPROVAL CERTIFICATE It is solemnly described that the dissertation titled “Nanonization and characterization of three non-steroidal anti-inflammatory drugs (ketoprofen, dexibuprofen and indomethacin)” submitted by Jahangir Khan in the partial fulfillment of the requirement for the award of degree of DOCTOR OF PHILOSOPHY in Pharmaceutics is hereby approved. Supervisor: _______________________ Co-Supervisor: ____________________ Prof. Dr. Sajid Bashir Dr. Shahzeb Khan Dean Assistant Professor College of Pharmacy Department of Pharmacy Faculty of Pharmacy University of Malakand, Chakdara University of Sargodha, Sargodha External Examiner: ________________ Principal: _____________________ Dean: _____________________ Associate Prof. Dr. Saira Azhar Prof. Dr. Sajid Bashir College of Pharmacy College of Pharmacy University of Sargodha, Sargodha. Faculty of Pharmacy University of Sargodha, Sargodha. iv DECLARATION I declare that the work described in this thesis was carried out by me under the supervision of Prof. Dr. Sajid Bashir, Dean/Chairman Faculty of Pharmacy University of Sargodha, Sargodha, Pakistan and Dr. Shahzeb Khan Assistant Professor, Department of Pharmacy, University of Malakand, Chakdara Dir(L), Pakistan, in partial fulfillment of the requirement for the degree of “DOCTOR OF PHILOSOPHY in PHARMACEUTICS”. I certify that the main content of this thesis accounts for my own research and has not previously been submitted for a degree at any educational institution. Further, it is submitted that the material taken from other sources has been acknowledged. JAHANGIR KHAN v ACKNOWLEDGEMENTS I offer my humble praise and gratitude to ALLAH Almighty, The Most Beneficent, The Most Merciful for sprinkling His uncountable blessings throughout my life and bestowing upon me the intellectual ability and wisdom to explore for its mysteries. Immeasurable salutations upon “The with Whose Existence and by having the Charity of His ”(ﷺ ) Teacher of the Universe Knowledge, the cosmos got illuminated with the light of insight and wisdom, and journey of human enlightenment became possible. I must express my special thanks to my supervisors Prof. Dr. Sajid Bashir, Dean/Chairman Faculty of Pharmacy, University of Sargodha, Sargodha and Dr. Shahzeb Khan, Assistant Professor Department of Pharmacy, University of Malakand Chakdara Dir(L) for their continuous support, constant inspiration and precious advice and supervision throughout the course of my research work. I am immeasurably delighted to place on record my extensive appreciativeness and enthusiastic recognitions to Dr. Muhammad Isreb School of Pharmacy, University of Bradford, UK for his continuous inspiration, friendly supervision, support and priceless efforts throughout my research work to make my project fruitful. At University of Bradford, I must express my special thanks to Dr. Mohammad Amin Muhammad, Abdul Rahman Mkia and Yuosef Al Ayoub for their motivations, enthusiasm, worthy piece of advices and guidance. I’m grateful to the Prof. Dr. Anant Pardarkar & his Research team included Dr. Khaled hafez Assi for providing research facilities and their appreciated assistance. I must acknowledge the technical support of Stuart Fox, David Benson, Toheed raza, Damian Yeadon and other staff members. vi I am thankful to the HEC Pakistan for the finical support provide to me under the IRSIP program. I am also thankful to University of Malakand Chakdara Khyber Pakhtunkhwa for the award of NOC, study leave and support to pursue my PhD studies. At University of Malakand I am also thankful to Prof. Dr. Mirazam khan, Prof. Dr. Waqar Ahamd, Prof. Dr. Rahmat Ali khan, Prof. Dr. Rashid Ahmad and other friends/ colleagues for their help, inspiration and productive suggestions. I sincerely extend my gratitude to my fellow doctoral colleagues and other friends at UK and Pakistan especially to Shah