Shear Testing of Flange/Web Adhesive Bond Lines in Wood I-Joists

Total Page:16

File Type:pdf, Size:1020Kb

Shear Testing of Flange/Web Adhesive Bond Lines in Wood I-Joists A method for glue bond quality testing of flange/web adhesive connections of wooden I-beams Nordtest project no. 1583-02 Erik Serrano, Mikael Fonselius, Carl-Johan Johansson and Kjell H. Solli A method for glue bond quality testing of flange/web adhesive connections of wooden I-beams SP Rapport 2004:02 Bygg och Mekanik Borås 2004 2 Abstract A test method for assessing the quality of glue bonds in the web-flange joint of I-beams has been developed. The method is based on a shear test of small pieces cut from the beam. The investigation has included shear tests on different specimen sizes, including the influence of the wood density, the wood moisture content and the influence of different pre-treatments (boiling) in order to detect possible gluing errors. A limited finite element analysis was also performed. The main conclusion is that pre-treatment of the specimen by boiling is necessary in order to detect gluing errors. Another confirmation is that the wood failure percentage can be used as a good indicator of the bond quality. Finally, a draft test method for a possible standard is given. Key words: quality control, test method, I-beam, shear test, engineered wood product SP Sveriges Provnings- och SP Swedish National Testing and Forskningsinstitut Research Institute SP Rapport 2004:02 SP Report 2004:02 ISBN 91-7848- ISSN 0284-5172 Borås 2003 Postal address: Box 857, SE-501 15 BORÅS, Sweden Telephone: +46 33 16 50 00 Telex: 36252 Testing S Telefax: +46 33 13 55 02 E-mail: [email protected] 3 Contents Abstract 2 Contents 3 Summary 5 1 Introduction 7 1.1 Background 7 1.2 Aim 7 1.3 Current method used by a manufacturer 7 1.4 Work content and disposition of the report 8 2 Materials and methods 9 2.1 Beam materials 9 2.2 Test set-ups 9 3 Task 2 – Influence of specimen thickness 11 3.1 General remarks 11 3.2 Test programme 11 3.3 Test results 11 3.4 Finite element study 12 3.4.1 FE-model 12 3.4.2 FE-Results 14 3.5 Conclusions – Task 2 15 4 Task 3 – Influence of moisture content 16 4.1 General remarks 16 4.2 Test programme 16 4.3 Test results 16 5 Task 4 – Influence of pre-treatment 18 5.1 General remarks 18 5.2 Test programme 18 5.3 Test results 19 6 Discussion and conclusions 23 6.1 Gluing errors 23 6.2 Detecting errors 23 6.2.1 General 23 6.2.2 Without pre-treatment 23 6.2.3 With pre-treatment (boiling) 23 6.2.4 Decision based on shear strength or wood failure percentage 24 References 25 Appendix A: Wooden I-beams – Test method for evaluation of flange/web glue bond quality A1 4 Preface This report was prepared as the final project report for the Nordtest project 1583-02 “Träbaserade lättbalkar. Utveckling av metod för bestämning av limfogskvalitet” (Wood I-beams. Development of a method for the determination of adhesive bond line quality”). The project has been performed as a co-operation by SP – Swedish National Testing and Research Institute, VTT –Technical Research Centre of Finland and NTI – Norwegian Institute for Wood Technology. SP has had the responsibility of the final compilation of the results and editing of this report. Borås, October 2003 Erik Serrano 5 Summary An important aspect of the production of wooden I-beams is the control of the quality of the adhesive joint that bonds the web to the flange. A test method needs to be developed, since the existing ones as described, for example in EN 392 (Anon.1995), cannot be used due to the geometry of the joint. The development of such a test method is the aim of the current project. The work reported here has included different investigations in order to establish a reliable test method. The influence of the test piece thickness was studied in order to obtain a test specimen size of appropriate dimensions. The influence of the moisture content and of different pre-conditioning climates was also investigated. Finally, in order to be able to detect less severe gluing errors, the influence of boiling the specimens prior to testing was investigated. In total 800 individual shear tests have been performed, each being evaluated at least in terms of shear strength and wood failure percentage. Based on the findings, it is recommended that a test method based on a compressive shear test of the bond between web and flange (push-through) be used. It is recommended that the test pieces should be 20 mm in thickness, which was found to be a good compromise between the strive for a large enough