MODELING AND ANALYSIS OF A COMPOSITE B-PILLAR FOR SIDE-IMPACT PROTECTION OF OCCUPANTS IN A

AThesisby

SantoshReddy

BachelorofEngineering,VTU,India,2003 SubmittedtotheCollegeofEngineering andthefacultyofGraduateSchoolof WichitaStateUniversity inpartialfulfillmentof therequirementsforthedegreeof MasterofScience May2007

MODELING AND ANALYSIS OF A COMPOSITE B-PILLAR FOR SIDE-IMPACT PROTECTION OF OCCUPANTS IN A SEDAN

Ihaveexaminedthefinalcopyofthesisforformandcontentandrecommendthatitbe acceptedinpartialfulfillmentoftherequirementsforthedegreeofMasterofScience, withamajorinMechanicalEngineering. ______ HamidM.Lankarani,CommitteeChair Wehavereadthisthesisandrecommenditsacceptance ______ Kurtsoschinske,CommitteeMember ______ M.BayramYildirim,CommitteeMember

ii DEDICATION ToMyParents&Sister

iii ACKNOWLEDGEMENTS

Iwouldliketoexpressmysinceregratitudetomygraduateadvisor,Dr.Hamid

M. Lankarani, who has been instrumental in guiding me towards the successful

completion of this thesis. I would also like to thank Dr. Kurt Soschinske and Dr. M.

BayramYildirimforreviewingmythesisandmakingvaluablesuggestions.

IamindebtedtoNationalInstituteforAviationResearch(NIAR)forsupporting

mefinanciallythroughoutmyMaster’sdegree.Iwouldliketoacknowledgethesupport

ofmycolleaguesatNIAR,especiallythemanagersThimNg,TiongKengTanandKim

Lenginthecompletionofthisthesis.

Special thanks to Ashwin Sheshadri, Kumar Nijagal, Arun Kumar Gowda,

Siddartha Arood, Krishna N Pai, Anup Sortur, ShashiKiran Reddy, Sahana

Krishnamurthy, Praveen Shivalli, Geetha Basavaraj, Akhil Kulkarni, Sir Chin Leong,

EvelynLian,ArvindKolharinencouragementandsuggestionsthroughoutmyMasters degree.

Ialsoextendmygratitudetomyparents,sister,cousinsandallmyfriendswho stoodbymeatalltimes.

iv ABSTRACT

safety became an issue almost immediately after the invention of the

automobile.Toprotectoccupantsfromadirectimpact,thepassengercompartmentand

thestructureofthevehicleshouldkeepitsshapeinacrash.Continuousdevelopmentsto

improveisproposedeveryday,standardsaresetinpertinenttodifferentcrashscenarios

suchasthefrontalcrash,sideimpactandsoon.Amongthesestandards,sideimpactis

oneofthemostfatalcrashscenariosthatleadtodeathofpeopleintheUnitedStatesand

acrosstheglobe.Inthecontemporaryworld,fuelconsumptionalsoposesaseriousissue

thathastobeconsidered.Withtheseconstraintsinconsideration,alighterandstronger

materialthansteel,thecompositematerial,canbeused.Usingthismaterialwouldhelpin

reducingthefuelefficiencywithoutsacrificingthesafetyofthevehicle.

Withtheadvanceincomputersimulations,finiteelement(FE)modeloftheFord

Taurus and Moving Deformable Barrier (MDB) developed by the National Crash

Analysis Center (NCAC) has been used for different impact scenarios to predict the

vehiclebehaviorandoccupantresponse.Inaddition,MSCPatranhasbeenusedasthe

modelerandLSDynaasthesolvertoruntherequiredsimulations.MADYMOisusedto predicttheinjuryparameters.

In this research, a composite BPillar that is the energy absorbing structure is modeled and analyzed with Finite Element Analysis. The injuries sustained by the occupantarepredictedusingMadymo.Anattemptismadetousecarbonandglassfiber compositematerialsintheBPillarmodeledinthisstudy.Inaddition,aparametricstudy is carried out on the BPillar to determine the maximum possible energy absorbing parameters.Itisdemonstratedthatthenewmodelingwiththeuseofcarbon/glasswitha

v pertinentorientationandthicknessmaypresentmoreenergyabsorptionthanthepresent steelpillar.Energyabsorption,displacementandtheaccelerationofthepresentandthe newmodelarealsocomparedanddiscussedindetail.Occupantinjuries,suchaschest and head injuries are compared for the vehicle occupants with present and the new model. ItisdemonstratedthatthenewBPillar compositemodelwith carbonmay be moreeffectivethanthepresentsteelpillar.

vi TABLE OF CONTENTS Chapter Page 1.INTRODUCTION……………………………………………………………………...1 1.1Motivation……………………………………………………………………...1 1.2 Crashworthiness…………….……………………...... 1 1.2.1 Compositematerialsincrashworthiness………………………………..3 1.3CrashStatistics………………………….……………………..……………….5 1.4TestMethodologies……………………………..……………………………..6 1.4.1QuasiStaticTesting………………………………..………………...…..6 1.4.2DynamicCollisionTest(FMVSS214)...………………...……………...7 1.4.3Compositetestprocedure(CTP)forvehiclesideimpacttesting………..7 1.4.4ImpactTesting……………………………………..…………………….8 1.4.5CrushingModesandMechanisms………………..……………………..8 1.4.5.1CatastrophicFailureMode…..………….……………………...9 1.4.5.2ProgressiveFailureModes…………………………….……….9 1.4.5.3TransverseShearingorFragmentationMode…………….……9 1.4.5.4LaminaBendingorSplayingMode…………….…………….10 1.4.5.5BrittleFracturing…………………………….………………..11 1.4.5.6LocalBucklingorProgressiveFolding…………….…....…...11 1.5InjuryCriteria……………….……………………..….…………………...... 13 1.5.1HeadInjuryCriterion(HIC)…...………………..……………………...13 1.5.2ThoracicTraumaIndex(TTI)……………………………..……………14 1.5.3ViscousInjuryResponse(VC)…………………………....…………...15 1.6NHTSA/Standard…………………………………………………………….15 1.7BPillar………………………………………………………………...……...17 2.OBJECTIVEANDMETHODOLOGY ...... 19 2.1Objective………………………………………………………...……………19 2.2Methodology……………………………………………………...…………..19 3.LITERATUREREVIEW...... 22 3.1EnergyAbsorbedPerUnitMass…………………………………...…………23 3.2EnergyAbsorbedPerUnitVolume………………………………...………...23 3.3EnergyAbsorbedPerUnitLength…………………………………...……….23 3.4BPillarandSideimpactBeam………………………………………...……..24 3.5CompositesMaterials…………………………………………………...…….25 3.5.1Compositeinautomobileparts…………………………………………25 3.5.2Impactdamageresponseoncompositematerials……………………...26

vii TABLE OF CONTENTS (Continued) Chapter Page 3.5.2.1MatrixCracking...... 26 3.5.2.2Delamination...... 27 3.5.2.3FiberBreakage...... 27 3.5.3Energyabsorptioninvariouscompositematerials...... 27 3.5.4Propertieseffectingenergyabsorptionofcompositematerial...... 28 3.5.4.1Fiber...... 28 3.5.4.2MatrixMaterial...... 31 3.5.4.3Fiber&MatrixCombination………………………….……….32 3.5.4.4Effectoforientation&layup…………………………….……33 3.5.4.5EffectofGeometry………………………………………….…33 4.COMPUTERAIDEDENGINEERINGTOOLS……………………………………..35 4.1MSCPATRAN……………………………………….……………………….35 4.2LSDyna……………………………………………………………………….36 4.3MADYMO…………………………………………………………………….38 4.4 EASICRASHDYNA(ECD)…………………………………………………40 4.4.1 Preprocessingfeatures…………………………………………………..40 4.4.2 Postprocessingfeatures………………………………………………….40 4.5EasiCrashMad………………………………………………………………..41 5.SECTIONMODELLINGANDANALYSISOFBPILLARIMPACTWITH SPHERE………………………………………………………………………………42 5.1 DesignofBPillar………………………...………………………………..…42 5.2 Impactor………………………………………………………………………44 5.3 AnalysisofBPillarwithsphere……………………………………………...45 5.4DisplacementsoftheBPillar……………...…………………………………49 6.SIDEIMPACTMODELINGANDANALYSISOFBPILLARINASEDAN……51 6.1FiniteelementstudyofFordTaurus……………...…………………………..51 6.2ImpactorModeling…………………………………...……………………….53 6.3 SideImpactAnalysis…………………………...…………………………….55 6.3.1 LSDynasimulation……………………………………………………...55 6.4Orientation………………………………………………………...………….57 6.5Thickness……………………………………………...……………………...59 6.6 AnalysisofBPillar……………………….…………………………………..59

viii TABLE OF CONTENTS (Continued) Chapter Page 6.6.1FMVSSTest……………….…………………….……………………..60 6.6.2SimulationofsideimpactwiththepresentBPillar……….……….…..60 6.6.3SimulationofsideimpactcrashwithcompositeBPillar…….………..61 6.6.4ResultsandDiscussions………………………………………..…….…62 7.OCCUPENTBIODYNAMICMODELLINGANDPOTENTIALINJURY..……….66 7.1MadymoModelling………….……………………………………..………...66 7.2Simulation…………………….……………………………………..………..66 7.3Dummyfeatures………………………………………………………………70 7.3.1 Headandneck……………………………………………………………70 7.3.2 Uppertorso……………………………………………………………….70 7.3.3 Lowertorso………………………………………………………………71 7.4Simulation…………………………………………………………………….72 7.5Potentialinjuries……………………………………………………………...75 8.CONLCUSIONSANDFUTUREWORK……………………………………………79 8.1Conclusions……………………………………………………...……………79 8.2Futurework……………………………………………………...……………80 REFERENCES…………………………………………………………………………..81 APPENDIXA……………………………………………………………………………84

ix LIST OF FIGURES FigurePage 1. CrashTypes……………………………………………………………………….5

2. Comparisonoffrontalandsideimpactcrash…...... 6

3. FragmentationCrushingMode…………………………………………………..10

4. SplayingCrushingMode………………………………………………………...11

5. BrittleFracturingCrushingMode………………………………………….…….12

6. ProgressiveCrushingMode……………………………………………………...12

7. FMVSS214TestConfiguration………………………………………………....16

8. BPillar………………...………………………………………………………....18

9. Methodology…...……...………………………………………………………....20

10. SpecificEnergyOfDifferentMaterial…………………………………………..28

11. BPillar…………………………………………………………………………...42

12. Sphere.…………………………………………………………………………...44

13. BPillarSectionModelwithSphere……………………………………………..46

14. FringeLevelsForBPillar…………………………………………………….....47

15. InternalEnergyv/sTimefordifferentmaterials………..……………………….48

16. DisplacementoftheBPillar…………………………………………………...... 49

17. Forcev/sDisplacementforDifferentmaterials……………………………….....50

18. FordTaurusModel………………………………………………………………52

19. FEMModelofMDB…………………………………………………………….53

20. SpecificationofMDB……...……………………………………………………54

x LIST OF FIGURES (Continued) Figure Page 21. DimensionsofMovingDeformableBarrier(MDB)…………………………….55

22. Animationsequenceofasideimpactcrashanalysis………………………….…56

23. Forcev/sDisplacementfordifferentorientations…………………………….…58

24.DeformationinthepresentBPillar……………………………………………....60

25.DeformationinthecompositeBPillar…………………………………………...61

26.Forcevs.Displacementfordifferentmaterials…………………………..…….…62

27.Energyvs.timefordifferentmaterials……………………………………….…..63

28.Displacementatthecenterofgravity………………………………………….....64

29.AccelerationofBPillar…………......………………………………………...…65

30.Ellipsoidaldummymodels…………….……………………………………..…..67

31.HybridIII50 th percentilesideimpactdummy……………………………….…...68

32.Rearandleftsideviewofdummy……………………………………………...... 68

33.LoadingandUnloadingcurvefortheFEbelt………………………………..…..72

34.Dummymergedwith……………………………………………………....…73

35.Animationsequenceofanimpactanalysis…………………………………....….74

36.HeadAcceleration…………………………………………………………..….....75

37.ThoraxSpineAcceleration…………………………………………………...…..76

38.PelvisAcceleration…………………………………………………………....….76

xi LIST OF TABLES

Table Page

1.SpecificEnergyAbsorptionofdifferentCompositematerials…………………….29

2.Physicalpropertiesofdifferentfiberstypes…………………………………….....31

3.MechanicalPropertiesofresinsystems………………………………………...….32

4.PropertiesofBPillar………………………………………………………………44

5.Propertiesofsphere...………………………………………………………………45

6.SpecificEnergyabsorptionofdifferentmaterials……………….….……………..48

7.FiniteelementsummaryofFordTaurus………………………………………..…52

8.SummaryofMDB……………………………………………………….….…..…54

9.Energyabsorptionofdifferentmaterials…………………………………..…..…..63

10.Weighttable…….……………………………………………………….….…...…54

11.Segmentalweights……………………………………………………….….…..…54

12.ExternaldimensionfortheHybridIII50 th percentilemale………………….….…71

13.Injuryratings……………………………………………………………………….77

14.Injurycriteria’scalculatedforthesideimpactcrash………………………..…..…77

15.Glassfiberproperties…………………………………………………..……...…...85

16.Carbonproperties…………………………………………………….………….....86

xii LIST OF SYMBOLS

ρ Densityofthestructurematerial σ Averagecollapseshear δ Deformedlength F Averagecollapseload

ѠAngularvelocity

Vnode Nodalvelocity

V cm Velocityatthecenterofmass

Viscositycoefficient

G Elasticshearmodulus

λ Strainrate

xiii CHAPTER 1

INTRODUCTION

1.1 Motivation

Developmentofautomotivestructurestosustainimpactloadingindiversecrash

conditionssuchas,frontalperpendicular,angular,offset,poleimpactsandsidecollisions

are required. In addition, other noncrash functional requirements, such as, vibration,

durabilityandfatiguelifecyclearealsointegralpartofvehicledesign.However,with

growingfocusonsafetynewvehiclesareexpectedtobecrashtestedundernewerand

more demanding crash conditions, such as, the vehicletovehicle 30degree oblique

offset impact under consideration by National Highway Traffic Safety Administration

[1].Thisshiftmayresultintobodystructuredesignswithhigherstrength,stiffnessand

highermass.Atthesametimeenvironmentalandfueleconomyrequirementsdictatethat

vehicledesignbelighterandcompactresultinginsmallercrushspace.Whencrushspace

is limited, the body structure, typically designated to dissipate major share of impact

energy, require thicker sheet metal and/or higher strengths alloys translating to added

weight.