Hassan, Muthana Obeed, Dr. Farhat ali khan, Naveed Khan and PhD scholar Sajjad Khan. I would like to express my warm thanks to my brothers, sisters and my wife whose indispensable support certainly led me towards completion of my PhD studies. JAHANGIR KHAN vii ABBREVIATIONS AVG Average ANOVA Analysis of variance BCS Biopharmaceutical Classification System cm Centimeter °C Degrees celsius COX Cyclooxygenase Conc Concentration DLS Dynamic light scattering DSC Differential scanning calorimetry Da Dalton Diclo Diclofenac DMSO Dimethyl sulfoxide DXI Dexibuprofen EPAS Evaporative precipitation into aqueous solutions ΔG Gibbs free energy GIT Gastrointestinal tract hr Hour HPMC Hydroxypropyl methyl cellulose ΔH Enthalpy change HPH High pressure homogenization HP--CD hydroxyl propyl dextrin H2O Water viii IND Indomethacin Keto Ketoprofen LSD Least significant difference test mg Milligram min Minute ml Milliliter mp Melting point mol f Molecular Formula mol wt Molecular weight NSAIDs Non-steroidal anti-inflammatory drugs NPXN Naproxen NLC Nanostructured lipid carriers P Particle PXRD Powder X-ray diffraction PCS Photon correlation spectroscopy PDI Polydispersity index PVP Polyvinylpyrrolidone RESS Rapid expansion from supercritical fluids s Second SAS Supercritical anti-solvent precipitation SDS Sodium dodecyl sulfate SEM Scanning electron microscopy ΔS Entropy change ix SD Standard deviation TEM Transmission electron microscope USP United States Pharmacopoeia UV Ultraviolet x LIST OF FIGURES Figure I.1: Biopharmaceutical Classification System Figure 1.2: solubility- diagram (Garside and Davey 2000) Figure 1.3: Alternation in nuclei magnitude effect free energy (Gibbs 1928) Figure 1.4: crystal growth Mechanism (Elwell and Scheel 1975; Dirksen and Ring 1991) Figure 1.5: Imaginary crystal faces (i) flat-F (ii) step-S (iii) kink-K (Dirksen and Ring 1991) Figure 1.6: crystal nuclei creation on emerging crystal surface (Garside and Davey 2000) Figure 1.7: creation of spirals initiating from screw dislocation (Mullin 2001) Figure 1.8: Distinguishing features of nanoparticle (Müller, Shegokar et al. 2011). Figure 1.9: Methods of preparation of Nanoparticles. Figure 1.10: Media Milling (Merisko-Liversidge, Liversidge et al. 2003) Figure 1.11: High Pressure Homogenization (HPH) (Junghanns and Müller 2008) Figure 1.12: Spray freezing into liquid. (Hu, Johnston et al. 2003) Figure 1.13: EPAS process (Sinswat, Gao et al. 2005). Figure 1.14: micro-chip.(Schulte, Bardell et al. 2002). Figure 1.15: Microfluidic reactor water and Dye (Ali, Blagden et al. 2009) Figure 1.16: diffusion process liquid streams Figure 1.17: (Classical DLVO theory). Change in particle distance affects the Potential energy of system. Figure 1.18: absorption comparative study of micro and nanoparticle (Mauludin, Müller et al. 2008). Figure 1.19: Chemical structures of drugs (A) Ketoprofen (B) Dexibuprofen (C) Indomethacin Figure 2.1: Microchannel fluidic reactor Figure 3.1: Polymers effect on ketoprofen nanocrystals Figure 3.2: ketoprofen nanoparticle particle size distribution (Poloxamer 407 (1%) xi Figure 3.3: polymers effect on Dexibuprofen nanocrystals Figure 3.4: Dexibuprofen nanoparticle particle size distribution (Poloxamer 407 (0.5%) Figure 3.5: Polymers effect on Indomethacin nanocrystals Figure 3.6: Indomethacin nanoparticle particle size distribution (PVP k-30 (1%)- HPMC 15cps (0.5%)-SLS (0.5%) Figure 3.7: MR inlet angle Effect on Ketoprofen nanoparticle Figure 3.8: MR inlet angle Effect on Dexibuprofen nanoparticle Figure 3.9: MR inlet angle Effect on Indomethacin nanoparticle Figure 3.10: Effect of flow rate (Antisolvent Variable and solvent constant) on Particle size of ketoprofen nanocrystal Figure 3.11: Effect of Antisolvent and solvent flow rate on size of Dexibuprofen Nanoparticle Figure 3.12: Effect of Antisolvent and solvent flow rate (Antisolvent Variable