Frozen Ground
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pdf Dokument
Udskriftsdato: 2. oktober 2021 BEK nr 517 af 23/05/2018 (Historisk) Bekendtgørelse om ændring af den fortegnelse over valgkredse, der indeholdes i lov om folketingsvalg i Grønland Ministerium: Social og Indenrigsministeriet Journalnummer: Økonomi og Indenrigsmin., j.nr. 20175132 Senere ændringer til forskriften LBK nr 916 af 28/06/2018 Bekendtgørelse om ændring af den fortegnelse over valgkredse, der indeholdes i lov om folketingsvalg i Grønland I medfør af § 8, stk. 1, i lov om folketingsvalg i Grønland, jf. lovbekendtgørelse nr. 255 af 28. april 1999, fastsættes: § 1. Fortegnelsen over valgkredse i Grønland affattes som angivet i bilag 1 til denne bekendtgørelse. § 2. Bekendtgørelsen træder i kraft den 1. juni 2018. Stk. 2. Bekendtgørelse nr. 476 af 17. maj 2011 om ændring af den fortegnelse over valgkredse, der indeholdes i lov om folketingsvalg i Grønland, ophæves. Økonomi- og Indenrigsministeriet, den 23. maj 2018 Simon Emil Ammitzbøll-Bille / Christine Boeskov BEK nr 517 af 23/05/2018 1 Bilag 1 Ilanngussaq Fortegnelse over valgkredse i hver kommune Kommuneni tamani qinersivinnut nalunaarsuut Kommune Valgkredse i Valgstedet eller Valgkredsens område hver kommune afstemningsdistrikt (Tilknyttede bosteder) (Valgdistrikt) (Afstemningssted) Kommune Nanortalik 1 Nanortalik Nanortalik Kujalleq 2 Aappilattoq (Kuj) Aappilattoq (Kuj) Ikerasassuaq 3 Narsaq Kujalleq Narsaq Kujalleq 4 Tasiusaq (Kuj) Tasiusaq (Kuj) Nuugaarsuk Saputit Saputit Tasia 5 Ammassivik Ammassivik Qallimiut Qorlortorsuaq 6 Alluitsup Paa Alluitsup Paa Alluitsoq Qaqortoq -
[BA] COUNTRY [BA] SECTION [Ba] Greenland
[ba] Validity date from [BA] COUNTRY [ba] Greenland 26/08/2013 00081 [BA] SECTION [ba] Date of publication 13/08/2013 [ba] List in force [ba] Approval [ba] Name [ba] City [ba] Regions [ba] Activities [ba] Remark [ba] Date of request number 153 Qaqqatisiaq (Royal Greenland Seagfood A/S) Nuuk Vestgronland [ba] FV 219 Markus (Qajaq Trawl A/S) Nuuk Vestgronland [ba] FV 390 Polar Princess (Polar Seafood Greenland A/S) Qeqertarsuaq Vestgronland [ba] FV 401 Polar Qaasiut (Polar Seafood Greenland A/S) Nuuk Vestgronland [ba] FV 425 Sisimiut (Royal Greenland Seafood A/S) Nuuk Vestgronland [ba] FV 4406 Nataarnaq (Ice Trawl A/S) Nuuk Vestgronland [ba] FV 4432 Qeqertaq Fish ApS Ilulissat Vestgronland [ba] PP 4469 Akamalik (Royal Greenland Seafood A/S) Nuuk Vestgronland [ba] FV 4502 Regina C (Niisa Trawl ApS) Nuuk Vestgronland [ba] FV 4574 Uummannaq Seafood A/S Uummannaq Vestgronland [ba] PP 4615 Polar Raajat A/S Nuuk Vestgronland [ba] CS 4659 Greenland Properties A/S Maniitsoq Vestgronland [ba] PP 4660 Arctic Green Food A/S Aasiaat Vestgronland [ba] PP 4681 Sisimiut Fish ApS Sisimiut Vestgronland [ba] PP 4691 Ice Fjord Fish ApS Nuuk Vestgronland [ba] PP 1 / 5 [ba] List in force [ba] Approval [ba] Name [ba] City [ba] Regions [ba] Activities [ba] Remark [ba] Date of request number 4766 Upernavik Seafood A/S Upernavik Vestgronland [ba] PP 4768 Royal Greenland Seafood A/S Qeqertarsuaq Vestgronland [ba] PP 4804 ONC-Polar A/S Alluitsup Paa Vestgronland [ba] PP 481 Upernavik Seafood A/S Upernavik Vestgronland [ba] PP 4844 Polar Nanoq (Sigguk A/S) Nuuk Vestgronland -
Aboriginal Subsistence Whaling in Greenland: the Case of Qeqertarsuaq Municipality in West Greenland RICHARD A