specimen in order not to cause to much damage when cutting it and the strive for small specimens resulting in lesser load levels and more uniform stress distribution. It is furthermore recommended that the testing be preceded by repeated boiling of the specimens in water. This pre-treatment has shown to be enough to predict the most severe gluing errors. An alternative pre-treatment to use is boiling the specimens only once, but to use a stricter pass/fail criterion. When evaluating the test results, it is recommend that the wood failure percentage be used as a pass/fail criterion in combination with a minimum shear strength criterion. The level for the wood failure percentage is set to 70% for repeated boiling as a pre-treatment. This means that, in order to accept the quality of the bond line, the wood failure percentage should be 70% or more. For the alternative pre-treatment of boiling only once, the level is set to 80% wood failure. The reference shear strength value to be met, should be determined at the products initial type testing. A test method, which can be used as starting point for future standardisation, can be found in Appendix A. 6 7 1 Introduction 1.1 Background Different types of engineered wood products (EWP) have gained importance in recent years. A large part of these EWP are I-beams, where the web is adhesively bonded into grooves machined into the flanges. Other EWP include such products like oriented strand board (OSB) and Laminated Veneer Lumber (LVL). In the US the increased use of I-beams is evident from the increase in number of producers, which is fast growing. During the 1990’s, the number of plants producing I- beams increased in number from 16 to 43 (Zylkowski 2000). The use of I-beams has, to a large extent, replaced the use of solid timber for floor and roof structures. 1.2 Aim A test method for the web/flange connection of I-beams needs to be developed, since the existing test methods for glue bonds, as described for example in EN 392 (Anon.1995), cannot be used due to the geometry of the joint. Typically the web is bonded into a slightly wedge-shaped groove, see Figure 1. The development of such a test method is the aim of the current project. 47 4 47 47 20 8 Figure 1. Example of web-to-flange geometry of a wood I-beam. 1.3 Current method used by a manufacturer At the present, one manufacturer uses an in-house method to determine whether the adhesive bond has an acceptable quality. The method is based on a shear test of a thin slice of the complete I-beam cross-section. A loading device applies a compressive force on the web material, as indicated in Figure 2. This method has served as a starting point for further development within the present project. 8 Figure 2. A steel plate is used to push through the web material in shear. Only part of the cross-section and the loading device is shown. 1.4 Work content and disposition of the report The project has been divided into a number of tasks, of which Tasks 2, 3 and 4 relate to testing and evaluation of tests using a proposed test method. The work contents of these tasks are described below. • Task 2 o The influence of the test piece thickness. Normally, size effects should be investigated for any kind of material or structural test. A finite element study was also conducted in this task. • Task 3 o The influence of the moisture content. Different pre-conditioning climates are used in order to investigate their effect on the glue bond quality. • Task 4 o The influence of pre-treatment (boiling) of the specimens prior to testing in order to detect any problems with glue bond quality. Chapter 2 gives a general description of the materials and methods used for the respective tasks. Chapters 3-5 describe the results from the tests performed in tasks 2-4 and the FE- simulations performed in task 2. Chapter 6 gives a general discussion on the project results and includes some final remarks and recommendations. Appendix A, finally, presents the draft test method as proposed by the project partners. 9 2 Materials and methods 2.1 Beam materials For this project it was decided to use two different beam types, manufactured in Sweden and in Norway. The Swedish beam is manufactured by Masonite Beams AB. The Norwegian beam is manufactured by Forestia AS and is sold under the commercial name “Rantibjelken”. The two beams are based on the same principles of an I-beam, but differing in their material composition and geometrical shape of the web-to-flange joint. In Figure 3 is shown two cross-sectional views of the beam types investigated.