1.2 Crashworthiness

Theabilityofthevehicletoabsorbenergyandtopreventoccupantinjuriesinthe

event of an accident is referred to as “Crashworthiness” [2]. The vehicle must be

designedsuchthat,athigherspeedsitsoccupantsdonotexperienceanetdeceleration

greaterthan20g.Crashworthinesscanbecategorizedintothreebasicareas,materials

engineering and design, combustion and fire and finally medical engineering

(biomechanics). It covers civil, automotive, military, marine and aerospace oriented

1 applications, where the automotive sector is probably the most prominent area in this respect.Crashworthinessfeaturesincludesairbags,seatbelts,crumplezones,sideimpact protection, interior padding and headrests. These features are updated when there is a newsaferandbetterdesign[2].

Crashworthiness is not the same as vehicle safety, and the two topics must be distinguished. The safety of a vehicle depends on crashworthiness and as well as the accidentavoidancefeatures,whichmightincludeABS,goodhandlingcharacteristics,or evenoversize.Onevehiclemightbesaferstatisticallythananotherandstillhavea significantcrashworthinessdefect.Itcouldevenconceivablybelesscrashworthyoverall whilestillbeinga"safer"vehicle.

Structuralcrashworthinessinvolvesabsorptionofkinetic energy by considering designs and materials suitable for controlled and predictive energy absorption. In this process,thekineticenergyofthecollidingbodiesispartlyconvertedintointernalwork ofthebodiesinvolvedinthecrash.Crasheventsarenonlinearandmayinvolvematerial failure,globalandlocalstructuralinstabilitiesandfailureofjoints.Inaddition,strainrate andinertiaeffectsmayplayanimportantroleintheresponseofthestructuresinvolved.

Crashworthiness of a material is expressed in terms of its specific energy absorption,E s=F/D,whereDisthedensityofthecompositematerialandFisthemean

crushstress.Inordertoprotectpassengersduringanimpact,astructurebasedonstrength

andstiffnessisfarfrombeingoptimal.Rather,thestructureshouldcollapseinawell

defined deformation zone and keep the forces well below dangerous accelerations.

However,sincetheamountofabsorbedenergyequalstheareaundertheloaddeflection

curve,thetwoabovementionedcriteriaaresomewhatcontradictory,thusshowingthat,it

2 isnotonlyimportanttoknowhowmuchenergyisabsorbedbutalsohowitisabsorbed, i.e.,howinertialoadsaretransferredfromimpactpointtopanelsupports.Therefore,in additiontodesigningstructuresabletowithstandstaticandfatigueloads,structureshave tobedesignedtoallowmaximumenergyabsorptionduringimpact.

1.2.1CompositeMaterialsinCrashworthiness

Thefuelefficiencyandgasemissionregulationofthecararealsoveryimportant

inthecontemporaryworld.Everydaythepriceofthefuelandtherequirementofthefuel

is increasing randomly, eventually emission of chemicals from the vehicle exhaust pollute the environment and increase the global temperature [3]. Composite materials

helpinreducingtheweightofthestructurethusbringingdownthefuelused.

Composites are engineered materials that have been designed to provide

significantlyhigherspecificstiffnessandspecificstrength(stiffnessorstrengthdivided by material density)—that is, higher structural efficiency—relative to previously

availablestructuralmaterials.Incompositematerials,strengthandstiffnessareprovided bythehighstrength,highmodulusreinforcements.

Compositematerialsofferahighpotentialfortailoreddesignsbyawidevariety ofmatricesandfibers,variousperforms,andlaminatearchitecture;i.e.fiberorientation andstackingsequenceofsinglelaminate.Compositematerialsalsohaveaconsiderable potentialforabsorbingkineticenergyduringcrash[6].Thecompositeenergyabsorption capabilityoffersauniquecombinationofreducedstructuralweightandimprovedvehicle safety by higher or at least equivalent crash resistance compared to metal structures.

Crash resistance covers the energy absorbing capability of crushing structural parts as

3 well as the demand to provide a protective shell around the occupants (structural integrity)[3].

In the last decade, several studies have demonstrated the ability of composite materialstoabsorbenergyundercrashworthyconditions.Someoftheenergyabsorbing compositematerialsstructuralconceptsthathavebeenstudiedexperimentally,especially for this application, include honeycomb sandwich, sine wave web and foam filled stiffenedbeams.Effectsofvariousmaterialcharacteristicslikeplyorientation,stacking sequence, fiber and matrix properties have been investigated and reported. However, different fiber/matrix systems and different geometrical shapes produce substantially differentcrushingresponse[6].Moreover,duetothecomplexfailurebehavior,energy absorption and crush/crash behavior of composite structures, there has been a lack of experience when compared with the metallic structures.Inthiscontext,extensivetests are typically used to guarantee the crashworthiness of composite structures and to understand the mechanism of energy absorption and failure. The specific energy absorption,postcrushingintegrityandenergyreleaseofthecandidatematerialsmustbe known to match specific design requirements. The specific energy absorption for compositesisafunctionofmaterialpropertiesconstitutingtheirfiberandmatrix,aswell astheirplyorientation,whereasformetalsitisprimarilyafunctionofonlytheirplastic behavior.Toalimitedextent,specimengeometryandmaterialpropertyeffectshavebeen reported.

Thecostofconductingacrashworthystructuredevelopmentprogramishighand asareasontheuseofFiniteElementAnalysisforsimulatingtheresponseofcomposite structuresunderimpactandcrashloadsispreferred.Todate,finiteelementanalysesof

4 compositestructuresforcrashworthinessrelyheavilyonexperimentaldata.Thismeans thatthetestingofcompositestructuresorspecimenswillcontinuefordeterminingenergy absorptionbehavior[6].

Similarly,duetothehighcostandhighcomputationaltimeinvolvedinmodeling largestructures,finiteelementanalysisiscarriedoutforsimulatingthecrashresponseof semiscalestructuresandspecimens.Hybridfiniteelementmodelsareusedtoconduct crashanalysisoffullscalestructuresand,tocompensatethehighcomputationaltime.

1.3 Crash Statistics

In the present day accidents happen every hour around the world and most of these are very dangerous. SideImpact crash is the second most severe crash scenario afterfrontalimpact.Figure1showsthecomparisonofdifferentcrashscenariosinvolved.

Itcanbeobservedthatthefrontalimpactishigherthanthesideimpact.However,the spacerequiredforanystructureintheeventofasideimpacttoabsorbenergyisveryless thanthefrontalimpact.Theoccupantinjuriesinthesideimpactcrashareseverewhen comparedwiththefrontalcrash.Othercrashesinvolvedaretherolloverandrearimpact.

Theseamountstoalessercrashscenariothanthesideorthefrontalcrash[4].

Figure 1. Crash types [4]

5 Manyresearchershavecarriedoutextensivestudyonfrontalandsideimpact crashanalysisandhavebeensuccessfulinreducingtheriskoftheinjuriessustainedby theoccupant.Fromfigure2,itcanbeseenthatoverthepasttwodecadestheresearchon frontalimpacthashelpedinreducinginjuries,however,theinjuriesinvolvedintheevent ofasideimpactcrashhasincreased[4].

Figure 2. Comparison of frontal and side impact crash [4] 1.4 Test Methodologies

Therearedifferentmethodologiesthatcanbecarriedoutinacrashtest[6].

1.4.1 QuasistaticTesting

Inquasistatictesting,thetestspecimeniscrushedataconstantspeed.Quasi statictestsmaynotbeanactualsimulationofthecrashconditionbecauseinanactual crashcondition,thestructureissubjectedtoadecreaseincrushingspeed,fromaninitial impactspeed,finallytorest.

Thefollowingaresomeadvantagesofquasistatictesting.

• Quasistatictestsaresimpleandeasytocontrol.

6 •To follow the crushing process, Impact tests require very expensive

equipment,asthewholeprocessoccursinasplitsecond.Hence,quasistatictests

are used to study the failure mechanisms in composites, by selection of

appropriatecrushspeeds.

Thefollowingisamajordisadvantageofquasistatictesting.

• Quasistatictestsmaynotbeatruesimulationof the actual crash conditions

sincecertainmaterialsarestrainratesensitive.

1.4.2 DynamicCollisionTest(FMVSS214)

Inthistestprocedure,adeformablebarriermountedonasledimpactsacarside doorangularly.Thatis,allfourwheelsofthebarriersledgeareinclinedatanangleof

27°.Inthefront,analuminumhoneycombbarrierisfixedandthisisattheheightofthe sothattherealsimulationofcrashissimulated.Insidethevehicle,aUSSide

ImpactDummyisplacedonthefrontseatandthisdummymeasurestheInjurylevels sustained[9].

1.4.3 CompositeTestProcedure(CTP)forVehicleSideImpactTesting

Astheterminologycouldimply,thistestprocedureisnotonlyforacomposite.

Thisteststartswiththedisplacementofthebarrierintothesideofthevehicleuntilthe

innerdoorisincontactwiththedummy.Atthispoint, the barrier face is half in this positionuntiltheinnerwallofthedoorisloadedusingthebodyforms.Sufficientforce

deflectiondataisobtainedforthecomputermodel[10].Afterfullretractionofthebody

forms,thebarrierfaceisthendeformedfurtherintothesidestructureofthevehicleand

unloaded. Once again, the amount of intrusion is such that suitable forcedeflection

characteristicsofthevehiclesidestructureateobtained.

7 1.4.4 ImpactTesting

Thecrushingspeeddecreasesfromtheinitialimpactspeedtorestasthespecimen

absorbstheenergy.

Thefollowingisamajoradvantageofimpacttesting

• Itisatruesimulationofthecrashconditionsinceittakesintoaccountthestress

ratesensitivityofmaterials.

Thefollowingisamajordisadvantageofimpacttesting.

• InImpacttesting,thecrushingprocesstakesplaceinafractionofasecond.

Therefore,itisrecommendedthatcrushingbestudiedwithhighspeedcamera

[4].

1.4.5CrushingModesandMechanisms

1.4.5.1 Catastrophic Failure Modes

Catastrophic failure modes are not of interest to the design of crashworthy structures.Thistypeoffailureoccursbecauseofthefollowingevents:

 Whenunstableintralaminarorinterlaminarcrackgrowthoccurs.

 Inlongthinwalledtubesbecauseofcolumninstability.

 Intubescomposedofbrittlefiberreinforcement,whenthelaminabundlesdo

notbendorfractureduetointerlaminarcracksbeinglessthanaplythickness.

Catastrophicfailureischaracterizedbyasuddenincreaseinloadtoapeakvalue followedbyalowpostfailureload.Whenunstableinterlaminarorinterlaminargrowth occurs,thereisacatastrophicfailure.Asaresultofthis,theactualmagnitudeofenergy absorbedismuchlessandthepeakloadistoohightopreventinjurytothepassengers

[2].

8 1.4.5.2 Progressive Failure Modes

Progressive failure can be achieved by providing a trigger at one end. This initiatesafailureataspecificlocationwithinthestructure.Themostwidelyusedmethod oftriggeringistochamferoneendofthetube.Anumberoftriggergeometriessuchas bevels,groovesandholesthathavebeeninvestigatedinlaboratoryspecimensarenotas easytouseinvehiclestructures

The following are the advantages of progressive failure in the design of crashworthystructures.

 Theenergyabsorbedinprogressivecrushingislargerthantheenergyabsorbed

incatastrophicfailure.

 Astructuredesignedtoreacttoloadsproducedbyprogressivelyfailingenergy

absorbers are lighter than structures designed to react to loads produced by

catastrophicallyfailingenergyabsorbers[2].

Thefollowingarethedifferenttypesofprogressivefailuremodes:

1.4.5.3 Transverse Shearing or Fragmentation Mode

 The fragmentation mode is characterized by a wedgeshaped laminate cross

sectionwithoneormultipleshortinterlaminarandlongitudinalcracksthatform

partiallaminabundles(Figure3).

 Brittlefiberreinforcementtubesexhibitthiscrushingmode.

 Themainenergyabsorptionmechanismsisfracturingoflaminabundles.

 When fragmentation occurs, the length of the longitudinal and interlaminar

cracksislessthanthatofthelaminawhichhelpsinthetransverseshearingor

fragmentationmode.

9  Mechanisms like interlaminar crack growth and fracturing of lamina bundles

controlthecrushingprocessforfragmentation[2].

Figure 3. Fragmentation crushing mode [2] 1.4.5.4 Lamina Bending or Splaying Mode

 Verylonginterlaminar, intralaminar,andparalleltofibercrackscharacterizes

thesplayingmode.Thelaminabundlesdonotfracture.(Figure4)

 Brittlefiberreinforcementtubesexhibitthiscrushingmode.

 Themainenergyabsorbingmechanismismatrixcrackgrowth.Twosecondary

energy absorption mechanisms related to friction occur in tubes that exhibit

splayingmode.

 Mechanisms like interlaminar, intralaminar and parallel to fiber crack growth

controlthecrushingprocessforsplaying.

10

Figure 4. Splaying crushing mode [2] 1.4.5.5 Brittle Fracturing

 Thebrittlefracturingcrushingmodeisacombination of fragmentation and

splayingcrushingmodes(Figure3).

 Brittlefiberreinforcementtubesexhibitthiscrushingmode.

 Themainenergyabsorptionmechanismisfracturingoflaminabundles.

 When brittle fracturing occurs, the lengths of the interlaminar cracks are

between1and10laminatethickness.

1.4.5.6 Local Buckling or Progressive Folding

 The progressive folding mode is characterized by the formation of local

buckles(Figure4).

 Thismodeisexhibitedbybothbrittleandductilefiberreinforcedcomposite

material.

 Mechanisms like plastic yielding of the fiber and/or matrix control the

crushingprocessforprogressivefolding[2].

11

Figure 5. Brittle fracturing crushing mode [5]

Figure 6. Progressive crushing mode [5]

12 1.5 Injury Criteria

Aninjurycriterioncanbedefinedasabiomechanicalindexofexposureseverity, which indicates the potential for impact induced injury by its magnitude. There are severalkindsofinjurycriteria’sthatarerelatedtothehumanbody.Thesearebasically theimpactloadsactingonthehumanbody.Someofthecriteria’spertinenttotheSide

Impactarediscussedhere.