and solvent constant) on nanocrystal size of Indomethacin Figure 3.13: Effect of Antisolvent and solvent flow rate (solvent Variable and antisolvent constant) on particle size of ketoprofen nanoparticle. Figure 3.14: Effect of Antisolvent and solvent flow rate (solvent Variable and antisolvent constant) on particle size of Dexibuprofen nanoparticle Figure 3.15: Effect of Antisolvent and solvent flow rate (solvent Variable and antisolvent constant) on particle size of Indomethacin nanoparticle. Figure 3.16: Effect of Antisolvent and solvent flow rate (Equal ratio of solvent and antisolvent volume) on ketoprofen nanoparticle Figure 3.17: Effect of Antisolvent and solvent flow rate (Equal ratio of solvent and antisolvent volume) on Dexibuprofen nanoparticle Figure 3.18: Effect of Antisolvent and solvent flow rate (Equal ratio of solvent and antisolvent volume) on Indomethacin nanoparticle Figure 3.19: Drug concentration effect on particle size of Ketoprofen Figure 3.20: Drug concentration effect on particle size of Dexibuprofen Figure 3.21: Drug concentration effect on particle size of Indomethacin Figure 3.22: Effect of Mixing Time on ketoprofen nanoparticle Figure 3.23: Effect of Mixing Time on Dexibuprofen nanoparticle Figure 3.24: Effect of Mixing Time on Dexibuprofen nanoparticle xii Figure 3.25: stability of ketoprofen nanoparticle
Recommended publications
  • The Challenge of Drug-Induced Aseptic Meningitis Revisited
    Letters cardioverter-defibrillator generator replacements and upgrade procedures: brospinal fluid (CSF) findings and reviews added to the litera- results from the REPLACE registry. Circulation. 2010;122(16):1553-1561. ture from 1999 to date. Tables have been assembled from 6. Kramer DB, Buxton AE, Zimetbaum PJ. Time for a change: a new approach to information derived from 192 studies (these data are avail- ICD replacement. N Engl J Med. 2012;366(4):291-293. able from the authors on request). The Challenge of Drug-Induced Aseptic Results | Four groups of drugs continue to be associated Meningitis Revisited with DIAM (Table 1): nonsteroidal anti-inflammatory Cases of drug-induced aseptic meningitis (DIAM) are likely drugs (NSAIDs), antibiotics, immunosuppressive- underreported, and only a few reviews of the literature have immunomodulatory (IS-IM), and antiepileptic drugs.1 Prior been performed. We have updated (to February 2014) a pre- exposure to the associated drug was present in 26% to 35% vious review (1999)1 to identify newer agents associated with of cases (Table 1). The interval between exposure and men- DIAM, as well as distinctive new features. ingitis ranged from minutes to 5 months (Table 1). Most patients presented with headache, fever, meningismus, and Methods | Using the MEDLINE database, we searched the lit- mental status changes (Table 2). Underlying systemic disor- erature to February 2014 and included those cases with cere- ders were often present, particularly systemic lupus ery- Table 1. Drugs Involved in Drug-Induced
    [Show full text]
  • Original Article: Isobolographic Antinociception of Nonsteroidal Anti-Inflam- Matory Drugs in Rodent Formalin Orofacial Pain
    September 2020. Volume 6. Number 3 Original Article: Isobolographic Antinociception of Nonsteroidal Anti-inflam- matory Drugs in Rodent Formalin Orofacial Pain Viviana Noriega1 , Fernando Sierralta2 , Nicolás Aranda3 , Ramón Sotomayor-Zárate4, Paula Poblete5 , Juan Carlos Prieto1,2 , Hugo F. Miranda3* 1. Department of Cardiovascular, Clinical Hospital, Universidad de Chile, Santiago, Chile. 2. Pharmacology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile. 3. Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile. 4. Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso. 5. Clínica alemana, Santiago, Chile. * Corresponding Author: Hugo F. Miranda, PhD. Address: Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile. Phone: +56 (22) 9786237 E-mail: [email protected] A B S T R A C T Background: Diverse studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs) Copyright© 2020, The Authors. induce antinociception through the inhibition of cyclooxygenases. Objectives: This study evaluated the effect of NSAIDs in inducing antinociception either alone or in combination in mice formalin orofacial pain. Methods: Male mice were injected intraperitoneally with dexibuprofen, dexketoprofen, Article info: diclofenac meloxicam, metamizole and piroxicam. Then from a dose-response curve the Received: 21 Oct 2019 ED50 (dose that produce
    [Show full text]
  • S1 Table. List of Medications Analyzed in Present Study Drug
    S1 Table. List of medications analyzed in present study Drug class Drugs Propofol, ketamine, etomidate, Barbiturate (1) (thiopental) Benzodiazepines (28) (midazolam, lorazepam, clonazepam, diazepam, chlordiazepoxide, oxazepam, potassium Sedatives clorazepate, bromazepam, clobazam, alprazolam, pinazepam, (32 drugs) nordazepam, fludiazepam, ethyl loflazepate, etizolam, clotiazepam, tofisopam, flurazepam, flunitrazepam, estazolam, triazolam, lormetazepam, temazepam, brotizolam, quazepam, loprazolam, zopiclone, zolpidem) Fentanyl, alfentanil, sufentanil, remifentanil, morphine, Opioid analgesics hydromorphone, nicomorphine, oxycodone, tramadol, (10 drugs) pethidine Acetaminophen, Non-steroidal anti-inflammatory drugs (36) (celecoxib, polmacoxib, etoricoxib, nimesulide, aceclofenac, acemetacin, amfenac, cinnoxicam, dexibuprofen, diclofenac, emorfazone, Non-opioid analgesics etodolac, fenoprofen, flufenamic acid, flurbiprofen, ibuprofen, (44 drugs) ketoprofen, ketorolac, lornoxicam, loxoprofen, mefenamiate, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, pranoprofen, proglumetacin, sulindac, talniflumate, tenoxicam, tiaprofenic acid, zaltoprofen, morniflumate, pelubiprofen, indomethacin), Anticonvulsants (7) (gabapentin, pregabalin, lamotrigine, levetiracetam, carbamazepine, valproic acid, lacosamide) Vecuronium, rocuronium bromide, cisatracurium, atracurium, Neuromuscular hexafluronium, pipecuronium bromide, doxacurium chloride, blocking agents fazadinium bromide, mivacurium chloride, (12 drugs) pancuronium, gallamine, succinylcholine
    [Show full text]
  • Inflammatory Drugs
    Solubility of Nonsteroidal Anti- diflunisal, etoricoxib, fenbufen, fentiazac, flufenamic inflammatory Drugs (NSAIDs) in acid, flurbiprofen, ibuprofen, indomethacin, ketopro- Neat Organic Solvents and Organic fen, ketorolac, lornoxicam, mefenamic acid, melox- Solvent Mixtures iam, nabumetone, naproxen, niflumic acid, nimesulide, phenylbutazone, piroxicam, rofecoxib, sodium diclof- William E. Acree enac, sodium ibuprofen, sodium naproxen, sodium J. Phys. Chem. Ref. Data 43, 023102 (2014) salicylate, tenoxicam, tolfenamic acid, and valdecoxib. IUPAC-NIST Solubility Data Series, Volume 102 http://dx.doi.org/10.1063/1.4869683 This IUPAC-NIST Solubility Data Series volume reviews experimentally determined solubility data for 33 non- To access recent volumes in the Solubility Data Series, visit http://jpcrd.aip.org/ and steroidal anti-inflammatory drugs (NSAIDs) dissolved search IUPAC-NIST Solubility Data Series in neat organic solvents and well-defined binary and ternary organic solvent mixtures retrieved from the published chemical and pharmaceutical litera- ture covering the period from 1980 to the beginning of 2014. Except for aspirin (2-acetoxybenzoic acid) and salicylic acid (2-hydroxybenzoic acid), very little Provisional Recommendations physical and chemical property data are available Provisional Recommendations are drafts of IUPAC in the published literature for NSAIDs prior to 1980. recommendations on terminology, nomenclature, and Solubility data are compiled and critically reviewed symbols made widely available to allow interested