ARCTIC VOL, NO. 2 (JUNE 1993) P. 144-1558 Aboriginal Subsistence Whaling in Greenland: The Case of Qeqertarsuaq Municipality in West Greenland RICHARD A. CAULFIELD’ (Received 10 December 1991; accepted in revised form 3 November 1992) ABSTRACT. Policy debates in the International Whaling Commission (IWC) about aboriginal subsistence whalingon focus the changing significance of whaling in the mixed economies of contemporaryInuit communities. In Greenland, Inuit hunters have taken whales for over 4OOO years as part of a multispecies pattern of marine harvesting. However, ecological dynamics, Euroamerican exploitation of the North Atlantic bowhead whale (Buhem mysticem),Danish colonial policies, and growing linkages to the world economy have drastically altered whaling practices. Instead of using the umiuq and hand-thrown harpoons, Greenlandic hunters today use harpoon cannons mountedon fishing vessels and fiberglass skiffs with powerful outboard motors. Products from minke whales (Bahenopteru ucutorostrutu)and fin whales (Bulaenopteru physulus) provide both food for local consumption and limited amountsof cash, obtained throughthe sale of whale products for food to others. Greenlanders view this practice as a form of sustainable development, where local renewable resources are used to support livelihoods that would otherwise be dependent upon imported goods. Export of whale products from Greenland is prohibited by law. However, limited trade in whale products within the country is consistent with longstandmg Inuit practices of distribution and exchange. Nevertheless, within thecritics IWC argue that evenlimited commoditization of whale products could lead to overexploitation should hunters seek to pursue profit-maximization strategies. Debates continue about the appro- priateness of cash and commoditization in subsistence whaling and about the ability of indigenous management regimes to ensure the protection of whalestocks. -
Ilulissat Icefjord
World Heritage Scanned Nomination File Name: 1149.pdf UNESCO Region: EUROPE AND NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Ilulissat Icefjord DATE OF INSCRIPTION: 7th July 2004 STATE PARTY: DENMARK CRITERIA: N (i) (iii) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 28th Session of the World Heritage Committee Criterion (i): The Ilulissat Icefjord is an outstanding example of a stage in the Earth’s history: the last ice age of the Quaternary Period. The ice-stream is one of the fastest (19m per day) and most active in the world. Its annual calving of over 35 cu. km of ice accounts for 10% of the production of all Greenland calf ice, more than any other glacier outside Antarctica. The glacier has been the object of scientific attention for 250 years and, along with its relative ease of accessibility, has significantly added to the understanding of ice-cap glaciology, climate change and related geomorphic processes. Criterion (iii): The combination of a huge ice sheet and a fast moving glacial ice-stream calving into a fjord covered by icebergs is a phenomenon only seen in Greenland and Antarctica. Ilulissat offers both scientists and visitors easy access for close view of the calving glacier front as it cascades down from the ice sheet and into the ice-choked fjord. The wild and highly scenic combination of rock, ice and sea, along with the dramatic sounds produced by the moving ice, combine to present a memorable natural spectacle. BRIEF DESCRIPTIONS Located on the west coast of Greenland, 250-km north of the Arctic Circle, Greenland’s Ilulissat Icefjord (40,240-ha) is the sea mouth of Sermeq Kujalleq, one of the few glaciers through which the Greenland ice cap reaches the sea. -
Chapter 7 Seasonal Snow Cover, Ice and Permafrost
I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change. -
MG17 3 2010 Complete.Pdf 16363KB 26 May 2018