1.5.1 HeadInjuryCriterion(HIC)

TheHeadInjuryCriteriaisdefinedas:

5.2 max  1 t2  HIC = R t dt t − t (1.1)  ∫ ()() 2 1 T 0 <t1<t2 <TE t2 − t1  t1 

whereT0=starttimeofsimulation

TE=endtimeofsimulation

R(t)=istheresultantheadaccelerationing’smeasuredathead’scenterofgravity

overthetimeinterval T < t0 <TE

t1andt 2aretheinitialandfinaltimes(insec)oftheintervalduringwhichtheHIC

attainsamaximumvalue[16].

Avalueof623isspecifiedasgoodfortheHICasconcussiontolerancelevelin side(contact)impact.Table13showstheinjuryratingsaccordingtoinsuranceinstitute for highway safety. For practical reasons, the maximum time interval t2t1 that is consideredtogiveappropriateheadinjurycriteriavalueswassetto36ms.Thistime intervalgreatlyaffectstheheadinjurycriteriacalculations,andrecentlythistimeinterval hasbeenproposedtobefurtherreducedto16msinordertorestricttheuseofHICto hardheadcontactimpacts.

13 1.5.2 ThoracicTraumaIndex(TTI)

TheTTIistheaccelerationcriterionbasedonaccelerationsofthelowerthoracic

spineandtheribs.Thethoracictraumaindex(TTI)providesanindicationoftheseverity

ofinjuriesreceivedbymotorvehicleoccupantsinsideimpactcollisionenvironments.It

isthemethodofquantifyingtheanatomicalextentoftheinjury,whichincludesinjuries

tointrathoracicorgans.TheTTIcanbeusedasanindicatorforthesideimpact performanceofpassengercars.ThespecificbenefitoftheTTIisthatitcanbeusedto

addresstheentirepopulationofvehicleoccupantsbecausetheageandtheweightofthe

cadaverareincluded.TheTTIisdefinedbyMorgan:[24]

TTI = 4.1 * AGE + 5.0 * (RIBg + T12 )* MASS MSTD (1.2)

WhereAGE=ageofthetestsubjectinyears,

th th RIB g=maximumabsolutevalueofaccelerationing’softhe4 and8 ribonthestruck

side,

th T12 g = maximum absolute acceleration values in g’s of the 12 thoracic vertebra, in

lateraldirection,

MASS=testsubjectmassinkg

MSTD=standardreferencemassof75kg.

ThereisalsoadefinitionfortheTTIthatcouldbeusedfordummieswithoutaspecific

age,calledtheTTI(d).Itisdefinedfor50 th percentiledummieswithamassof75kg:

TTI (d ) = 5.0 * (RIBg + T12 g )(1.3)

Thedynamicperformancerequirement,asstatedinFMVSS214regulationsof1990,is

thattheTTI(d)levelshallnotexceed85gforpassengercarswithfoursidedoorsand90

gfortwosidedoors.

14 1.5.3 ViscousInjuryResponse(V *C)

The Viscous Response, denoted as V*C (3), is the maximum value of a time function formed by the product of velocity of deformation (V) and the instantaneous compressionfunction(C):[16]

 dD(t) D(t) V *C = max  (1.4)  dt SZ  whereD(t)isdeflectionandSZisprescribedsize(theinitialtorsothicknessforfrontal impactsorhalfthetorsowidthforsideimpacts).Analysisofdatafromexperimentson humancadaversshowthatafrontalimpactwhichproducesaV*Cvalueof1m/shasa

50%chanceofcausingseverethoracicinjuries(AIS≥4).

1.6 NHTSA/Standard

The National Highway Traffic Safety Administration (NHTSA), under the

U.S.DepartmentofTransportation,wasestablishedbytheHighwaySafetyActof1970, asthesuccessortotheNationalHighwaySafetyBureau, to carry out safety programs undertheNationalTrafficandMotorVehicleSafetyActof1966andtheHighwaySafety

Actof1966.TheVehicleSafetyActhassubsequentlybeenrecodedunderTitle49ofthe

U.S.CodeinChapter301,MotorVehicleSafety.NHTSA also carries out consumer programsestablishedbytheMotorVehicleInformationandCostSavingsActof1972,

whichhasbeenrecodedinvariousChaptersunderTitle49.NHTSAisresponsiblefor

reducingdeaths,injuriesandeconomiclossesresultingfrommotorvehiclecrashes.This

isaccomplishedbysettingandenforcingsafetyperformancestandardsformotorvehicles

andmotorvehicleequipment,andthroughgrantstostateandlocalgovernmentstoenable

them to conduct effective local highway safety programs. NHTSA investigates safety

defectsinmotorvehicles,setsandenforcesfueleconomystandards,helpsstatesanda

15 localcommunityreducethethreatofdrunkdrivers,promotetheuseofsafetybelts,child safetyseatsandairbags,investigateodometerfraud,establishandenforcevehicleanti theft regulations and provides consumer information on motor vehicle safety topics.

NHTSAalsoconductsresearchondriverbehaviorandtrafficsafety,todevelopthemost efficientandeffectivemeansofbringingaboutsafetyimprovements.

Federal Motor Vehicle Safety Standard (FMVSS) 214 (Figure 7), “Side Impact

Protection”wasamendedin1990toassureoccupant protectioninadynamictestthat simulatesasevererightanglecollision.Itisoneofthemostimportantandpromising safety regulation issued by the National Highway Traffic Safety Administration

(NHTSA).Itwasphasedintonewpassengercarsduringmodelyears199497.In1993, sideimpactsaccountedfor33percentofthefatalitiestopassengercaroccupants[9].

Figure 7. FMVSS 214 test configuration [9]

16  AtestconfigurationusingaMovingDeformableBarrier(MDB)simulatinga

severeintersectioncollisionbetweentwopassengervehicles.

 Injurycriteria,ThoracicTraumaIndex(TTI)thatpredictstheseverityofthoracic

injurieswhenoccupant’storsoscontacttheinteriorsidesurfacesofacar.

 ASideImpactDummy(SID)onwhichTTIcouldbereliablymeasuredinside

impacttests.TheinjuryscoremeasuredonthedummyiscalledTTI.

 ThenewFMVSS214,allowingTTIupto90in2doorcarsand85in4doors

cars.

TheGovernmentPerformanceandResultsActof1993andExecutiveOrder

12866requirevariousagenciesandautomobilemanufacturerstoevaluatetheirexisting programsandregulations.Theobjectivesofanevaluationaretodeterminetheactual benefits–livessaved,injuriesprevented,anddamagesavoided–andcostsofsafety equipmentinstalledinproductionvehiclesinconnectionwitharule[9].

1.7 B-Pillar

Bpillarsareoneofthemostsophisticatedpartsoftheautomobilebody,because thiscomponenthastocomplywithlotofrequirementsandspecifications.Figure8shows thepositionofBPillarinacar.Thereare2partsintheBPillar,oneistheouterlayer andtheotheristheinnerlayer.Thesetwolayersaremadeofsteelandtheyarewelded together[12].Thedistancebetweenthe BPillarandtheoccupantisverylessinside impactwhencomparedtothefrontalimpact.Inaddition,whentheimpactoccurs,theB

PillarorstructuresintheBPillarhavetoabsorbmoreenergywithminimalacceleration.

SincethedistancebetweentheBPillarandtheoccupantisverylesscarehastobetaken inthedesignandmanufactureoftheBPillar.Safetyisthemainconcerninthisdesign.

17

Figure 8. Position of B-Pillar in a car

ForthestructuralanalysisoftheBPillar,FiniteElementMethodwasusedsince itisthemostwidelyusedcomputationalmethodintheautomotiveindustry.

Steelisstillusedasthematerialforthiscomponent.However,lightermaterials suchastheFiberReinforcedPlastics(FRP)areinitiatedintheautomotiveindustry.FRP can be used as a substitute for steel for this component as they offer higher energy absorption than the steel. As discussed earlier Composites have high strength and stiffnesstoweight ratio in the fiber direction and as well as the in the direction perpendiculartothefibereventhoughtheirYoung’sModulusislesserthanthesteel.

This means that the composites have an increased thickness than the steel and larger secondmomentofinertiatoreducetheeffectofelastic bending. There are also some disadvantages of composites, which includes higher production and tooling costs, whereas processing of the complex parts in one piece is much easier. Also, by using compositesasthematerialsfortheBPillar,reductioninweightcanbeobservedwhich leadtolesserfuelconsumption.

18 CHAPTER 2

OBJECTIVE AND METHODOLOGY

2.1 Objective

Inthisstudy,theobjectiveistomodelandanalyzeacompositeBPillarinsteadof thepresentsteelpillarandthusreducingtheinjuriessustainedbytheoccupant.Efforts aremadetoreducetheweightofthecarwithoutsacrificingthesafetyoftheoccupant.As per the crashworthiness standards, which require minimal displacement and higher energyabsorption,theuseofcompositeinthesafetyBPillarisproposedandtheefficacy oftheBPillardesignedisstudied.

There are several areas in the field of crashimpact dynamics that need to be studiedtoimprovethecrashworthydesignoftheBPillar.Todate,therehavebeenmany contributionsinunderstandingandanalysisoftheenergyabsorption characteristics. In thisstudy,FiniteElementMethodisusedasanalternativemethodinstudyingtheenergy absorptionofaBPillar.Inaddition,onecantrytophysicallyunderstandthebehaviorby conductingfullscalecrashsimulations.Thisisthebestpossiblemethod,butthisisagain a very expensive method and can provide information for only a few limited impact conditionsanddesign.

2.2 Methodology

Inacrashcondition,bendingloadandprogressivecrushingabsorbmostofthe crashrelatedkineticenergy.Structureshavetobedesignedsuchthattheyperformthe dual role of reacting to both bending loads and progressive crushing in a crash. An attemptismadeinthisstudytocompositemodela BPillar would reduce the injuries sustainedbytheoccupant.

19

BPillar

OriginalModel

CompositeModeling

ParametricstudyonBPillartofind outmaterialthicknessandorientation

Optimization

FMVSS214

IntrusionoftheB Pillar

EnergyabsorptionandAccelerationsare recorded

MadymoModeling

Occupantinjurycalculation

Figure 9. Methodology

20 Lately,duetothemeritsofconvenienceinfabrication,crushingstabilityandhigh energyabsorbingcapability,fiberreinforcedcompositesandtheirtubularstructureshave beenwidelyusedinvehiclesandaircraft.

Fromfigure9methodologycarriedoutinthisresearchisdepicted.

 ThisstudystartswiththecompositemodelingofcarBpillarwhereintheBPillar

istotallymadeofcompositewhichhadprovedouttobeveryefficient.

 Parametric study is carried out on the Bpillar, which included changing the

material,layers,orientationandthickness. Inorder for the BPillar to be more

energyabsorbingthesefactorsareconsidered.

 Finally,themaximumenergysustainedbytheBpillarwiththepertinentmaterial,

layersorientationandthicknessisusedforcompositemodeling.Themaximum

energyisfoundoutasforthesafetyoftheoccupant.

 IntrusionoftheBPillarisstudied.

 SimulationiscarriedoutaccordingtoFederalMotor Vehicle Safety Standards

(FMVSS)214testspecifications.Thesearethestandardsusedforthesideimpact

inasedan.

 EnergyabsorptionandAccelerationsisnotedownforallthecasesandthebest

energyabsorptionmaterialisused.

 AHybridIII50 th percentilesideimpactdummyisplacedinthecar.Thisdummy

modelcreatedismergedintothecarusingEasyCrashDyna.

 Finally, the acceleration pulse values are input to the Madymo model and

Injuriessustainedbythedummywerecompared.

21 CHAPTER 3

LITERATURE REVIEW Overthepast,crashworthinesshasbeenagrowingrealizationofimportancein

virtuallyeverytransportationsector.Newerdesignsareproposedeverydaytoimprove

thecrashworthinessofthestructure.Thereisnoendinthefieldofcrashworthinessin

reducingtheinjuriessustainedbytheoccupant[3].Itispreferabletodesignavehicleto

collapseinacontrolledmanner,therebyensuringthesafedissipationofkineticenergy

andlimitingtheseriousnessofinjuriesincurredbytheoccupants.

Useofcompositesasdiscussedearlierhasincreased dramatically over the last

fewdecades.Fiberreinforcedcompositematerialsarecharacterizedbyspecificstiffness

and strength exceeding that of similar metal structures. The prediction of damage to

structurescausedbyaccidentalcollision–whethertoautomobiles,offshoreinstallations

orsimplythepackagingaroundanelectricalapplianceisacrucialfactorinthedesign.

Withemphasisonlightweightvehicles,theuseofcompositematerialsinaerospaceand

automotive structures has created a need to further understand the energy absorption

characteristicsofcompositematerials.

Several studies have demonstrated the ability of composite materials to absorb energyundercrashworthyconditions[5].Carsafety,gasemissionandweightreduction whicharetheimportantneedsinthedesignofacarstructurearedirectlyinfluencedby theefficientdesignandincreaseduseofcompositematerials.Thesematerialscanabsorb moredeformationandcompositematerialshavehighspecificstrengthandhighspecific stiffness.Compositesarelightweightandthemanufacturingcanbedoneatalowcost.

Theyalsohaveveryhighimpactloadabsorbinganddampingproperties.

22 3.1 Energy Absorbed Per Unit Mass.

Theenergyabsorbedperunitmass,orspecificenergyabsorption,E,isdefinedas the energy absorbed by crushing E, per unit mass of deformed structure. Using the notationofFig,thiscanbewrittenas[7]:

δ ∫ Fdx E 0 E S = = (3.1) ρδAmat ρδAmat

Fortheeaseofanalysis,Eq.3.1isoftenestimated using an average collapse load, F or an average collapse stress σ . This approximate E s , given in Eq 3.2 is

sometimesknownasspecificsustainedcrushingstress.

F σ E S ≈ = (3.2) ρAmat ρ

Specificenergy absorptionisanespeciallyuseful measure for comparing the energyabsorptioncapabilitiesofdifferentmaterialsforstructuresinwhichweightisan importantconsideration.

3.2 Energy Absorbed Per Unit Volume.

Theenergyabsorbedperunitvolumewillbeofinterestinsituationsinwhichthe space available for energy absorption deformation zone or device is in some way restricted[7].Itmayalsobeappropriatewhenmechanismsotherthandeformationofthe parent material contribute significantly to a structure’s overall energy absorption capability.