Recommended publications
  • Masonite Siding 101: Why It's Bad News
    Moving into a new home is a great feeling of accomplishment. Fixer-uppers have been a trend in the real estate market for some time now, and for a great reason. Often minor cosmetic adjustments to homes can have a major impact. But what happens when you find a problem that isn’t so DIY-friendly? Discovering masonite siding, also known as "fiberboard" or "hardboard", may unearth more serious problems for an older home. Masonite Siding 101: Hardboard is an engineered wood product that is comparable to particle board. This product is made from compressed wood fibers so it does not have a grain like solid wood. However, a wood veneer may be formatted over the product so it appears to be solid. If you’re unsure if your siding is in fact masonite, check unfinished areas like the attic for manufacturer’s markings. Another way to tell that your home has Masonite is the way that it is deteriorating -- look for flakes, curls and swelling in damaged areas. Masonite is know for extensive use in various industries for its durability and flexibility. During the 1980s and 1990s this product was used as exterior siding for many new construction homes. It was widely used for its low cost compared to regular siding material. Why It's Bad News: As one could imagine, a product with fibers is easily susceptible to moisture damage. The compression process often leaves only one side of the product smooth which proves to be a greater risk for water issues. Over time, masonite swells and rots if continuously exposed to the elements.
    [Show full text]
  • Masonite Interior Door Catalog 2020
    INTERIOR DOORS Unique. Versatile. Timeless. P LIVINGSTON™ 06 Masonite is committed to delivering unsurpassed performance in interior and exterior doors and glass products. We provide much more than a door; we deliver a total experience, giving you a complete line of products, services and support tools designed to enhance curb appeal and the interior aesthetics of a home. We are your leading source for the latest trend insights and design ideas, delivering distinctive doors that complement any style and personal taste. From the crisp, clean lines of our Heritage Series™ to the versatility of our molded panel collection, we offer a breadth of interior doors to meet any design, performance and material need. It’s never been easier to find the perfect door for your home. Solid Core Doors // 02 Heritage Series™ // 08 Flush Series // 14 Interior Doors // 04 West End Collection® // 10 Emerald® “Green” Doors // 15 Livingston™ // 06 Molded Panel Doors // 12 Design and Size Options // 16 2 masonite.com SAFE N’ SOUND SAFE Safe 'N Sound® THE NEW STANDARD SOLID CORE DOORS We are on a mission to put solid core doors in every home. Made of solid material all the way through, they feel more substantial and block sound more effectively. For minimal cost, solid core doors create a dramatic improvement in overall quality. u Solid core doors are SOUND REDUCING they block sound more efficiently than hollow doors. u Solid core doors are simply built better with a strength you can FEEL the moment you open the door. u Solid core doors are DURABLE, able to withstand the dents and dings of normal wear.
    [Show full text]
  • C&C Building Supplies Inventory Guide Lumber Engineered Lumber