MERCIAN Geologist VOLUME 17 PART 3 AUGUST 2010 East Midlands Geological Society Contents President Vice-President Mercian News 142 Tim Colman John Travis Geobrowser 143 The Record 146 Secretary Treasurer From the Archives 147 Janet Slatter Colin Bagshaw David G. Bate 149 Editorial Board Sir Henry Thomas de la Beche Tony Waltham Andy Howard and the founding of the British Geological Survey John Carney Tony Morris John N. Carney 166 Alan Filmer Gerry Slavin Magma mixing in the South Leicestershire Diorite: Council evidence from an Ordovician pluton at Croft Quarry Keith Ambrose Duncan Short Tim Colman 173 David Bate Gerry Slavin Gold in Britain: past , present and future Paul Guion Ian Sutton Stephen Gurney, Timothy Astin, Geoffrey Griffi ths 181 Richard Hamblin Neil Turner Origin and structure of Devensian depressions Sue Miles Geoff Warrington at Letton, Herefordshire Gerry Shaw Albert Horton 185 Correspondence Building stones of St Mary’s Church Society Secretary, 100 Main Street, at Colston Bassett, Nottinghamshire Long Whatton, Loughborough LE12 5DG Helen Boynton and Trevor Ford 195 01509 843297 [email protected] William W. Watts, pioneer Midlands geologist Mercian Geologist Editor, Reports 11 Selby Road, Nottingham NG2 7BP 0115 981 3833 [email protected] Members’ Evening, 2010: Shetland: John Aram 203 Mercian Geologist is printed by John Browns; Golcona Mine: John Jones 205 and published by the East Midlands Geological Society. James Hutton: Gerard Slavin, Gerry Shaw, Brenda Slavin 207 No part of this publication may be reproduced in printed or electronic form without prior consent of the Society. Charnian fossils: Helen Boynton 210 ISSN 0025 990X Wave Rock, Australia: Alan Filmer 211 © 2010 East Midlands Geological Society Registered Charity No. -
Quaternary Deposits and Landscape Evolution of the Central Blue Ridge of Virginia
Geomorphology 56 (2003) 139–154 www.elsevier.com/locate/geomorph Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia L. Scott Eatona,*, Benjamin A. Morganb, R. Craig Kochelc, Alan D. Howardd a Department of Geology and Environmental Science, James Madison University, Harrisonburg, VA 22807, USA b U.S. Geological Survey, Reston, VA 20192, USA c Department of Geology, Bucknell University, Lewisburg, PA 17837, USA d Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA Received 30 August 2002; received in revised form 15 December 2002; accepted 15 January 2003 Abstract A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains. The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles. -
The Necessity of Close Collaboration 1 2 the Necessity of Close Collaboration the Necessity of Close Collaboration
The Necessity of Close Collaboration 1 2 The Necessity of Close Collaboration The Necessity of Close Collaboration 2017 National Spatial Planning Report 2017 autumn assembly Ministry of Finances and Taxes November 2017 The Necessity of Close Collaboration 3 The Necessity of Close Collaboration 2017 National Spatial Planning Report Ministry of Finances and Taxes Government of Greenland November 2017 Photos: Jason King, page 5 Bent Petersen, page 6, 113 Leiff Josefsen, page 12, 30, 74, 89 Bent Petersen, page 11, 16, 44 Helle Nørregaard, page 19, 34, 48 ,54, 110 Klaus Georg Hansen, page 24, 67, 76 Translation from Danish to English: Tuluttut Translations Paul Cohen [email protected] Layout: allu design Monika Brune www.allu.gl Printing: Nuuk Offset, Nuuk 4 The Necessity of Close Collaboration Contents Foreword . .7 Chapter 1 1.0 Aspects of Economic and Physical Planning . .9 1.1 Construction – Distribution of Public Construction Funds . .10 1.2 Labor Market – Localization of Public Jobs . .25 1.3 Demographics – Examining Migration Patterns and Causes . 