3.3 Energy Absorbed Per Unit Length.

Theenergyabsorbedperunitlength, EL from Eq.3.3 is defined as the energy absorbedperunitofdeformationdistance.Thiscanbeexpressedas;

23 E E = (3.3) L δ

Theenergyabsorbedperunitlengthprovidesaconvenientandeasilymeasured

wayofquantifyingthecrashworthinessofstructureswherecollapseisrestrictedtoawell

defined crumple zone [10]. A relatively straightforward crashworthiness specification

such as this allows for the ready verification of structures with appropriate test proceduresorfiniteelementsimulation.

It can therefore be seen that the choice of the most suitable normalized energy absorption parameter for a given circumstance will depend upon the material and geometryofthecrushedstructure,aswellasparticularapplicationunderconsideration.

3.4 B-Pillar And Side-Impact Beam

Bpillarsareoneofthemostsophisticatedpartsoftheautomobilebody,because

thiscomponenthastocomplywithlotofrequirementsandspecifications.Thereare2 partsintheBPillar,oneistheouterlayerandtheotheristheinnerlayer.Thesetwo

layersaremadeofsteelandtheyareweldedtogether[12].ThedistancebetweentheB

Pillarandtheoccupantisverylessinsideimpactwhencomparedtothefrontalimpact.

Federal Motor Vehicle Safety Standards (FMVSS) No. 214 establishes the

minimumstrengthrequiredforsidedoorsofpassengercars.Thesidedoorsmustbeable

to withstand an initial crush resistance of at least 2,250 pounds after 6 inches of

deformation, and intermediate crush resistance of at least 3,500 pounds (without seats

installed)or4,375pounds(withseatsinstalled)after12inchesofdeformation.Apeak

crushresistanceoftwotimestheweightofthevehicle or 7,000 pounds whichever is

less(without seat installed) or 31/2 times the weight of the vehicle or 12,000 ponds

whicheverisless(withseatsinstalled)after18inchesofdeformation[9].

24 3.5 Composites Materials

3.5.1 Compositeinautomobileparts

Increasinglegalandmarketdemandsforsafety,theweightofthecarbodywill

mostlikelyincreaseinthefuture.Atthesametime,environmentaldemandswillbecome

strongerandlowerweightwillplayanimportantpartinmeetingthem.IntheEuropean

Union,thecarmanufacturershaveagreedtoanoverall25%increaseinfuelefficiencyby

theyear2005comparedto1990[10].

Fuelefficiencyofthevehicledirectlydependsontheweightofthevehicle.The carbonfibercompositebodystructureis57%lighterthansteelstructureofthesamesize andprovidingthesuperiorcrashprotection,improvedstiffnessandfavorablethermaland acousticproperties[15].

Compositematerialsmayfindtheexcitingopportunityintheautomotiveindustry asameansofincreasingfuelefficiency.With75percentoffuelconsumptionrelating directly to vehicle weight, the automotive industry can expect an impressive 6 to 8 percent improvement in fuel usage with mere 10 percent reduction in vehicle weight.

Thistranslatesintoreductionofaround20kilogramofcarbondioxideperkilogramof weightreductionoverthevehicle’slifetime.[17]

Evenstructuralpartslikeselfsupportingcarsidedoorsplayaroleincontributing totheweightreductionwithoutcompromisetotheexistingrequirementsandwillbea cost competitive challenge for future vehicle components. When compared to the passengercarsidedoorsmadeoutofdeepdrawnsteelsheets,FRPcarsidedoorsoffer

many potential advantages, better NVHbehavior, low specific weight, higher energy

25 absorption capabilities, and potential of functional integration combined with low productioncosts[5].

ForthefirsttimeFRP’swereintroducedtotheformula1in1980byMcLaren

team. Since then the crashworthiness of the racing cars has improved beyond all

recognition.Carbonfibercompositehasbeenusedtomanufacturethebody,whichislow

weight,highrigidityandprovidedthehighcrashsafetystandards.[2]

The report from the United states and Canada predicted that plastics and

composites would be widely used applied to body panels, bumper systems, flexible

components, trims, drive shaft and transport parts of cars. In addition, rotors

manufacturedusingRTM(ResinTransferMoldings)foraircompressororsuperchargers

ofcarshavebeenusedtosubstituteformetalrotorswhicharedifficulttomachine.[6]

3.5.2 Impactdamageresponseoncompositematerials

A significant amount of research has focused on investigating the damage, crashworthiness, and behavior of dynamic loading under impact. Impact damage in composites occurs when a foreign object causes through the thickness and/or inplane fracture in the material. The damaged areas can be investigated visually or by using opticalorelectronmicroscopy,ultrasonicCscanning,andacousticimaging.

Impactdamageincompositeplatesisassociatedwiththesemajorfailuremodes: delamination,matrixcracking,andfiberbreakage.Matrixcrackinganddelaminationare propertiesoftheresinmatrix,whereasthefiberbreakageismoreresponsivetothefiber

specificationsandcharacteristicsandisusuallycausedbyhigherenergyimpacts.[10]

3.5.2.1 Matrix Cracking Matrix cracking in an impacted composite is caused by tensile stress and by

stress concentrations at the fibermatrix interface. A higher tensile stress results in a

26 longeranddensercrackingpattern.Thetotalenergyabsorbedbymatrixcrackingisequal totheproductofthesurfaceenergyandthesmallarea produced by the crack. Larger crackareasarenormallycausedbycrackbranching,inwhichcasethecracksruninthe direction normal to the general direction of fracture. In many cases, the surface area created by such cracks is much larger than the area parallel to the primary cracks, increasingthefractureenergysignificantly.This,ineffect,canincreasethetoughnessof compositesorthetotalenergyofdamageabsorbedduringimpact.[11]

3.5.2.2 Delamination Differentorientationofthepliescanpromotedelaminationoftwoadjacentplies duetothestiffnessmismatchattheirinterface.The delamination areas are influenced directlybychangesintheenergyofimpact.Thecracks,whichcaninitiatedelamination, canpropagatethroughthepliesandmaybearrestedasthecracktipsreachthefiber– matrixinterfaceintheadjacentplies.[5]

3.5.2.3 Fiber Breakage Fiber breakage can be a direct result of crack propagation in the direction perpendiculartothefibers.Ifsustained,thefiberbreakagewilleventuallygrowtoforma

complete separation of the laminate. Reaching the fracture strain limit in a composite

component results in fiber breakage. For the same impact energy, higher capacity of

fibers to absorb energy results in less fiber breakage and a higher residual tensile

strength. Secondary matrix damage, which occurs after initial fiber failure, is also

reducedallowingresidualcompressivestrengthtoincrease.[19]

3.5.3 Energyabsorptioninvariouscompositematerials

Compositesabsorbmoreenergythansteeloraluminum.Steelhashigheryoung’s modulus,yetfailstoabsorbhigherenergyabsorption.Incomposites,therearedifferent

27 kindsoffibershavingdifferentstiffness.Forinstancefromfigure10,carbonfibersare strongerthanglass,yetglassfiberwithstandloadforalongertimethancarbonfibers.

Theenergyabsorptioncapabilityofthecompositematerialsoffersauniquecombination ofreducedweightandimprovescrashworthinessofthevehiclestructures.

Figure 10. Specific energy of different materials [18]

3.5.4 Propertieseffectingenergyabsorptionofcompositematerial Inthepast,crushingoftubewasthemethodoftestingcompositespecimensand

thiswasprimarilyusedtodeterminetheenergyabsorptionperformanceofcomposite

materials.[7]

3.5.4.1 Fiber

Farley,reportsthat,intestsconductedoncomparablespecimens,carbonfiber reinforced tubes absorb higher energy than those of glass or aramid fibers. This is supportedbythedatainTable1[19].Thereasons for this are related to the physical propertiesofthefibers,overallfailuremechanismsandfibermatrixbondstrengths.[2]

Farley observed that glass and carbon fiber reinforced thermoset tubes progressivelycrushinfragmentationandsplayingmodes.Aramid(KevlarandDyneema)

28 fiberreinforcedthermosettubes,ontheotherhand,crushbyaprogressivefoldingmode.

Similarresultswereobtainedwhenimpactandstaticcompressiontestswerecarriedon

Graphite/epoxy,Kevlar/epoxyandGlass/epoxycompositetubespecimensrespectively.

The graphite/epoxy and glass/epoxy angleply tubes exhibited brittle failure modes consistingoffibersplitting andplydelamination, whereas the Kevlar/epoxy angleply tubescollapsedinabucklingmode.Thelowerstraintofailureoftheglassandcarbon fibers,whichfailatabout1%strain,comparedtoaramidfibers,whichfailatabout8% strainattributestothisdifferenceinbehavior.[2]

TABLE1 SPECIFICENERGYABSORPTIONOFDIFFERENTCOMPOSITE MATERIALS[19] Thickness to Specific Fiber-Matrix Lay up diameter Energy ratio absorption

CarbonEpoxy [0/±15] 3 0.033 99

CarbonEpoxy [±45] 3 0.021 50

AramidEpoxy [±45] 8 0.066 60

AramidEpoxy [0/±15] 2 0.02 9

GlassEpoxy [0/±75] 2 0.069 53

GlassEpoxy [0/±15] 2 0.06 30 1015Steel 0.06 42 6061Al 0.06 44 Results of static crushing tests of graphite reinforced composite tubes were conducted to study the effects of fiber and matrix strain failure on energy absorption helpedindrawingthefollowingconclusion:‘‘Toobtainthemaximumenergyabsorption fromaparticularfiber,thematrixmaterialinthecompositemusthaveagreaterstrainat

29 failurethanthefiber’’.Thegraphite/epoxytubeshadspecificenergyabsorptionvalues greaterthanthatofKevlar/epoxyandglass/epoxytubeshavingsimilarplyconstructions.

This is attributed to the lower density of carbon fibers compared to glass and Kevlar fibers.[19]

ResearchwasdoneonPEEKmatrixcompositetubesreinforcedwithAS4carbon fiber,IM7carbonfiberandS2glassfiberrespectively.Thetubescrushedprogressively bythesplayingmode.TheS2/PEEKtubesdisplayedapproximately20%lowerE Sthan theAS4/PEEKandIM7/PEEKtubesthoughthemeancrushstressofS2/PEEKtubesis comparable to that of AS4/PEEK and IM7/PEEK tubes. This is a direct result of the lower density of carbon fiber reinforced materials than the glass reinforced material, sincethespecificenergyabsorptionisdefinedastheratioofthemeancrushstressand densityofthecomposite.

A finite element analysis was carried out to model the crushing process of continuousfiberreinforced tubes by Farley et al. The analysis is compared with experiments on graphite/epoxy and Kevlar/epoxy tubes. The method obtained a reasonableagreementbetweentheanalysisandtheexperiment.Thorntonetal.examined the energy absorption capability in graphite/epoxy, Kevlar/epoxy and glass/epoxy compositetubes.Thecompositetubescollapsedbyfractureandfoldingmechanisms.The load–compression curves for the graphite/epoxy and the glass/epoxytubeshadsimilar characteristicsbuttheKevlar/epoxycompositetubescollapsedbybuckling.[8]

Inaddition,itcanbeobservedfromTable2[10]thatthecarbonfibershavehigh

specificenergyabsorptionbecauseofthelowdensityandhighstrengthoftheconstituent

carbonfibers.Ifaramidfibersareconsidered,thesehavelowspecificenergyabsorption

30 than those of carbon. This is because of the reason that the compressive strength of aramidfibercompositesisaround20%ofthetensilestrength.Inaddition,duetoductile nature, aramid fibers undergo progressive folding failure mechanism. This absorbs energylessefficientlythanbrittlefracture.

Furthermore,itwaspossibletooptimizethefibermatrixbondstrengthofcarbon fibercompositesthroughtreatmentofthefiber'ssurface.However,incaseofaramidand glassfibersitisnotpossibleforsuchoptimization.

TABLE2

PHYSICALPROPERTIESOFDIFFERENTFIBERSTYPES[10]

Density Axial Young’s Tensile Strength Fiber (kg/m 3 ) Modulus (GN/m 3 ) (MN/ m 3 ) CarbonFiber(High 1950 380 2400 Modulus) CarbonFiber(High 1750 230 3400 Strength) AramidFiber 1450 130 3000 GlassFiber 2560 76 2000 3.5.4.2 Matrix Material

Thefollowingpointscanbeworthnotedaboutthematrix.

 G1C, higher interlaminar facture toughness, of the thermoplastic matrix

materialcausesanincreaseintheenergyabsorptionofthecomposite.

 Increaseinthematrixfailurestrainresultsinhigher energy absorption in

brittlefiberreinforcements

 Changeinstiffnesshasverylittleeffectontheenergyabsorption.

Thornton&Jeryanreportthatspecificenergyabsorptionisalinearfunctionof

thetensilestrengthandtensilemodulusofthematrixresin,andthatitincreaseswiththe

31 orderphenolic<polyester<epoxyforglassfibertubes.Whilethisobservationmaybe reasonable,itisnotconclusivelyverifiedbydirect reference to material property data

(Table2)becauseofthespreadinreportedvalues[19].

TABLE3 MECHANICALPROPERTIESOFRESINSYSTEMS[10] Young's Tensile Density Fiber Modulus Strength (kg/m 3 (GN/m 2) (MN/m 2) Epoxy 11001400 2.16.0 3590 Polyester 11001500 1.34.5 4585 Phenolic 1300 4.4 5060

Carbon fiber reinforced composite tubes with different kinds of thermoplastic matrices were studied. From Table 3 [10] the specific energy of thermoplastic tubes follow the order PAS

(E S=80kJ/kg)structures.[10]

3.5.4.3 Fiber & Matrix Combination

Thestudiesdescribedabovetendtorelatetheenergyabsorptioncapabilityofan

FRPtotheindividualpropertiesofitsconstituentfibersandmatrix.Itwasproposedthat energy absorption is substantially dependent on the relative (rather than the absolute) propertiesofthefibers andmatrix. Inparticular,hereportsthattherelativevaluesof fiberandmatrixfailurestrainsignificantlyaffectenergyabsorption.Itissuggestedthatto

32 achievemaximumenergyabsorptionfromanFRP,amatrixmaterialwithahigherfailure strainthanthefiberreinforcementshouldbeused.Thisensurescrushingbyhighenergy fragmentation.[18]

3.5.4.4 Effect of orientation and lay-up

The orientation of the fibers in a given layer, and the relative orientation of successivelayers withinalaminate,cansignificantly affect a component's mechanical properties.

Energy absorption capability varies with ply orientation. Variations in specific

o o energyabsorptionwereobservedintestson[0/±θ] 3carbon/epoxytubesfor15 <θ<45

(Figure10).Specificenergyabsorptionfellquitemarkedlyoverthisrange.Thiswould suggestthatcarbonfibersabsorbmostenergywhentheirorientationtendstowardsthat oftheloading.However,itwasnotedthatalaminate consisting entirely of 0 o fibers would be unlikely to have good energy absorption characteristics. In particular, the absenceofanouterhoop(90 o)layercanleadtoverylowenergyabsorption.