    C&C Building Supplies Inventory Guide Contact Us: 724-696-4701 Lumber Plywood Roofing Windows Framing Lumber Pressure Treated Shingles *7D Industries 2x4, 2x6, 2x8, 2x10, 2x12 1/2”, 3/4” Owens Corning *Sierra Pacific up to 24’ lengths Cabinet Grade Oak & Birch Supreme AR Pressure Treated 1/4”, 1/2”, 3/4” TruDefinition Duration Doors 2x4, 2x6, 2x8, 2x10, 2x12 CDX/Plyscore ProEdge Hip & Ridge Exterior Doors ( #1 MCA Grade) 3/8”, 1/2”, 5/8”, 3/4” CertainTeed 6 Panel Steel 4x4, 4x6, 6x6 Finished Grade Plywood Landmark 9 Lite Steel ( #2 MCA Grade) 1/2”, 3/4” *Masonite 5/4x6 Select Premium Plyform Roofing Supplies *Larson Decking Lauan Owens Corning *Sierra Pacific 1x4, 1x6, 1x8 D&Btr T1-11 Weatherlok (2sq/roll) Interior Doors Pine 4” OC, 8” OC Deck Defense HC 6 Panel Textured 1x4, 1x6, 1x8, 1x10, 1x12 Advantech Pro Armor HC Lauan Premium Grade Tempered Hardboard Ventsure HC Birch 1x6, 1x8 WP4/WP18 Cement Board MFM *Masonite Appearance Pine Fiberock 3x5x1/4, 3x5x1/2 Ice Buster (2sq/roll) 1x4, 1x6, 1x8 Clear White Durock 3x5x1/4, 3x5x1/2 SA Shingle Starter Flooring Pine Titanium UDL-25 #1 Common Red Oak 1x4, 1x6, 1x8, 1x12 C&Btr Drywall Tamko 15#, 30# roofing felt PFJ Primed #1 Common White Oak Ultra Lightweight Regular FBC roof coatings & sealers Pine Moulding *Happy Feet Luxury Vinyl 4x8x3/8, 4x8x1/2, 4x10x1/2, Alcoa Aluminum Products Primed Moulding *UNIBOARD Laminate 4x12x1/2 Cedar *HOMERWOOD Hardwood Mold Tough Metal Roofing 1x4, 1x6, 1x8 #3&Btr *Somerset Hardwood 4x8x1/2 *Metal Sales Inland Red Cedar Plasterbase Manufacturing 1x6 STK T&G
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,718,786 Lindquist Et Al
    IIIUSOO5718786A United States Patent (19) 11 Patent Number: 5,718,786 Lindquist et al. 45 Date of Patent: Feb. 17, 1998 54 FLATORIENTED STRAND BOARD 4,122,236 10/1978 Holman ..................................... 42.5/81 FBER BOARD COMPOSTE STRUCTURE 4,131,705 12/1978 Kubinsky ...... ... 428/106 AND METHOD OF MAKING THE SAME 4,210,692 7/1980 Bohme et al. .......................... 428/106 (List continued on next page.) 75) Inventors: Craig R. Lindquist, Cordele, Ga.; John T. Clarke; Peter P.S. Chin, both FOREIGN PATENT DOCUMENTS of St. Charles, Ill.; Michael J. 597.587 5/1960 Canada .................................. 428/106 MacDonald, Batavia, Ill.; J. Peter GM 7704 Walsh, Sycamore, Ill. 563 5/1978 Germany. OS 26 58 784 7/1978 Germany ............................... 478/106 73) Assignee: Masonite Corporation. Chicago, Ill. 1116054 6/1968 United Kingdom. 1576140 10/1980 United Kingdom. (21) Appl. No.: 480,439 OTHER PUBLICATIONS 22 Filed: Jun. 7, 1995 Maloney et al., “Modern Particleboard & Dry-Process Related U.S. Application Data Fiberboard Manufacturing." Miller Freeman Publications, pp. 105-107. 60) Division of Ser. No. 052,375, Apr. 23, 1993, Pat. No. Moslemi et al., in Paticleboard, Volume 2: Technology, 5,470,631, which is a continuation-in-part of Ser. No. 670, Southern Illinois University Press, pp. 16-23. 681, Mar. 20, 1991, abandoned, which is a continuation-in Siemplekamp Bulletin, dated Mar. 4, 1988, p. 6. part of Ser. No. 503,573, Apr. 3, 1990, abandoned. (51) Int. Cl. ....................... B27N3/00; B32B 31/04 Primary Examiner-Nasser Ahmad 52 U.S. Cl. ...................... 156/622; 156/62.4; 156/62.8; Attorney; Agent, or Firm-Marshall, O'Toole, Gerstein, 162/100; 162/103; 428/105; 428/106; 428/109; Murray & Borun 428/1.12; 428/212; 428/213; 428/218; 428/219; 57 ABSTRACT 428/220; 428/326 (58) Field of Search ................................