    [Show full text]
  • Manufacturing of Quick Release Pharmaceutical
    (19) TZZ___T (11) EP 1 916 994 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/00 (2006.01) A61K 9/20 (2006.01) 11.12.2013 Bulletin 2013/50 A61K 31/542 (2006.01) (21) Application number: 05753592.4 (86) International application number: PCT/DK2005/000435 (22) Date of filing: 28.06.2005 (87) International publication number: WO 2006/000228 (05.01.2006 Gazette 2006/01) (54) MANUFACTURING OF QUICK RELEASE PHARMACEUTICAL COMPOSITION OF WATER INSOLUBLE DRUGS AND PHARMACEUTICAL COMPOSITIONS OBTAINED BY THE PROCESS OF THE INVENTION HERSTELLUNG EINER PHARMAZEUTISCHEN ZUSAMMENSETZUNG MIT SCHNELLER FREISETZUNG AUS WASSERUNLÖSLICHEN ARZNEIMITTELN UND MIT DEM ERFINDUNGSGEMÄSSEN VERFAHREN ERHALTENE PHARMAZEUTISCHE ZUSAMMENSETZUNGEN PREPARATION DE COMPOSITIONS PHARMACEUTIQUES DE MEDICAMENTS INSOLUBLES A L’EAU A DIFFUSION RAPIDE ET COMPOSITIONS PHARMACEUTIQUES AINSI PREPAREES (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR EP-A- 1 352 660 WO-A-00/15195 HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR WO-A-01/41536 WO-A-99/09988 Designated Extension States: WO-A-99/12524 WO-A1-2004/047824 AL BA HR LV MK YU US-A- 4 689 218 (30) Priority: 29.06.2004 DK 200401021 • MURA P ET AL: "Solid- state characterization and dissolution properties of Naproxen-Arginine- (43) Date of publication of application: Hydroxypropyl-beta-cyclo dextrin ternary 07.05.2008 Bulletin 2008/19 system" EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, (73) Proprietor: Takeda Pharma A/S ELSEVIER SCIENCE PUBLISHERS B.V., 4000 Roskilde (DK) AMSTERDAM, NL, vol.
    [Show full text]
  • Inflammatory Drugs (Nsaids) for People with Or at Risk of COVID-19
    Evidence review Acute use of non-steroidal anti- inflammatory drugs (NSAIDs) for people with or at risk of COVID-19 Publication date: April 2020 This evidence review sets out the best available evidence on acute use of non- steroidal anti-inflammatory drugs (NSAIDs) for people with or at risk of COVID-19. It should be read in conjunction with the evidence summary, which gives the key messages. Evidence review commissioned by NHS England Disclaimer The content of this evidence review was up-to-date on 24 March 2020. See summaries of product characteristics (SPCs), British national formulary (BNF) or the MHRA or NICE websites for up-to-date information. For details on the date the searches for evidence were conducted see the search strategy. Copyright © NICE 2020. All rights reserved. Subject to Notice of rights. ISBN: 978-1-4731-3763-9 Contents Contents ...................................................................................................... 1 Background ................................................................................................. 2 Intervention .................................................................................................. 2 Clinical problem ........................................................................................... 3 Objective ...................................................................................................... 3 Methodology ................................................................................................ 4 Summary of included studies
    [Show full text]
  • 2 12/ 35 74Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 22 March 2012 (22.03.2012) 2 12/ 35 74 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/16 (2006.01) A61K 9/51 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/065959 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 September 201 1 (14.09.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/382,653 14 September 2010 (14.09.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NANOLOGICA AB [SE/SE]; P.O Box 8182, S-104 20 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Stockholm (SE).