In pertinent to aramid/epoxy it was observed that smaller variations in energy absorption capability for [0/±θ] 3 (Figure 10). Specific energy absorption generally increased with increasing θ over the range 45 o<θ <90 o. No significant variation was observedfor15 o<θ<45 o.Thistrendisoppositetothatobservedforcarbonepoxy.[18]

3.5.4.5 Effect of Geometry

Thesepointsaresomeimportantfindings:

 Crush zone mechanisms determine the overall energy absorption of a

compositematerialand

33  Specificenergyabsorptionfollowstheorder:circular>square>rectangle

foragivenfiberlayupandtubegeometry.

ThorntonandEdwardsconductedastudyinvestigatingthegeometricaleffectsin energy absorption of circular, square, and rectangular cross section tubes. They concludedthatforagivenfiberlayupandtubegeometry,thespecificenergyfollowthe order,circular>square>rectangle.Thestructuralintegrityanddamagetoleranceoftypical compositeconstructedfromglassfiberreinforcedplasticplaysanimportantrole.The effectofthegeometryandthestraindistributionwasinvestigatedusing finiteelement analysis.Theresults,showedthatthecriticalstrains were significantly affected by the jointgeometry.Thisshowedthatparticulardefectsledtolargechangesinthestrainsin thestructure[7].

Farley investigated the geometrical scalability of graphite/epoxy and

Kevlar/epoxy [±45] N by quasistatically crush testing them. All circular cross section

graphite/epoxy exhibitedaprogressivebrittlefracturingmode.AllKevlar/epoxywhen

crushed exhibited the characteristic local buckling crushing mode. It was found that

carbon/epoxy exhibited large changes in their energy absorption characteristics with a

rangeofvaluesofdiameter(D),wallthickness(t)and(D/t)ratio.Inthisstudy,(D/t)ratio

wasdeterminedtosignificantlyaffecttheenergyabsorptioncapabilityofthecomposite

materials.[7]

34 CHAPTER 4

COMPUTER AIDED ENGINEERING TOOLS

Duetoincreasingcostonconductingrealtimecrashsimulations,CAEtoolsare very widely used in auto industry. As a result, automakers have reduced product development cost and time while improving safety, comfort, and durability of the vehiclestheyproduce.ThepredictivecapabilityofCAEtoolshasprogressedtothepoint wheremuchofthedesignverificationisnowdoneusing computer simulations rather thanphysicalprototypetesting.Toolsusedinthisstudyarebrieflyexplainedbelow.

4.1 MSC PATRAN

MSCPatranisoneoftheversatilesoftware’sthatdealswithdesignandfinite

elementanalysis.ItisafiniteelementmodelerusedtoperformavarietyofCAD/CAE

tasks including modeling, meshing, and post processing for FEM solvers LSDYNA,

NASTRAN,ABAQUSEtc.Patranprovidesdirectaccesstogeometryfromtheworlds

leadingCADsystemsandstandards.Usingsophisticated geometry access tools Patran

addresses, many of the traditional barriers to shared geometry, including topological

incompatibilities,solidbodyhealing,mixedtolerances,andothers.

MSC.Patran provides an open, integrated, CAE environment for multi

disciplinarydesignanalysis.Thisfeaturecanbeusedtosimulateproductperformance

and manufacturing process early in the designtomanufacture process. This has the

abilitytoimportgeometryfromanyCADsystemandvariousdataexchangestandards.

Powerfulandflexiblemeshingisavailablewiththecapabilitiesthatrangefrom

fullyautomaticsolidmeshingtodetailednodeandelementediting.Loadsandboundary

conditionscanvaryandmaybeassociatedwiththedesigngeometryorwiththeanalysis

35 model. The result visualization tools enable to identify critical information, including minimums, maximums, trends, and correlations. Isosurfaces and other advanced visualizationtoolshelptospeedandimproveresultsevaluation.

Inthisstudy,MSCPatranhasbeenusedtomodeltheCompositetube.Themesh needed for FEA is generated by this software. The major part of this study, which involvesdesigningofthesideimpactbeam,isagaindesignedandmeshedusingMSC

Patran.Thisservesasaveryhelpfultoolinmodelingthecomposites.

4.2 LS-Dyna

LSDYNAisageneralpurpose,explicitfiniteelementprogramusedtoanalyze the nonlinear dynamic response of threedimensional inelastic structures. Its fully automated contact analysis capability and errorchecking features have enabled users worldwidetosolvesuccessfullymanycomplexcrashandformingproblems[20].

Anexplicittimeintegrationschemeoffersadvantagesovertheimplicitmethods foundinmanyFEAcodes.Asolutionisadvancedwithout forming a stiffness matrix

(thus saving storage requirements). Complex geometries may be simulated with many elementsthatundergolargedeformations.Foragiventimestep,anexplicitcoderequires fewercomputationspertimestepthananimplicitone[20].Thisadvantageisespecially dramaticinsolidandshellstructures.Inextensivecarcrash,andmetalforming benchmarkanalyses,theexplicitmethodhasbeenshowntobefaster,moreaccurate,and moreversatilethanimplicitmethods.

LSDYNAhasoveronehundredmetallicandnonmetallicmaterialmodelslike

Elastic, Elastoplastic, Elastoviscoplastic, Foam models, Linear Viscoelastic, Glass

Models,Composites,etc.

36 The fully automated contact analysis capability in LSDYNA is easy to use, robust,andvalidated.Itusesconstraintandpenaltymethodstosatisfycontactconditions.

These techniques have worked extremely well over thepasttwenty yearsinnumerous applicationssuchasfullcar crashworthinessstudies, systems/component analyses, and occupantsafetyanalyses.Coupledthermomechanicalcontactcanalsobehandled.Over twentyfivedifferentcontactoptionsareavailable.Theseoptionsprimarilytreatcontact of deformable to deformable bodies, single surface contact in deformable bodies, and deformablebodytorigidbodycontact.Multipledefinitionsofcontactsurfacesarealso possible. A special option exists for treating contact between a rigid surface (usually

defined as an analytical surface) and a deformable structure. One example is in metal

forming, where the punch and die surface geometriescanbeinputasIGESorVDA

surfaceswhichareassumedrigid.Anotherexampleisinoccupantmodeling,wherethe

rigidbody occupant dummy (made up of geometric surfaces) contacts deformable

structuressuchasandinstrumentpanels[20].

SomeoftheprimeapplicationareasofLSDYNAareasfollows:

 Crashworthinesssimulations:automobiles,airplanes,trains,ships,etc.

 Occupantsafetyanalyses:airbag/dummyinteraction,seatbelts,foampadding.

 Birdstrike.

 Metalforming:rolling,extrusion,forging,casting,spinning,ironing,superplastic

forming, sheet metal stamping, profile rolling, deep drawing, hydroforming

(includingverylargedeformations),andmultistageprocesses.

 Biomedicalapplicationsandmanymore.

37 LSDYNA runs on leading UNIX workstations, supercomputers, and MPP

(massively parallel processing) machines. Computer resource requirements vary dependingonproblemsize.Simulationswithmorethan1.200.000elementshavebeen runusing250millionwordsofmemoryand3.5GBofdiskspace.Onsupercomputers, thecodeishighlyvectorizedandtakesadvantageofmultipleprocessors[20].

LSDynaisusedtosimulatethecrushingprocessofacompositetubeanditis

used to compare the different composite materials in determining the most energy

absorbingmaterial.ThreepointbendingtestisalsocarriedoutusingthisFEAsolver.

ThesideimpactBPillardesignedisplacedinthecarandthensideimpactanalysisis

carried in LSDyna. Finally, MADYMO/LSDyna is coupled to determine the injuries

sustained[20].

4.3 MADYMO

MADYMO (MAthematical DYnamical MOdels) is a generalpurpose software package, which can be used to simulate the dynamic behavior of mechanical systems

[21]. Although originally developed for studying passive safety, MADYMO is now increasingly used for active safety and general biomechanics studies. It is used extensivelyinindustrialengineering,designoffices,researchlaboratoriesandtechnical universities.Ithasauniquecombinationoffullyintegratedmultibodyandfiniteelement techniques.

MADYMO combines in one simulation program the capabilities offered by multibody, for the simulation of the gross motion of systems of bodies connected by complicated kinematical joints and finite element techniques, for the simulation of

38 structuralbehavior.Itisnotnecessarytoincludebothinamodel,i.e.amodelwitheither finiteelementsormultibodiescanbeused[21].

ThemultibodyalgorithminMADYMOyieldsthesecondtimederivativesofthe degreesoffreedominexplicitform.Thenumberofcomputeroperationsislinearinthe numberofbodiesifalljointshavethesamenumberofdegreesoffreedom.Thisleadsto an efficient algorithm for large systems of bodies.Atthestartoftheintegration,the initial state of the systems of bodies has to be specified (initial conditions). Several differentkinematicjointtypesareavailablewithdynamicrestraintstoaccountforjoint stiffness, damping and friction. Joints can be unlocked or removed based on a user definedcriterion.

Planes, ellipsoids, cylinders and facet surfaces can be attached to a body to representitsshape.Thesesurfacesarealsousedtomodelcontactwithotherbodiesor withfiniteelements.Thecontactsurfacesareofmajorimportanceinthedescriptionof the interaction of the occupant with the vehicle interior. The elastic contact forces, includinghysteresis,areafunctionofthepenetrationofthecontactsurfaces.Inaddition toelasticcontactforces,dampingandfrictioncanbespecified.

TheoutputgeneratedbyMADYMOisspecifiedthroughasetofoutputcontrol parameters. A large number of standard output parameters are available, such as accelerations,forces,torquesandkinematicsdata[21].MADYMOoffersinadditionto standardoutputquantities,thepossibilitytocalculateinjury parameterslikefemur and tibialoads,HeadInjuryCriterion(HIC),GaddSeverity Index(GSI),Thoracic Trauma

Index(TTI)andViscousInjuryResponse(VC).Specialoutputcanbeobtainedthrough

39 userdefinedoutputroutines.Resultsofthesimulationarestoredinanumberofoutput files,whichareaccessiblebypostprocessingprograms.

4.4 EASI CRASH DYNA (ECD)

EASI CRASH DYNA is the first fully integrated simulation environment

speciallydesignedforcrashengineeringrequiringlargemanipulationcapability[20].It

candirectlyreadfilesinIGES,NASTRAN,PAMCRASH,MADYMOandLSDYNA

data.ECDhasuniquefeatures,whichenablethecrashsimulationmorerealisticand

moreaccurate.Theseare

4.4.1 PreProcessingFeatures

 Fullyautomaticmeshingandautomaticweldcreation.

 Rapidgraphicalassemblyofsystemmodels.

 FEDummyandRigidbodydummystructuring,positioningandorientation.

 Materialdatabaseaccessandmanipulation.

 Graphical creation,modificationanddeletionofcontacts, materials, constraints

andI/Ocontrols.

 Automaticdetectionandcorrectionofinitialpenetration.

 Replacingthecomponentfromonemodeltoanothermodel.

4.4.2 PostProcessingFeatures

 HighlyoptimizedloadingandanimationofDYNAresultsfordesign.

 Superpositionofresultsfordesign.

 User friendly and complete plotting for processing simulation and test data

comparisons.

 Quickaccesstostressenergiesanddisplacementswithoutreloadingthefile.

40  Dynamicinclusion/exclusionofpartsduringanimationandvisualization.

 Importandsuperimpositionoftestresultswithsimulationresults.

 Synchronizationbetweenanimationandplots,betweensimulationresultfileand

testresultfile.

4.5 Easi-Crash Mad

EASiCRASH is based on EASi's 10 years of practical experience in crash simulations.Itgreatlyenhancesthesimulationprocessbyallowingconcurrentaccessto the model and simulation results. Animation, visualization and synchronized curve plotting make EASiCRASH MAD a high performance CAE environment [21]. The preprocessingfeaturesarelistedbelow.

 Graphicalcreation,modificationanddeletionofmultibodiesandFEentities.

 FEmeshingandmanipulationcapabilities.

 Graphicaldisplay,browsingandeditingofMADYMOentitiesthroughbrowser

interface(MADYMOexplorer).

 SupportsINCLUDEfiles.

 CardImagerepresentationofMADYMOinputdeck.

 QuickJOINTdefinitionandorientation.

 Easydummypositioning.

 Rapidcontactcreation,modificationandpreviewthroughContactspreadsheet.

 High speed generation of MADYMO and FE seat belt using automated belt

routingtechniques.

 Supportsadvancedairbagmodeling(CFD).

41 CHAPTER 5

SECTION MODEL AND ANALYSIS OF B-PILLAR IMPACT WITH SPHERE

5.1 Design of B-Pillar

Bpillarsareoneofthemostsophisticatedpartsoftheautomobilebody,because thiscomponenthastocomplywithlotofrequirementsandspecifications.Thedistance betweentheBPillarandtheoccupantisverylessinsideimpactwhencomparedtothe frontalimpact.Inaddition,whentheimpactoccurs,theBPillarorstructuresintheB

Pillarhavetoabsorbmoreenergywithminimalaccelerationtotheoccupant.[12]

Length=1000mm

Width=272mm

Figure 11. B-Pillar

42 Thenewdesignasinfigure11isintendedtodevelopanddemonstratetheuseof carbon fiber composite structures to generate significant weight savings for an automobile.Thefirstphasewasastructuraldesignstudy.Thisstudyproposedvariable thickness panels to maximize the structural efficiency at minimum mass. The wall thicknessisconstrainedtobeat3.9mm.

ForthestructuralanalysisoftheBPillar,FiniteElementMethodwasusedsince itisthemostwidelyusedcomputationalmethodintheautomotiveindustry.

Steelisstillusedasthematerialforthiscomponent.However,lightermaterials suchastheFiberReinforcedPlastics(FRP)areinitiatedintheautomotiveindustry.FRP can be used as a substitute for steel for this component as they offer higher energy absorption than the steel. As discussed earlier Composites have high strength and stiffnesstoweight ratio in the fiber direction and as well as the in the direction perpendiculartothefibereventhoughtheirYoung’sModulusislesserthanthesteel.

This means that the composites have an increased thickness than the steel and larger secondmomentofinertiatoreducetheeffectofelastic bending. There are also some disadvantages of composites, which includes higher production and tooling costs, whereas processing of the complex parts in one piece is much easier. Also, by using compositesasthematerialsfortheBPillar,reductioninweightcanbeobservedwhich leadtolesserfuelconsumption.