    [Show full text]
  • Density, Modulus of Elasticity, Creep, and Durability of Hardboard A
    Density, Modulus of United States Department of Agriculture Elasticity, Creep, Forest Service Bibliographies and Durability of and Literature of Agriculture 126 Washington, D.C. Hardboard February 1994 A Bibliography Abstract The references in this literature review cover four areas related to hardboard: (1) density or specific gravity,, (2) modulus of elasticity (MOE) and stiffness, (3) dimen­ sional stability and water resistance, and (4) weathering and accelerated aging. The purpose of the literature search was to provide a starting point for discussing directions for suture research and ways to improve the performance of hardboard products. The annotations encapsulate important research results. The majority of the references are grouped first by research area and then by type of hardboard fiber-mat forming process (dry, wet, or dry and wet processes). The final section of the publication includes references on North American hardboard standards and test methods for both dry and wet processes. The study on which this publication was based was funded by the American Hardboard Association, Palatine, Illinois; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wisconsin; and Illinois Agricultural Experiment Station, University of Illinois, Urbana, Illinois. Acknowledgement The compilation of this comprehensive bibliography would not have been possible without the assistance of many individuals Particular thanks are given to J. Dobbin McNatt and Gary C. Myers, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wisconsin, and Damon H. Lipinski, Research Assistant, Department of Forestry, University of Illinois, Urbana-Champaign, for their reference search, help in locating original sources, and review. Thanks are due to the American Hardboard Association (AHA), Palatine, Illinois, for the funding that enabled the authors to undertake this study.
    [Show full text]
  • Wood Flooring
    DESIGN REQUIREMENTS WOOD FLOORING GENERAL INFORMATION 1.1 This section applies to factory finished wood strip flooring. 1.2 Reference Standard: NOFMA - National Oak Flooring Manufacturers Association Grading Standards. 1.3 Warranty: Provide manufacturer’s standard one-year warranty. DESIGN REQUIREMENTS 2.1 Prefinished Solid Hardwood Strip Flooring: ¾” thick; in species as required for project (to be approved by Facilities); Grade: Clear/Select; Width: 3-1/4” (or as required for project); Length: Random, with 6’-0” maximum, 2’-0” minimum, and 4’-0” average lengths. Edge: Tongue and Groove; End: Matched (tongue and groove). 2.2 Factory finishing: Factory machine sand hardwood strip flooring to smooth even finish with no evidence of sander marks. Apply one seal coat followed by finish coats of urethane. Cure. 2.3 Acceptable subfloor materials include plywood and oriented strand board, depending on application. Particleboard and Masonite are not acceptable substrates. 2.4 Wood sleepers, plywood sheathing, blocking, and other framing accessories: a. Subfloor filler and patching compound: Gray cement based type as recommended by flooring manufacturer b. Wood Floor Adhesive: 100 percent urethane floor adhesive as recommended by flooring manufacturer. c. Sheet vapor retarder: Black polyethylene sheeting, 8 mils thick. Provide reinforced, self-adhesive, 2 inches (51 mm) minimum width tape for sealing seams. LAST REVISED: JUNE 12, 2011 DESIGN REQUIREMENTS d. Underlayment: Asphalt impregnated, weather resistant, water-vapor permeable building felt paper. Dry tensile strength: 20 psi minimum in both directions. Maximum water vapor transmission: 35 grams per square meter per 24 hours. e. Sound isolation underlayment: Cork or compressed fiber, if required.
    [Show full text]
  • Masonite Hardboard Siding
    A Sure-Look Home Inspections 3025 Mill Stream Court, Matthews, NC 28104 Tel: 704-488-4469 Fax: 704-882-8879 [email protected] www.asurelook.com FACT SHEET: MASONITE HARDBOARD SIDING Hardboard , also called high-density fiberboard , is a type of fiberboard , which is an engineered wood product. It is similar to particleboard and medium-density fiberboard , but is more dense and much harder because it is made out of exploded wood fibers that have been highly compressed. It is referred to as Masonite in the USA because that was the first brand to be marketed there in the 1920s (25 years after it was invented in England). Unlike solid wood , it is very homogeneous with no grain. However, a wood veneer can be glued onto it to give the appearance of solid wood . Other overlays include formica and vinyl . It has many uses, such as a substrate, but unlike plywood and solid wood, it has no significant structural strength. It is used in construction , furniture , appliances , automobiles and cabinetry , and is popular among acrylic and oil painters as a painting surface due to its economical price (though it must be coated with gesso or canvas before use). It is also used as the final layer in many skateboard ramps and the half- pipe . Hardboard is produced in either a wet or dry process, which produce a panel called S1S or S2S respectively. The wet process only leaves one smooth side, but dry processed hardboard is smooth on both sides. Like other types of fiberboard, hardboard is susceptible to moisture damage and is generally not used outside.