35 Chapter 2 2.0 Tools to Secure a Balanced Development . .55 2.1 Community Profiles – Enhancing Comparability . .56 2.2 Sector Planning – Enhancing Coordination, Prioritization and Cooperation . 77 Chapter 3 3.0 Basic Tools to Secure Transparency . .89 3.1 Geodata – for Structure . .90 3.2 Baseline Data – for Systematization . .96 3.3 NunaGIS – for an Overview . .101 Chapter 4 4.0 Summary . 109 Appendixes . 111 The Necessity of Close Collaboration 5 6 The Necessity of Close Collaboration Foreword A well-functioning public adminis- by the Government of Greenland. trative system is a prerequisite for a Hence, the reports serve to enhance modern democratic society. -
The Periglaciation of Great Britain Colin K
Cambridge University Press 978-0-521-31016-1 - The Periglaciation of Great Britain Colin K. Ballantyne and Charles Harris Index More information Index Abbot's Salford, Worcestershire, 53 aufeis, see also icings, 70 bimodal flows, see ground-ice slumps Aberayron, Dyfed, Wales, 104 Australia, 179, 261 Binbrook, Lincolnshire, 157 Aberystwyth, Dyfed, Wales, 128, 206, 207 Austrian Alps, 225 Bingham flow, 231 Acheulian hand axes, see hand axes avalanche activity, 219-22; 226-30, 236, 244, Birling Gap, Sussex, 102, 108 Achnasheen, NW Scotland, 233 295, 297 Black Mountain, Dyfed, 231, 234 active layer, see also seasonal thawing, 5, 27, avalanche boulder tongues, 220, 226, 295 Black Rock, Brighton, Sussex, 125, 126 35,41,42,114-18, 140,175 avalanche cones, 220, 226 Black Top Creek, EUesmere Island, Canada, 144 detachment slides, 115, 118, 276 avalanche impact pits, 226 Black Tors, Dartmoor, 178 glides, 118 avalanche landforms, 7, 8 blockfields, 8, 164-9, 171, 173-6, 180, 183, processes, 85-102 avalanche tongues, 227, 228 185,187,188,193,194 thickness, 107-9,281-2 avalanche-modified talus, 226-30 allochthonous, 173 Adwick-Le-Street, Yorkshire, 45, 53 Avon, 132, 134, 138, 139 autochthonous, 174, 182 aeolian, processes, see also wind action, 141, Avon Valley, 138 blockslopes, 173-6, 187, 190 155-60,161,255-67,296 Axe Valley, Devon, 103, 147 blockstreams, 173 aeolian sediments, see also loess and Bodmin Moor, Cornwall, 124, 168 coversands, 55, 96, 146-7, 150, 168, Badwell Ash, Essex, 101 Bohemian Highlands, 181 169, 257-60 Baffin Island, 103, 143,219 -
Spatial and Temporal Dynamics of Microorganisms Living Along Steep Energy Gradients and Implications for Ecology and Geologic Preservation in the Deep Biosphere
Spatial and Temporal Dynamics of Microorganisms Living Along Steep Energy Gradients and Implications for Ecology and Geologic Preservation in the Deep Biosphere Thesis by Sean William Alexander Mullin In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 (Defended 8 June 2020) ii ã 2020 Sean W. A. Mullin ORCID: 0000-0002-6225-3279 iii What is any man’s discourse to me, if I am not sensible of something in it as steady and cheery as the creak of crickets? In it the woods must be relieved against the sky. Men tire me when I am not constantly greeted and refreshed as by the flux of sparkling streams. Surely joy is the condition of life. Think of the young fry that leap in ponds, the myriads of insects ushered into being on a summer evening, the incessant note of the hyla with which the woods ring in the spring, the nonchalance of the butterfly carrying accident and change painted in a thousand hues upon its wings… —Henry David Thoreau, “Natural History of Massachusetts” iv ACKNOWLEDGEMENTS Seven years is a long time. Beyond four years, the collective memory of a university is misty and gray, and if it were a medieval map, would be marked simply, “Here be dragons.” The number of times I have been mistaken this past year for an aged staff scientist or long-suffering post-doc would be amusing if not for my deepening wrinkles serving to confirm my status as a relative dinosaur. Wrinkles aside, I can happily say that my time spent in the Orphan Lab has been one of tremendous growth and exploration. -