Figure11givesabasicdescriptionoftheBPillarwithcompositeasthematerial.

Inthismodelshellelementsareusedwiththenumberofintegrationpointsbeing13.The

orientationthatisuseusedforthecompositeis(0,30,30,60,60,90,0,90,60,60,30,30,0).

The number of nodes and elements present are shown in Table 4. The weight of the

43 composite BPillar is reduced drastically when compared to the present BPillar. The weightofthecompositeBPillaris1.04kgwhereastheweightofthepresentBPillar madeofsteelis2.15kg.Theweightofthecompositeis53%lesswhencomparedtothe steelBPillar.Thisshowstheweightreductionwhenacompositematerialisused.

TABLE4

PROPERTIESOFBPILLAR NumberofNodes Numberof 433 Numberof Elements 754 Material Carbonfiber Thickness 3.9mm Weight 1.05kgs

5.2 Impactor

Diameter=300mm

Figure 12. Sphere (Impactor)

44 Figure 12 shows the impactor. The geometry of the impactor is chosen as a sphere.Theimpactorismadeofhoneycombmaterialwhosebehaviorisanisotropicand isasolid.ThismaterialischosensincethebarrierinFMVSS214regulationisofthe samematerial.Table5showsthepropertieswiththenumberofnodesandelements[7].

ThorntonandEdwardsconductedastudyinvestigatingthegeometricaleffectsinenergy absorptionofcircular,square,andrectangularcrosssectiontubes.Theyconcludedthat for a given fiber lay up and geometry, the specific energy follow the order, circular>square>rectangle.

TABLE5

PROPERTIESOFSPHERE

NumberofNodes Numberof 1616 Numberof Elements 1600 Material Honeycomb Weight 5.12kgs 5.3 Analysis of B-Pillar impact with sphere

Bpillarsareoneofthemostsophisticatedpartsoftheautomobilebody, becausethiscomponenthastocomplywithlotofrequirementsandspecifications.The distancebetweentheBPillarandtheoccupantisverylessinsideimpactwhencompared tothefrontalimpact.Inaddition,whentheimpactoccurs,theBPillarorstructuresinthe

BPillar have to absorb more energy with minimal acceleration to the occupant.

45 ThereforethissimulationiscarriedoutasverificationforFMVSS214regulationsandto showthatcompositeBPillarcanbeusedfortheactualsideimpact.

Impactingspeed = 33.5mph

HeightfromthebaseofB Pillar=330mm

Bothendsfixed

Figure 13. B-Pillar section model with sphere

Figure13showsthemodelofaBPillarofacarwithanimpactobject,the sphere.Thesphereismadeofhoneycombmaterialwithdiameter300mm.Honeycomb materialisusedbecausethisistheactualmaterialthatisusedinthemovingdeformable barrier according to federal motor vehicle standards. The impactor is at a height of

330mmfromthebaseoftheBPillar.ThetopandthebottomnodesoftheBPillarare constrainedinalldirections.Initialvelocityisgivenonthespherewhichis33.5mph.The analysisisrunfor0.012secondsandthentheresultsarenoted.Theelementsusedinthe

Bpillarareshellelementsthatareelasticplasticelements.Thepointofcontactofthe impactor is same as the contact of the barrier according to the regulations [9]. Three different materials are used for the BPillar which are steel, glass and carbon fiber.

46 ResultsarecomparedandthebestmaterialisusedintheBPillar.Inthiscasecarbon provedouttobethebestmaterialastheenergyabsorptionofcarbonistwiceasthatof steelwhichistheoriginalmaterial.Figure14showsthefringelevelsatdifferenttimes.

0.003 sec 0.006 sec

0.009 sec 0.012 sec

Figure 14. Fringe levels for B-Pillar

47 7.00E+06

6.00E+06

5.00E+06

4.00E+06 Carbon Glass 3.00E+06 Steel

2.00E+06 Internal Internal Energy (N-mm) 1.00E+06

0.00E+00 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 1.00E+06 Time (S)

Figure 15. Internal Energy v/s Time for different materials TABLE6

SPECIFICENERGYABSORPTIONOFDIFFERENTMATERIALS

Material Energy Absorption CarbonFiber 6.52e+6Nmm Glassfiberepoxy 4.24e+6Nmm Steel 3.58e+6Nmm

Table 6 shows energy absorbed by different materials. Carbon fiber absorbs almosttwicetheenergywhencomparedtosteel.Thethicknessofcarbonfiberis3.9mm andismadeofshellelements.Figure15showstimevs.internalenergygraph.Internal energyofthematerialspecifiestheabilityofthematerialtowithstandtheloadwhileitis deformed.Highertheinternalenergy,higherwillbeabilityofthematerialintakingthe loadandthereforetheenergyabsorptionofthematerialincreases.Fromfigure15theend

48 timespecificenergyabsorptionofcarbonisveryhighwhencomparedtosteelandglass.

Thus,itcanbeconcludedthatcarbonfiberwiththicknessat3.9mmhashigherenergy absorption.Therefore,thesearetheparametersconsideredwhenanalyzingtheBPillar.

60

50

40 Glass 30 Carbon Steel 20 Displacement (mm) Displacement 10

0 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 Time (S)

Figure 16. Displacement of the B-Pillar 5.4 Displacements of the B-Pillar

Figure 16 shows the Displacements of the BPillar in pertinent to time.

Differentmaterialssuchassteel,GlassfiberandCarbonfiberareillustrated.Thecurveis selfexplanatory with the Glass fiber and steel having almost no difference in the displacement.Sincethedensityofglassisveryhighcomparedtocarbonfibertheability forglasstowithstandloadisveryless.However,BPillarwithcarbonfibershowsvery lessdisplacement.Thisindicatesthatthereisverylessintrusionintotheoccupantcabin, whichresultsinreducingthefatalinjuriescausedbysideimpact.Areaunderthecurve forcarbonshowstheamountofintrusioninthecar.

49 3.00E+04

2.50E+04

2.00E+04

steel 1.50E+04 Glass

Force Force (N) Carbon 1.00E+04

5.00E+03

0.00E+00 0.00E+00 1.00E+02 2.00E+02 3.00E+02 4.00E+02 5.00E+02 6.00E+02 Displacement (mm)

Figure 17. Force v/s Displacement for different materials Forcev/sDisplacementfordifferentmaterialssuchassteel,Glassfiberand

Carbonfiberareillustrated.Astheareaunderthecurveindicatestheenergyabsorbedby thestructure,itisevidentfromfigure17thatthe structure with carbon fiber material absorbsmoreenergy.Thecarbonfiberasseenhasahigherabilitytowithstandload.This meansthattheinjurysustainedbytheoccupantinavehicleisreducedconsiderably.This isthereasonwhycarbonfibercanbeusedintheBPillar.

Theleastenergyabsorbingmaterialissteelasperthestudy.Thismeansthat theinjurysustainedbyusingsteelismorewhencomparedtocarbon.Glassfiberalso givesthesamepropertiesassteelasthedensityofglassismorethancarbon.Hence,itis notadvisabletouseeithersteelorglassfiberasthematerialfortheBPillar.However, theinitialpeakloadsofcarbonfiberishighandthismightinducemoreforcesonthe occupant.However,thehighsustainingloadofferedbythecarbonfiber,whichabsorbs higherenergythusreducingtheinjuries,fixesthisissue.

50 CHAPTER 6

SIDE IMPACT MODELING AND ANALYSIS OF B-PILLAR IN A SEDAN

FederalMotorVehicleSafetyStandard(FMVSS)214 is the standard used for sideimpact crash analysis [9]. This was developed by NHTSA (National Highway

TrafficSafetyAdministration)[28].Inthis,adeformablebarrier(MDB)ismadetostrike a stationary car according to federal motor vehicle safety standards. A side impact dummyisplacedinthedriver’ssideofthecartorecordtheinjuries.FordTaurusisthe standardcarusedinthesideimpactcrashanalysisandthismodelisexplainedindetailin thenextsection.

6.1 Finite element study of Ford Taurus

Duetotheincreasingcostofconductinganexperiment,finiteelementmodelsare usedeverywhere.Automotiveindustryisthefiled,whichutilizestheFEMtothemost.

FiniteElementModelsareaccuratetosimulateseveraldifferentcrashtestsandpredict the vehicle and occupant response various crash scenarios. Such a design leads to minimizethetimeandthecostofthetestingprocessandhelpsinmakingeffectivesafety decisions.

TheFordTaurusmodelusedfortheanalysisisafourdoorsedanwith5meters

lengthand2.76mwheelbase. Itisdevelopedby NHTSA. Figure 18 shows the finite

elementmodelofFordTaurusModel.Ithas134parts,whichrepresentdifferentvehicle

partsandthesepartsarejoinedbyrigidbodyconstrained options and spotweld. The

contacts between different parts are modeled as single surface sliding interface

(AUTOMATIC_SINGLE_SURFACE).

51

Figure 18. Ford Taurus model [28] TABLE7 FINITEELEMENTSUMMARYOFFORDTAURUS[28] NumberofParts 134

NumberofNodes 26797

NumberofQuadElements 23124

NumberofTriaElements 4750

NumberofHexaElements 338

NumberofPentaElements 10

Table 7 depicts the finite element summary of Ford Taurus. It consists of 134 partsandtheserepresentthedifferentpartsofthevehicle.Twodifferenttypesofshell elementsareused,triangularandquadrilateral.Thismodelconsistsofshell,BPillarand thesolidelements.Theshellelementshaveisotropic elastic plastic material and eight stress strain points define the stress strain relationship. BPillar elements are assigned

52 with isotropic elastic material and the solid elements have honeycomb material with constantstresselementformulation.

6.2 Impactor Modeling

ImpactorusedinFMVSS214isamovingdeformablebarrier(MDB)whichwas

designed to be representative of the mass and size of U.S. vehicles. The relative

longitudinal and lateral speed of the MDB and the target vehicle is considered the

thresholdforseriousinjuryinactualcrashes.Thefiniteelementmodelofthebarrieris

showninfigure19.

Figure 19. FEM model of MDB [28] TheMDBfaceassemblyincludesabumperconstructedofhoneycomb1690+/

103kPasandwichedbetween3.2mmthickaluminumplates. The bumper is a flexion

memberanddevelopsflexionstrengthbasedonthematerialpropertiesofthesefrontand backplates.

53 Thealuminummaterialforhoneycombstructureofthebarrierfaceisspecifiedby design.ThebottomedgeoftheMDBis279mmfromtheground.Theprotrudingportion ofthebarriersimulatingabumperis330mmfromtheground.Figure20and21shows thespecificationsofMDB.TheMDBhastotalmassof1367Kg.Fordefiningmaterial modelinLSDYNAforhoneycombstructureofthebarrierface,MAT_HONEYCOMB cardhasbeendefined[28].SummaryoftheFEMbarrierisillustratedinTable8.

TABLE8 SUMMARYOFMDB[28] NumberofParts 8 NumberofNodes 11033 NumberofQuadElements 718 NumberofHexaElements 7324 ThespecificationsoftheMDBaredescribedindetailinfigure21

Figure 20. Specifications of MDB [28]

54

Figure 21. Dimensions of Moving Deformable Barrier (MDB) [28] 6.3 Side-Impact Analysis

6.3.1 LSDynasimulation

AccordingtotheFMVSS214standard,thebarriermovesinthedirectionofthe carandstrikesthedriversideofthecaratacrabbedangleof27°withthevelocityofthe barrierat33.5mph.Thedistancebetweenthevehicleandthebarrieriskepttothe minimuminordertominimizethesimulationtime[9].Thissimulationisrunfor0.12s andfigures22showsanimationsequenceofthesideimpactcrashanalysis.

55 Time = 0 sec

Time = 0.04 sec

Time = 0.08 sec

Time = 0.12 sec

Figure 22. Animation sequence of a side-impact crash analysis

56 According to the figure 22, it can be noticed that there is considerable deformationsustainedbytheFordTaurussedan.TheMDBhashadalmostevendamage, butitpassesallitsenergyintothesidedoorofacar.Asareasonthesidedoorofthecar shouldhavetheabilitytowithstandtheloadsothatthereislessinjuryontheoccupantof thevehicle.

6.4 Fiber Orientation

TheparametricstudyontheBPillariscarriedoutbystartingwiththevariationin layupsequence.Fourdifferentlayupsequencesareanalyzedandtheyareasfollows.

Thematerialusedwhilealteringthelayupsisglassfiberandcarbonfiber.

1) [(±45°) 6/90°]

2) 0,30,30,60,60,90,0,90,60,60,30,30,0

3) 45,45,45,45,45,45,0,45,45,45,45,45,45

4) 0,45,0,45,0,45,0,45,0,45,0,45,0

5) 0,90,0,90,0,90,45,90,0,90,0,90,0

Findingoutanorientationwhichismoreenergyabsorbingisacomplicatedissue.

Deciding the directions of layup for the specimen is very important. These above

orientations are commonly used and are compared using the Force v/s Displacement

curveandtheenergydissipatedineachspecimen.Inaddition,theenergyabsorbedin

thesespecimensarealsoinvestigatedandcompared.Finally,anorientationwithahigh

energyabsorptionischosenforfurtherstudyinthisresearch.Figure23showsthe

correspondingcurvesfortheabovementionedlayupsequences.Fromthegraphitcanbe

seenthat,areaunderthecurveforthelayupsequence 0,30,30,60,60,90,0,90,60,60,

30,30,0ismoreandthusenergyabsorbedismoreinthisorientation.

57 8000

7000

6000

5000

4000 0.30.60 45.45.45 Force(N) 3000 0.90.0.90 0.45.0.45 2000

1000

0 0 100 200 300 400 500 600 700 800 Displacement (mm)

Figure 23. Force v/s Displacement for different orientations

Itcanalsobeseenthattheloadsustainedbythisorientationishigherthanany other orientation. The next higher sustaining load is the (45,45,45,45,45,45,0, 45,

45,45,45,45,45).However,thedeformationpatterninthisorientationisnotprogressive andthiscannotabsorbmoreenergythanthe#1orientation.Inaddition,fromthefigure

23itcanbeseenthattheorientation#1hashigherenergythananyotherorientation.This means that this orientation has the ability to withstand higher load than any other orientation.

Finally, comparing the energy absorption values from figure 23, it can be concludedthattheorientation(0,30,30,60,60,90,0,90,60,60,30,30,0)hasbetterenergy absorptionandthisisusedineverycompositepartdesignedinthisstudy.