    [Show full text]
  • 74363 Södra Pollmeier Spruce LVL-S Beams [4].Indd
    Pollmeier Spruce LVL-S Beams Engineered Wood Products represent a bold step forward, not only in terms of ease of use, excellent performance, and cost saving characteristics, but in the environmental credentials they offer to specifiers and end users who are increasingly required to prove the eco ratings of the buildings they construct. The performance of Engineered Wood Products can be accurately predicted which means we can fine tune a design so that exactly the right amount of product is employed for any given situation. Södra Wood is a leading supplier of Engineered Wood Products to the UK market and has a wealth of experience in the storage, handling and distribution of these high quality materials. Pollmeier Spruce LVL-S is part of the Södra Wood EWP System which includes Masonite I-Joists, LVL Rim Board and Glulam beams. Information on these products is also available. FEATURES BENEFITS Laminated Veneer Lumber Stable, strong and reliable engineered wood product that will not shrink, twist, cup or bow like solid timber Adaptability Can be used in masonry or timber frame construction Wide Range of Products Competitive and compatible solutions High Modulus of Elasticity Allows more flexibility in design and smaller material cross sections Tolerant of Holes and Notches Allows access for services in accordance with structurally designed holes Technical Support Team Expert help is on hand for engineering and design queries Forest Certification Full PEFC chain of custody Full load orders (min 45m3 mixed loads) from landed stock are available on a 48hr Just In Time (JIT) delivery basis, full load direct deliveries are also available.
    [Show full text]
  • Lumber & Wood Catalog 2021
    South City Lumber & Supply LUMBER & WOOD CATALOG 2021 Lumber & Wood 650 588-5711 Douglas Fir Framing Lumber Redwood Std/#2 & #1/Btr S4S Select Heart 2x4 to 2x12 8’ to 20’ 1x4, 1x6 8’, 10’, 12’, 16’, 20’ Select Heart B Decking 2x4 to 2x12 12’, 16’, 20’ 2x4 8’ to 20’ Construction Heart 2x6 8’ to 20’ 2x6 to 2x12 8’ to 24’ Larger sizes and timbers available via Special Order. 2x14 8’, 10’, 12’, 16’, 20’, 24’ Rough-sawn Redwood 3x4, 3x6 8’, 10’, 12’, 16’, 20’ 3x8, 3x12 Random lengths Construction Heart 1x4, 1x6, 1x8, 1x12 8’ to 20’ 4x4 to 4x12 8’ to 20’ Construction Heart 2x4, 2x6, 2x8, 2x12 8’, 10’, 12’, 16’, 20’ 4x14 8’, 10’, 12’, 16’, 20’, 24’ Rough-sawn, aka saw-textured, is resawn for a rustic appearance and is 6x6 to 6x12 8’ to 20’ sized a little thicker and wider than surfaced lumber. Common sizes and grades available unseasoned (GRN). Wood Fencing Douglas Fir S-DRY Framing Lumber Redwood & Cedar Select Structural #1 S4S 1x6 Redwood 5’, 6’ 1x8 Redwood 5’, 6’, 8’ 2x4 to 2x12 8’, 10’, 12’, 16’, 18’, 20’ 1x8 Cedar 5’, 6’ S-DRY = Surfaced Dry / 19% moisture content when surfaced at the Mill. 8’ Fence Posts Redwood / Pressure Treated Redwood Lattice Heavy duty, Diagonal or Square Pattern Engineered Wood Products Fence Panel 4x8 panel Laminated Veneer Lumber (LVL) Cedar Split Rail Fencing Our Redwood products are all sustainably harvested. 1-3/4 x 7-1/4 to 1-3/4 x 14 16’, 20’, 25’ Kiln Dried Lumber (KD) Parallel Strand Lumber (PSL) Redwood Clear All Heart KD 1x2 to 1x12 3-1/2 x 9-1/2 to 3-1/2 x 14 16’, 20’, 25’ 2x2 to 2x12 5-1/4 x 9-1/2 to 5-1/4 x 14 16’, 20’, 25’ 4x4 I-Joist Cedar Clear VG KD 1x6, 1x8 2x6, 2x8 I-Joist Full inventory available via Special Order Douglas Fir Clear VG KD 1x2 to 1x12 Custom sizes or larger sizes/longer lengths are available via Special Order.