    [Show full text]
  • Current Prevention and Management of Non-Steroid Anti In.Ammatory
    REVIEW ARTICLE &XUUHQW3UHYHQWLRQDQG0DQDJHPHQWRI1RQVWHURLG $QWL,QÀDPPDWRU\'UXJV$VVRFLDWHG*DVWURHQWHURSDWK\ Fransiscus Ari*, Dadang Makmun** *Department of Internal Medicine, Faculty of Medicine, University of Indonesia Dr. Cipto Mangunkusumo General National Hospital, Jakarta **Division of Gastroenterology, Department of Internal Medicine University of Indonesia/Dr. Cipto Mangunkusumo General National Hospital, Jakarta ABSTRACT 1RQVWHURLGDQWLLQÀDPPDWRU\GUXJV 16$,'V DUHWKHPRVWIUHTXHQWO\XVHGGUXJVWRWUHDWLQÀDPPDWLRQ and are used almost in the whole world. However, NSAID is one of the important causes of gastroenteropathy development. NSAIDs enteropathy is frequently undetected because most of them are asymptomatic and required sophisticated examinations to diagnose. Not only non-selective cyclo-oxygenases (COX) inhibitor that can cause NSAID gastropathy, but selective COX-2 inhibitors may also cause gastrointestinal complications. NSAID gastroenteropathy require further evaluation and it may differ between patients. Currently, there is no effective treatment available to treat gastrointestinal damage associated with NSAIDs DGPLQLVWUDWLRQ,GHQWL¿FDWLRQRISURWHFWLYHIDFWRUVLQJDVWURLQWHVWLQDOFRPSOLFDWLRQGXHWR16$,'VXVHLVVWLOOD serious challenge. In this review, we will discuss the effect of NSAID administration towards gastrointestinal system, also the prevention and management strategies. Keywords: QRQVWHURLGDQWLLQÀDPPDWRU\GUXJVJDVWURHQWHURSDWK\&2;LQKLELWRUSUHYHQWLRQWUHDWPHQW ABSTRAK 2EDWDQWLLQÀDPDVLQRQVWHURLG 2$,16 DGDODKREDW\DQJSDOLQJVHULQJGLJXQDNDQXQWXNWHUDSLLQÀDPDVL
    [Show full text]
  • Dexibuprofen Therapeutic Advances: Prodrugs and Nanotechnological Formulations
    pharmaceutics Review Dexibuprofen Therapeutic Advances: Prodrugs and Nanotechnological Formulations Anna Gliszczy ´nska 1,* and Elena Sánchez-López 2,3,* 1 Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland 2 Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain 3 Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain * Correspondence: [email protected] (A.G.); [email protected] (E.S.-L.) Abstract: S-(+) enantiomer of ibuprofen (IBU) dexibuprofen (DXI) is known to be more potent than its R-(−) form and exhibits many advantages over the racemic mixture of IBU such as lower toxicity, greater clinical efficacy, and lesser variability in therapeutic effects. Moreover, DXI potential has been recently advocated to reduce cancer development and prevent the development of neurode- generative diseases in addition to its anti-inflammatory properties. During the last decade, many attempts have been made to design novel formulations of DXI aimed at increasing its therapeutic benefits and minimizing the adverse effects. Therefore, this article summarizes pharmacological information about DXI, its pharmacokinetics, safety, and therapeutic outcomes. Moreover, modi- fied DXI drug delivery approaches are extensively discussed. Recent studies of DXI prodrugs and novel DXI nanoformulations are analyzed as well as reviewing their efficacy for ocular, skin, and oral applications. Citation: Gliszczy´nska,A.; Sánchez-López, E. Dexibuprofen Keywords: dexibuprofen; NSAIDs; enantiomer; drug delivery; prodrugs Therapeutic Advances: Prodrugs and Nanotechnological Formulations. Pharmaceutics 2021, 13, 414. https://doi.org/10.3390/ 1. Introduction pharmaceutics13030414 Nonsteroidal anti-inflammatory drugs (NSAIDs) are members of a drug class that reduces pain, decreases fever, prevents blood clots, and decreases inflammation [1,2].