58 6.5 Thickness

Thicknessofthestructureplaysavitalroleinenergyabsorptionofamaterial.By increasingthethickness,thestructurecanbemadetowithstandmoreloadandthusmore energy absorption. However, the volume also increases when there is any increase in thicknessandthisinturnincreasesthemassofthestructure.Thisnotacceptableinthe filed of crashworthiness as weight plays a very critical role in increasing the fuel efficiencyofthevehicle.

In this study, thickness is varied to 1.3 mm and 3.9 mm. When the 1.3 mm thicknessisused,thedeformationisverymuchandthedeformationpatterniscompletely different.Inaddition,theenergyabsorptionisveryless.The3.9mmthicknessyielded verygoodenergyabsorption.Therefore,3.9mmthicknessisusedineverycompositepart

Once the orientation and the thickness are decided, the next step is to find a material that has higher energy absorption. Keeping the orientation to 0,30,30,60,

60,90,0,90,60,60,30,30,0 and thickness at 3.9 mm, different materials are analyzed which included Carbon/Epoxy, Glassfiber epoxy and Steel. The properties of these materialsareshowninTable11ofAppendixArespectively.Figure26showstheForce v/sDisplacementofdifferentmaterialsconsidered.

6.6 Analysis of B-Pillar

ThenewmodelledBPillarisplacedinthecarasshowninfigure24.EasiCrash

DynaisusedtomergetheBPillarwiththecar.ECDisalsousedtoassemblethenewly designedsideimpactBPillar.ThisanalysisisdoneusingFMVSS214standards.Firstof allFMVSS214standardisusedtostudythedeformationsustainedbythecarwhenusing thenewdesignedBPillar.

59 Ithasalreadybeendecidedearlierinthisstudythat carbon fiber composite is strongerandabsorbsmoreenergy.Inthischapter,thisisprovedagainbyimplementing thenewmodelledcompositeBPillarinthecar.Inaddition,glassfiberresultsarealso includedtohelpininterpretingtheresults.

6.6.1 FMVSS214test

Asdiscussedearlier,inthistest,aMDBismadetoimpactthesideofthecarat

33.5mph.TheMDBmovesatacrabbedangleof27°[9].

6.6.2 SimulationofsideimpactcrashwiththepresentBPillar

The full Side Impact model is carried out in LSDYNA for 0.1 seconds. The accelerometers are placed at eight locations (near thedriverside)inthevehicle.The contactsaredefinedbygeometricinterface.Figure24showsthedeformationsustained whenMDBcrashesintothecar.

Figure 24. Deformation in the present B-Pillar

60 6.6.3 SimulationofsideimpactcrashwithCompositeBPillar

The present Bpillar in the Ford Taurus car was removed using ECD and the compositeBPillarwasmergedwithcar.Deformationsustainedbythecarwhileusing thecarbonfiberreinforcedcompositeBPillarisshowninfigure25.

Figure 25. Deformation in the Composite B-Pillar

Fromfigure24,and25,itcanbeseenthatthedeformationofthecarwhenthe present BPillar is used is very high. This indicates that the displacements and the accelerationssustainedbythecarisincreased,henceincreasingtheinjuriessustainedby the occupant. In addition, it can be observed that the deformation on the composite carbonfiberBPillarisless,whichmeansthattheenergyabsorbedbythestructureis high and it passes very less force onto other structures in the car. This helps in minimizingtheinjurycriteriatoaslowaspossible.Thisbecomesveryclearwhenthe injurylevelsarestudiedusingMADYMO.

61 6.6.4 ResultsandDiscussion

1.00E+05

8.00E+04

6.00E+04

carbon 4.00E+04 steel

Force(N) glass

2.00E+04

0.00E+00 0 200 400 600 800 1000

2.00E+04 Displacement (mm) Figure 26. Force v/s Displacement for different materials

Forcev/sDisplacementfordifferentmaterialsconsideredcanbeseenfromfigure

26. The carbon fiber as seen has a higher ability to withstand load. The least energy absorbingmaterialissteelasperthestudy.CarbonfiberisthematerialusedforBPillar inthisstudy.ItcanalsobeseenthatthedisplacementoftheBPillarislesserthanother materials.Thismeansthattheinjurysustainedbytheoccupantinavehicleisreduced considerably. However, the initial peak loads of carbon fiber is high and this might inducemoreforcesontheoccupant.However,thehighsustainingloadofferedbythe carbon fiber, which absorbs higher energy thus reducing the injuries, fixes this issue.

Energyv/stimeisshowninfigure27.Itcanbeseenthatcarbonfiberexhibitshigher internalenergythananyothermaterials,whichhelpsinabsorbingmoreenergy.

62 2.50E+06

2.00E+06

1.50E+06

Glass 1.00E+06 Steel Carbon

Energy Energy (N-mm) 5.00E+05

0.00E+00 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

5.00E+05 Time (S) Figure 27. Energy v/s Time for different materials TABLE09

ENERGYABSORPTIONOFDIFFERENTMATERIALS

Material Energy Absorption CarbonFiber 2.21e+6Nmm Glassfiberepoxy 2.01e+6Nmm Steel 1.84e+6Nmm

Table09showsenergyabsorbedbydifferentmaterials.Fromthefigure26and figure27itcanbeconcludedthatcarbonfiberwithorientation(0,30,30,60,60,90,0,90,

60,60,30,30,0)andthicknessat3.9mmhashigherenergyabsorption.Therefore,these aretheparametersconsideredwhenanalyzingtheBPillar.

Displacementsandaccelerationsobtainedinthesideimpactcrashareshownin thissection.Inallofthesedisplacementsandaccelerationscurves,carbonfiberBPillar provesveryuseful.

63 1000 900 800 700 600 Carbon 500 Glass 400 Steel 300

Displacement (mm) Displacement 200 100 0 100 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Time (sec) Figure 28. Displacements at the center of gravity

Figure28showscar’sCGdisplacementwithrespecttotime.Displacements inpertinenttothePresentBPillar(Steel),GlassfiberBPillar(GF)andCarbonfiberB

Pillar (CF) are illustrated. The curve is selfexplanatory with the Glass fiber and the presentBPillarhavingalmostnodifferenceinthedisplacement.However,thecarbon fiber BPillar absorbs more energy and therefore the car’s displacement reduces by almost 55%. This validates the fact that carbon fibers absorb more energy and thus reduces the displacement. BPillar with carbon fiber shows very less displacement indicatingverylessintrusionintotheoccupantcabin.Areaunderthecurveforcarbon showstheamountofintrusioninthecabin.Intrusioninacarplaysaveryimportantrole asitisdirectedtothesafetyoftheoccupantthatisamajorcriterioninsideimpacts.

64

100

90

80

70

60 Carbon 50 Glass Steel 40 Accelertion (g's) Accelertion 30

20

10

0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Time (s)

Figure 29. Acceleration of B-Pillar

Figure29showstheaccelerationgraphwithrespecttotime.Theaccelerometers placedontheBPillarofthecarshowstheaccelerationlevelsthatareactingonthepillar

atthetimeofimpact.Theseaccelerationsaremeasuredingforces.ForagoodBPillar

the gforcesshouldnot exceed90g’s.Thisismore explained in the actual crash with

dummy.Herewecanseethatthepeakaccelerationofsteelisveryhigh.Butcarbonand

glass are also very close. At the end time, accelerationofsteelis20g’sandcarbonis

around10g’sthatislesserthansteelwhichisin the present BPillar. When the peak

accelerationisseenwecanseethatsteelreaches75g’s,glassreaches65g’sandcarbonis

58g’swhichismuchlesserthansteel.ThisshowsthatcarboncanbeusedintheBPillar

andhenceinjurylevelscanbereduced.

65 CHAPTER 7

OCCUPENT BIO-DYNAMIC MODELLING AND POTENTIAL INJURY

7.1 MADYMO Modeling

Crashworthinessandoccupantinjurysimulationsareoftenusedtoevaluatethe effectiveness, and potential limitations of proposed test procedures and safety countermeasures.Safetyofoccupantisthemostimportantissuethatconcernsduringthe designanddevelopmentofvehicle.

7.2 Dummy models [21]

To simulate a human being in crash scenario MADYMO dummy models are used.ThreeMADYMOmodeltypesareavailableasshowninfigure30.Thesemodel typesareEllipsoidmodels,FacetmodelsandFiniteElementmodels.

Ellipsoid models are models that are based fully on MADYMO’s rigid body modeling features. Their geometry is described by means of ellipsoids, cylinders and planes. They are the most CPUtime efficient type of models. Therefore, they are particularlysuitableforconcept,optimizationandextensiveparametersensitivitystudies.

AwiderangeofMADYMOATDmodelsareavailable.Thestandardmodelsof theadultandchildHybridIIIdummiesarethe5thpercentilefemale,the50thpercentile male,the95thpercentilemale,6yearoldchildand3yearoldchildHybridIIIdummy models. The size and weight of the Hybrid III 50 th percentile male represents an

“average”oftheAmericanadultmalepopulation.Inordertocovertheextremesofthe

AmericanadultpopulationtwootherversionsoftheHybridIIIhavebeendeveloped,the

5th percentilesmallfemaleandthe95 th percentilelargemale.

66 HybridIII50 th percentile EUROSIDIdummy StandingHybridIII50 th %

dummy ellipsoidalmodel dummy

Figure 30. Ellipsoidal dummy models [21]

Figure30showstheellipsoidaldummymodels.HybridIII50 th percentiledummy

is the most widely applied dummy for the evaluation of automotive safety restraint

systemsinfrontalandsidecrashtesting.

The EUROSID1 Side Impact Dummy has been designed to represent a 50 th percentileadultmalesubjectduringsideimpactcrashconditions.ItisusedinEuropean andJapanesesideimpacttestprocedures.TheEuroSIDisalateralimpactdummywhich isspecifiedinthe96/27/EGdirectivefortheprotectionofmotorvehicleoccupants[21].

The standard Hybrid III 50 th percentiledummyasshowninfigure31hasbeen developed for seated automotive applications. The standing Hybrid III contains some adaptedpartsandtherebyhasawiderrangeofapplicationincludingstandingandtesting pedestrianaccidents.

67 Head

Neck

Torso

Arm

Pelvis

Knee

Leg

Feet

Figure 31. Hybrid III 50 th percentile side impact dummy model [21]

Figure 32. Rear and left side view of dummy [14]

68 TABLE10

WEIGHTTABLE[14]

Hybrid III 50 th percentile Factors male dummy Weight 172.3lbs

Stature 69.0in SittingHeight 34.8in

Table10showstheweightoftheHybridIII50 th percentilesideimpactdummy.

Thestatureofthedummyisabout69inmeasuredfromthepelvisandthesittingheightis

34.8inwhichcanbeseenfromfigure32.Theirgeometryisdescribedbymeansof

ellipsoids,cylindersandplanes.Segmentedweightsofeachpartfromheadtofeetare

shownintable11.

TABLE11

SEGMENTEDWEIGHTS[14]

Part Weight (lb)

Head 10.0

Neck 3.4

UpperTorso 37.9

LowerTorso 50.8

UpperArms 8.8

LowerArmsandHands 10.0

UpperLegs 26.4

LowerLegsandFeet 25.0

TotalWeight 172.3

69 7.3 Dummy features

Thedummyfeaturesthreemainparts,whichareheadandneck,lowertorsoand uppertorsoasshowninfigure31.TheHybridIII50thmalefeaturesaneckdesignthat simulates the human dynamic moment / rotation, flexion, and extension response characteristics of an average size adult male. The shoulder structure was designed for improvedfidelityofshoulderbeltinteraction[21].

7.3.1HeadAndNeck

Theskullandskullcapareonepiececastaluminumpartswithremovablevinyl skins.Theneckisasegmentedrubberandaluminumconstructionwithacentercable.It canincorporateasixaxisnecktransduceratthetopandbottom.Thisaccurately simulatesthehumandynamicmoment/rotationflexionandextensionresponse[14].

7.3.2 UpperTorso

Theribcageisrepresentedbysixhighstrengthsteel ribs with polymer based damping material to simulate human chest forcedeflection characteristics as shown in figure32.Eachribunitcomprisesleftandrightanatomicalribsinonecontinuouspart open at the sternum and anchored to the back of the thoracic spine [21].A sternum assemblyconnectstothefrontoftheribsandincludesasliderforthechestdeflection rotarypotentiometer.Theanglebetweentheneckanduppertorsoisdeterminedbythe constructionoftheneckbracketwhichcanincorporateasixaxisnecktransducer.Atwo piece aluminum clavicle and clavicle link assemblies have cast integral scapulae to interfacewithshoulderbelts[14].

70 7.3.3 LowerTorso

Acurvedcylindricalrubberlumbarspinemountsprovideshumanlikeslouchofa seatedpersonandmountstothepelvisthroughanoptionalthreeaxislumbarloadcell.

Thepelvisisavinylskin/urethanefoammoldedoveranaluminumcastingintheseated positionasshowninfigure32.Theballjointedfemurattachmentscarrybumpstopsto reproduce the human leg to hip moment/rotation characteristics. The femur, tibia and ankle can be instrumented to predict bone fracture and the knee can evaluate tibia to femurligamentinjury.Thefootandanklesimulatesheelcompressionandanklerangeof motion[14]

TABLE12

EXTERNALDIMENSIONSFORTHEHYBRIDIII50TH PERCENTILEMALE[14]

Dimension Description Specifications (in) HeadCircumference 23.5 HeadBreadth 6.1 HeadDepth 8.0 ErectSittingHeight 34.8 ShouldertoElbowLength 13.3 BackofElbowtoWristPivotLength 11.7 ButtocktoKneeLength 23.3 KneePivotHeight 19.5

Table12showsthedimensionofeachofthepartsintheHybridIII50thmale dummy.Heretheheadcircumference,breadthanddeptharetakenfromaaverage americanadultmalepopulation.

71 7.4 Simulation

InthisstudyHybridIII50 th percentilesideimpactdummymodel isusedasthe referencemodel.Seatbeltsplayavitalroleinreducingtheinjuriesoftheoccupant.Here the seat belts developed in MADYMO 601 are classified as FEM belts. These are basically thethreepointbeltrestraintsystem.Thewidth andthickness ofthebeltare equalto40mmand1mmrespectively.Beltsaremodeledwith0.02sizetriaelements.

HYSISOmaterialisusedforbeltswithdensityof7850kg/mm 3.Loadingandunloading

functionfortheFEbeltsarespecifiedandtheyareasdepictedinfigure33.