The Nature of Last Glacial Periglaciation in the Channel Islands
Note of a paper read at the Annual Conference of the Ussher Society, January 1998 THE NATURE OF LAST GLACIAL PERIGLACIATION IN THE CHANNEL ISLANDS S. D. GURNEY, H. C. L. JAMES AND P. WORSLEY Gurney, S. D., James, H. C. L. and Worsley, P. The nature of last glacial periglaciation in the Channel Islands. Geoscience in south-west England, 9, 241-249. S.D. Gurney, Department of Geography, H.C.L. James, Department of Science and Technology Education, P. Worsley, Postgraduate Research Institute for Sedimentology, The University of Reading, P.O. Box 227, Reading, RG6 6AB. INTRODUCTION If permafrost extent is a good indicator of the intensity of cold climates, then the ice wedge casts and sand and gravel wedges found in Following the recognition of periglacially induced macro-scale northern France, particularly in Brittany, demonstrate former sedimentary structures and fabrics of deposits of Last Glacial age on Pleistocene cold environmental conditions having extended into that Alderney, a search for analogous features on Guernsey and Jersey has region (van Vliet-Lanë, 1996; van Vliet-Lanoë et al ., 1997). The been undertaken. It has long been known that cold climate related chronology for such periglacial conditions in Brittany, however, mass wasting deposits (head) and aeolian deposits (loess) are common suggests a rather earlier date than for southwest England and the throughout the Channel Islands. Structures specifically related to Channel Islands. For example, Loyer et al . (1995) indicate that during frozen ground, however, either seasonal or perennial, have not Marine Oxygen Isotope Stage (OIS) 6, permafrost extension was rather previously been documented outside Alderney. -
The Potential Significance of Permafrost to the Behaviour of a Deep Radioactive Waste Repository
SKI Technical Report 91:8 The Potential Significance of Permafrost to the Behaviour of a Deep Radioactive Waste Repository Tim McEwen Ghislain de Marsily SKI TR 91:8 Intera, Melton Mowbray, UK and Université de Paris VI February 1991 SKi STATENS KÄRNKRAFTINSPEKTION SWEDISH NUCLEAR POWER INSPECTORATE THE POTENTIAL SIGNIFICANCE OF PERMAFROST TO THE BEHAVIOUR OF A DEEP RADIOACTIVE WASTE REPOSITORY Tim McEwen Ghislain de Marsily SKI TR 91:8 , Intera, Melton Mowbray, UK and Université de Paris VI February 1991 This report concerns a study which has been conducted for the Swedish Nuclear Power Inspectorate (SKI). The conclusions and viewpoints presented in the report are those of the authors, and do not necessarily coincide with those of the SKI. The results will subsequently be used in the formulation of the Inspectorate's Policy, but the views in this report will not necessarily represent this policy. Contents 1 Introduction 1 2 Distribution of permafrost 3 2.1 Introduction 3 2.2 Properties of frozen ground 5 3 The hydrogeology of permafrost areas 6 3.1 Introduction 6 3.2 Position of uaquifersr relative to permafrost 6 3.2.1 Introduction 6 3.2.2 Suprapermafrost Aquifers 9 3.2.3 Intrapermafrost Aquifers 10 3.2.4 Subpermafrost Aquifers 11 4 Groundwater movement 12 .1 Infiltration and recharge 12 i- I Lateral movement 13 ^.3 Discharge 14 4.3.1 Introduction 14 4.3.2 Springs 15 4.3.3 Baseflow 15 4.3.4 Icings (Naledi or Aufeis) 15 i> Geochemistry 16 5.1 Effects of low temperatures 16 5.2 Groundwater geochemistry 16 5.3 Chemistry of Icings 18 5-4