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of - Medicines belonging to the ATC group M01 (Antiinflammatory and antirheumatic products) Table of Contents Page INTRODUCTION 6 DISCLAIMER 8 GLOSSARY OF TERMS USED IN THIS DOCUMENT 9 ACTIVE SUBSTANCES Phenylbutazone (ATC: M01AA01) 11 Mofebutazone (ATC: M01AA02) 17 Oxyphenbutazone (ATC: M01AA03) 18 Clofezone (ATC: M01AA05) 19 Kebuzone (ATC: M01AA06) 20 Indometacin (ATC: M01AB01) 21 Sulindac (ATC: M01AB02) 25 Tolmetin (ATC: M01AB03) 30 Zomepirac (ATC: M01AB04) 33 Diclofenac (ATC: M01AB05) 34 Alclofenac (ATC: M01AB06) 39 Bumadizone (ATC: M01AB07) 40 Etodolac (ATC: M01AB08) 41 Lonazolac (ATC: M01AB09) 45 Fentiazac (ATC: M01AB10) 46 Acemetacin (ATC: M01AB11) 48 Difenpiramide (ATC: M01AB12) 53 Oxametacin (ATC: M01AB13) 54 Proglumetacin (ATC: M01AB14) 55 Ketorolac (ATC: M01AB15) 57 Aceclofenac (ATC: M01AB16) 63 Bufexamac (ATC: M01AB17) 67 2 Indometacin, Combinations (ATC: M01AB51) 68 Diclofenac, Combinations (ATC: M01AB55) 69 Piroxicam (ATC: M01AC01) 73 Tenoxicam (ATC: M01AC02) 77 Droxicam (ATC: M01AC04) 82 Lornoxicam (ATC: M01AC05) 83 Meloxicam (ATC: M01AC06) 87 Meloxicam, Combinations (ATC: M01AC56) 91 Ibuprofen (ATC: M01AE01) 92 Naproxen (ATC: M01AE02) 98 Ketoprofen (ATC: M01AE03) 104 Fenoprofen (ATC: M01AE04) 109 Fenbufen (ATC: M01AE05) 112 Benoxaprofen (ATC: M01AE06) 113 Suprofen (ATC: M01AE07) 114 Pirprofen (ATC: M01AE08) 115 Flurbiprofen (ATC: M01AE09) 116 Indoprofen (ATC: M01AE10) 120 Tiaprofenic Acid (ATC:
    [Show full text]
  • The Antipyretic Efficacy and Safety of Propacetamol Compared With
    Choi et al. BMC Pediatrics (2018) 18:201 https://doi.org/10.1186/s12887-018-1166-z RESEARCHARTICLE Open Access The antipyretic efficacy and safety of propacetamol compared with dexibuprofen in febrile children: a multicenter, randomized, double-blind, comparative, phase 3 clinical trial Seung Jun Choi1,2, Sena Moon3, Ui Yoon Choi3, Yoon Hong Chun3, Jung Hyun Lee3, Jung Woo Rhim3, Jin Lee4, Hwang Min Kim5 and Dae Chul Jeong3,6* Abstract Background: We aimed to compare the antipyretic efficacy, safety, and tolerability between oral dexibuprofen and intravenous propacetamol in children with upper respiratory tract infection (URTI) presenting with fever. Methods: Patients aging from 6 months to 14 years admitted for URTI with axillary body temperature ≥ 38.0 °C were enrolled and randomized into the study or control group. Patients in the study group were intravenously infused with propacetamol and subsequently oral placebo medication was administered. Patients in the control group were intravenously infused with 100 mL of 0.9% sodium chloride solution without propacetamol and then oral dexibuprofen was administered. We checked the body temperature of all patients at 0.5 h (hr), 1 h, 1.5 h, 2 h, 3 h, 4 h, and 6 h after oral placebo or dexibuprofen had been applied. Results: A total of 263 patients (125 in the study group) were finally enrolled. The body temperatures of patients in the study group were significantly lower until 2 h after administration (37.73 ± 0.58 vs 38.36 ± 0.69 °C (p < 0.001), 37. 37 ± 0.53 vs 37.88 ± 0.69 °C (p < 0.001), 37.27 ± 0.60 vs 37.62 ± 0.66 °C (p < 0.001), 37.25 ± 0.62 vs 37.40 ± 0.60 °C (p = 0.0452), at 0.5 h, 1 h, 1.5 h, and 2 h, respectively).
    [Show full text]
  • WHO-EMP-RHT-TSN-2018.1-Eng.Pdf
    WHO/EMP/RHT/TSN/2018.1 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization [2018] Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO.
    [Show full text]