Thecontactbetweenthedummy andthebeltisdefined by kinematic contacts

withcoefficientoffrictionof0.3.Thebeltsectionoftheshoulderbeltisincontactwith

therightclavicle,therightupperarm,theneckandthecollar,theleftandrightupper

torso,theribs,thesternum,breastsandtheabdomen.TheFEbeltsectionofthelapbelt

isincontactwiththehips,abdomen,thebottomribsandthelowertorsoofthedummy.

USDoTSIDdummywiththeplanesandseatbeltsisshowninfigure35.

Loading and unloading curves for the seat belt

1.60E+08

1.40E+08

1.20E+08

1.00E+08 loading unlaoding 8.00E+07 Force (N) Force

6.00E+07

4.00E+07

2.00E+07

0.00E+00 0.00E+00 2.00E02 4.00E02 6.00E02 8.00E02 1.00E01 1.20E01 Displacement (mm)

Figure 33.Loading and unloading curve for the FE belt

72 ThisdummymodelcreatedinEasiCrashMADismergedintothecarusingECD asshowninfigure34.Toruntheanalysis,MADYMOiscoupledwithLSDynausing thesimplecouplingandtheanalysisisrunfor0.1sec.Animationsequenceisshownin figure34.

Figure 34. Dummy merged with the car

73

Time = 0 sec Time = 0.01 sec

Time = 0.04 sec Time = 0.07 sec

Figure 35. Animation sequence of an impact analysis

74 7.5 Potential injuries

Head Acceleration

120

100

80

60 Steel Glass 40 Carbon Acceleration (g's) Acceleration 20

0 0 0.02 0.04 0.06 0.08 0.1 0.12 20 Time (s)

Figure 36. Head acceleration

Figure36showsthecomparisonofHeadCGaccelerationofdriveroccupantfor present BPillar, composite BPillar and glass fiber. From the figure 36, it can be observed that, head CG acceleration for the car with composite fiber is lower as comparedtothepresentandtheglassfibermodel.AccelerationofthepresentBPillaris around94g’swhereasthecarbonfiberBPillarisaround20g’s.Duetothis,theinjury criteriaHIC,reducestremendously.

Figure 37 the comparison of Thorax Spine acceleration of driver occupant for present BPillar, composite BPillar with glass fiber and carbon fiber. Carbon fiber exhibitslesseraccelerationthantheotherimpactBPillar.AccelerationofthepresentB

Pillarisaround40g’sandthenewdesignedBPillarwithcarbonfiberisaround10g’s.

75 40

35

30

25 Steel 20 Gass Carbon 15 Acceleration (g's) Acceleration

10

5

0 0 0.02 0.04 0.06 0.08 0.1 0.12 Time (s)

Figure 37. Thorax Spine acceleration

160

140

120

100 Steel Glass 80 Carbon 60 Acceleration(g's)

40

20

0 0 0.02 0.04 0.06 0.08 0.1 0.12 Time (s)

Figure 38. Pelvis acceleration

76 Figure 38 illustrates the curve between accelerationofpelvisregions.Itcanbe seenthatthecompositefiberdominatesinhavinglesseraccelerationthantheotherside impactBPillar.ThisalsoindicatesthattheenergyabsorptionofthecompositefiberB

Pillarishigherandthusithelpsinreducinginjuriestotheoccupant.

TABLE13

INJURYRATING[4]

Injury Good Acceptable Marginal Poor Measure HIC 0623 624779 780935 >935

V*C(m/s) 01.00 1.011.20 1.211.40 >1.40

TTI 090 91100 101120 >120

TABLE14

INJURYCRITERIACALCULATEDFORTHESIDEIMPACTCRASH

Steel Model Carbon Fiber Glass Fiber Model Model HIC 512 144 640

Head CG 94 20 75 Acceleration (g’s) Thorax trauma 40 15 35 Index Pelvis Acceleration 120 75 100 (<130g’s) V*C (m/s) 0.8 0.3 0.6

Table13showstheinjuryratingstandardsaccording to Insurance Institute for

HighwaySafety.Theheadinjurycriteriaandviscousinjurycriteriaratingsareshown

77 andwecanseewhichisagoodstructureandabad structure according to the values obtained.

To supplement head injury measures, the movements and contacts of the

dummies'headsduringthecrashareevaluated.Thisassessmentismoreimportantfor

seating positions without head protection airbags, which (assuming they perform as

intended) should prevent injurious head contacts. Very high head injury measures

typicallyarerecordedwhenthemovingdeformablebarrierhitsthedummyheadduring

impact.Analysisofthemovementandcontactpointsofthedummies'headsduringthe

sideimpactcrashtestisusedtoassessthisaspectofprotection.

Table14showstheinjurycriteriacalculatedduringasideimpactcrashtest.For

headinjurycriteriaavalueof623isspecifiedastheconcussiontolerancelevelinside

impacts[4].ItcanbeseenthattheHeadCGAccelerationvalueforthecarbonfiberis

verylesswhencomparedtosteelandglassandisverymuchacceptedinthefieldof

crashworthiness.TheTTIistheaccelerationcriterionbasedonaccelerationsofthelower

thoracic spine and the ribs. The TTI can be used as an indicator for the side impact performance of passenger cars. The dynamic performance requirement, as stated in

FMVSS 214 regulations of 1990, is that the TTI (d) level shall not exceed 85 g for passengercarswithfoursidedoorsand90gfortwosidedoors.Wecanseethatcarbon

fiberisabout15g’s,whichisverylessthanthespecifiedstandards.

Thepelvicaccelerationstandardshowsthatagoodstructureiswhoseglevelsare

lessthan130.Fromtable14wecanseethatthepelvisaccelerationlevelsareveryless

andisverymuchacceptedinthefieldofcrashworthiness.Whenseentheviscouscritera

carbonfiberisagainintheacceptablelevel.

78 CHAPTER 8

CONLCUSIONS AND FUTURE WORK

In this study, the objective was to investigate the use of composites as an alternativeinthevehicleBPillarandthushelpinreducingtheriskofinjuriesonthe occupant. The composite BPillar was tested on different grounds to find out the maximumpossibleenergyabsorbingmaterial,orientationandthickness.Asideimpact

BPillarwasdesignedandanattemptismadetousethisBPillarinthevehicle.FMVSS testsareconductedtofindouttheaccelerationsandtheintrusionsustainedbythevehicle beforeandaftertheuseofcompositeBPillar.Finally,occupantkinematicswasstudied

anddiscussedindetail.

ThecompositeBPillardesignedistestedaxiallyandinthetransversedirection.

Different materials and orientation are used to find out the parameters that gives the

highest possible energy absorption. By implementing the composite designed BPillar

intothevehicle,theacceleration,displacementandtheinjuriessustainedbytheoccupant

waseventuallyreduced.

8.1 Conclusions

Thefollowingconclusionscanbemade:

 Composite BPillar absorbs more energy and hence, the deformation

sustained by the BPillar is more, which leads to decrease in the

displacementandaccelerationofthecartoabout55%.

 UsingthisBPillarwouldreducetheweightofthesideimpactBPillarto

about65%.

79  Injury level reduces (70%) drastically assuring the composite BPillar is

strongerthanthepresentBPillar.

 This BPillar is effective in FMVSS (25% reduction in acceleration)

standards.

 Withthepresenttechnologiesinvolved,thisBPillariseasytomanufacture.

 TherearenocomplicationsofadheringthecompositeBPillartothecar.

 AlthoughthecompositeBPillarfailbybucklingduringimpactloading,by

proper design, fiber orientation and fiber matrix combination buckling

failurecanbereduced.

8.2 Future Work

Thefollowingrecommendationsforfutureworkcanbenoted:

 Materialsotherthancarbonfiber/glassfibercanbeusedoracombinationof

differentcompositematerialscanbeusedtostrengthentheBPillar.

 Experimentaltestscanbecarriedouttofindouttheaccuracyoftheresults

obtained.

 Manufacturingthougheasycanbeexpensive,analternativetoreducethe

manufacturabilitycanbefiguredout.

 Extensive MADYMO analysis dealing with the Neck Injuries, viscous

injuryresponseandsooncanbestudiedtoknowtheeffectivenessofthe

compositeBPillar.

80

REFERENCES

81 REFERENCES

[1] D.B.Miracle,S.L.Donaldson,“IntroductiontoComposites”. Journal of Composite Materials ,vol.34,pp.200215,1995. [2] Farley,G.L.,andJones,R.M.,“CrushingCharacteristicsofContinuousFiber ReinforcedCompositeTubes,” Journal of Composite Materials ,Vol.26,No.1,pp. 3750,1992. [3] Matzenmiller,A.,andSchweizerhof,K.,“CrashworthinessSimulationsof CompositeStructuresAFirstStepwithExplicitTimeIntegration,” Nonlinear Computational Mechanics- A State of the Art, Springer Verlag ,NewYork,1991. [4] IIHS,“Crashworthiness Evaluation Side Impact Crash Test Protocol (version III)”, InsuranceInstituteforHighway Safety,April2004. [5] RAdam,H.,Patberg,L.,Philipps,M.&Dittmann,R.,“TestingofNewComposite SideDoorConcepts”,Proceedingsofthe1998SAEInternationalCongress& Exposition,SAESpecialPublications,Vol.1320,pp.2330,1998. [6] Philipps,M.,Patberg,L.,Dittmann,R.,Henrik,A.,“StructuralAnalysisand TestingofCompositesinAutomotiveCrashworthinessApplication”,SAESpecial Publications,SafetyandMaterialTestMethodologies,v1320,pp.97101,1998. [7] Jacob,C.G.,Fellers,F.J,Simunovic,S.,Starbuck,J.M.," Energy Absorption in Polymer Composites for Automotive Crashworthiness ",1996. [8] Fleming,D.C.,“ The Energy Absorption of Graphite/Epoxy Truncated Cones ,”M.S. Thesis,DepartmentofAerospaceEngineering,UniversityofMaryland,College Park,1991. [9] FederalMotorVehicleSafetyStandards(FMVSS)No.214“ Side Impact Protection. U.S Department of Transportation”,1995. [10] Farely,G.L.,“EnergyAbsorptionofCompositeMaterials”, Journal of composite Materials ,Vol.17,pp.267279,1983. [11] Philipps,M.,Patberg,L.,Dittmann,R.,“Fiber-reinforced Composites in the Car Side Structure ”.SAESpecialpublications,981140,SafetyandMaterialTest Methodologies,v1420,pp105107,Feb,1998. [12] Cheon, Seong Sik, " Composite Side-door Impact B-Pillar for Passenger Cars ", Vol.38,No.14,pp.229239,1997.

82 [13] Marklund,P.O.,Nilson,L.,“Optimization of a Car Body Component Subjected to Side Impact ",Vol.12,pp.100105,1999. [14] CingDao,DhaferMarzougui,“Development of a 50 th Percentile Hybrid III Dummy Model”, pp.110,2003. [15] Joseph N. Kanianthra, Glen C.Rains and Thomas J. Trella. “ Strategies for Passenger Car Design to Improve Occupant Protection in Real World Side Crashes ”,1994. [16] Nguyen,Q.M.,ElderJ.D.,Bayandor,J.,Thomson,S.R.,Scott,L.M.," A review of Explicit Finite Element Software for Composite Impact Analysis ",1999. [17] S. Ramakrishna and H. Hamada, “ Energy Absorption Characteristics of Crash worthy Structural Composite Materials ”, Engineering Materials, Vol. 141143 pp.585620,1998. [18] Thornton, P.H., “ Energy Absorption in Composite Structures ”, Journal of CompositeMaterials,Vol.13,pp.247262,1979. [19] Mamalis, A.G.Robinson, M.Carruthers, “ The Energy Absorption Properties of Composite Materials ”,CompositeStructuresVol.37,pp109134,1997. [20] LSDynaUser'sManualVersion970. [21] MADYMOUserManualVersion6.0.1. [22] Schweizerhof,K.,Weimar,K.,Th.Munz,Rottner,T.,“ Crashworthiness Analysis with Enhanced Composite Material Models in LS-DYNA Merits and Limits ”,1997. [23] Johnson,A.F.,andKohlgrüber,D., “ Modelling the Crash Response of Composite Aircraft Structures ,”EuropeanConferenceonCompositeMaterialsNaples, Italy, Vol.1,pp.283290,1998. [24] Honnagangaiah.K, ”Design and Evaluation of Car Front Sub frame Rails in a Sedan and its Corresponding Crash Injury Response ”,M.S.Thesis,Departmentof MechanicalEngineering,Wichitastateuniversity,2006. [27]Sheshadri,A.,“ Design and Analysis of a Composite Beam and its use in Reducing the Side-impact Injuries in a Sedan ”,M.S.Thesis,DepartmentofMechanical Engineering,WichitaStateUniversity,Wichita,2006. [28]“National Highway Traffic Safety Administration Annual Report ”,2005. [29]HansunChan,James.R.Hackney,Richard.M.Morgan,“An Analysis of Side Impact Crash Data”, ConradTechnologies, pp.012,1998.

83

APPENDIX

84 APPENDIX

TABLE 15

GLASS FIBER PROPERTIES

Property Value Units

Density 1.97E06 Kg/mm 3

Plylongtitudinalmodulus 45.84 Gpa

Plytransversemodulus 17.50 Gpa

Plypoisson'sratio 0.26

Plyshearmodulusinplane 8.63 Gpa

Plytransversemodulusparalleltofiberdirection 6.57 Gpa

Plytransversemodulusperpendiculartofiber 8.63 Gpa direction Plylongitudinaltensilestrength 1.12 Gpa

Plylongitudinalcompressivestrength 0.9 Gpa

Plytransversetensilestrength 0.03 Gpa

Plytransversecompressionstrength 0.13 Gpa

Plyshearstrength 0.07 Gpa

85 APPENDIX (Continued)

TABLE 16

CARBON PROPERTIES

Property Value Units

Density 1.58E06 Kg/mm 3

Plylongtitudinalmodulus 142 Gpa

Plytransversemodulus 10.3 Gpa

Plypoisson'sratio 0.27

Plyshearmodulusinplane 7.12 Gpa

Plytransversemodulusparalleltofiberdirection 3.15 Gpa

Plytransversemodulusperpendiculartofiber 7.12 Gpa direction Plylongitudinaltensilestrength 1.83 Gpa

Plylongitudinalcompressivestrength 1.09 Gpa

Plytransversetensilestrength 0.05 Gpa

Plytransversecompressionstrength 0.22 Gpa

Plyshearstrength 0.07 Gpa

86