    [Show full text]
  • Acetylation of Wood 1945–1966
    Review USDA Forest Service Forest Products Laboratory: Acetylation of Wood 1945–1966 Rebecca E. Ibach 1,* and Roger M. Rowell 2 1 Forest Biopolymers Science and Engineering, Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, USA 2 Biological Systems Engineering, University of Wisconsin, Madison, WI 53706, USA; [email protected] * Correspondence: [email protected] Abstract: The first research on acetylation of wood started in 1928, and the first research done on acetylation of wood at the USDA Forest Service Forest Products Laboratory (FPL) started in 1945. This is a review of the research done between 1945 and 1966 at the FPL. This research was the first to show that acetylated wood was both decay-resistant and dimensionally stable. It was the pioneering research that ultimately led to the commercial production of acetylated wood. Keywords: history; decay resistance; dimensional stability; acetylation 1. Introduction The first experiment in the acetylation of wood was in Germany by Fuchs in 1928 using acetic anhydride and sulfuric acid as a catalyst [1]. Fuchs found an acetyl weight gain of over 40 percent, and he used the acetylated wood to isolate lignin from pine. In the same year, Horn acetylated beech wood to remove hemicelluloses in a similar lignin Citation: Ibach, R.E.; Rowell, R.M. isolation procedure [2]. In addition, in 1928, Suida and Titsch acetylated powdered beech USDA Forest Service Forest Products and pine using pyridine or dimethylaniline as a catalyst to yield an acetyl weight gain of Laboratory: Acetylation of Wood 30 to 35 percent after 15 to 35 days at 100 ◦C[3].
    [Show full text]
  • Parallel Strand Lumber (PSL) –Parallam™ • Laminated Strand Lumber (LSL) – Timberstrand™ • I-Joists (I-Beams) – Masonitebalken™, TJI™ Examples
    Engineered Wood Products for Structural Purposes Charlotte Bengtsson SP Trätek Växjö University Contents • General about EWP •Productioncontrol • Overview over EWPs •New developments EWP definition • EWP are made from ”pieces” of timber which are arranged or formed for structural purposes. Bonding with adhesives or heat and pressure. • General concept Cut in smaller pieces and re-assemble (reducing defects) Tailor-made structural members •Resulting products more homogeneous less variability (less orthotropic) EWP - general • Overcoming weaknesses of solid wood • Taking advantage of low-quality raw material • Structural members of “any size” • Less variability in material properties – higher design strength Diff. in design value Diff. in mean value Number of beams Strength EWP - general • Strong • Large interval of spans • Made with durable adhesives • Dimensionally stable – Made from dry material Structural Timber Strength [MPa] C24 24 C30 30 Glulam GL32 32 GL36 36 LVL 40-50 EWP - general • Accurate production control is required • Sometimes, 3rd party surveillance is required • Development of Plywood started beginning of 20 century • Glulam was developed early 19th century – C.F. Wiebking (1762-1842) Examples • Glued-laminated timber (glulam) • Laminated Veneer Lumber (LVL) – Kerto™, Microllam™ • Parallel Strand Lumber (PSL) –Parallam™ • Laminated Strand Lumber (LSL) – TimberStrand™ • I-Joists (I-beams) – Masonitebalken™, TJI™ Examples • Oriented Strand Board (OSB) • Plywood • High Density Fibre Board (HDF) –Masonite™ •Particleboard Production
    [Show full text]
  • Environmental Product Declaration (EPD) Conforms to ISO 14025, 14040, ISO 14044, and ISO 21930
    Environmental Product Declaration Masonite® Architectural ARCHITECTURAL Masonite Architectural One Tampa City Center 201 North Franklin Street, Suite 300 Tampa, Florida 33602 www.masonitearchitectural.com Product This declaration represents the production-weighted average wood door leaf, manufactured by Masonite Architectural at the following locations: §§Masonite Architectural – Algoma, WI §§Masonite Architectural – Jefferson City, TN §§Masonite Architectural – Largo, FL §§Masonite Architectural – London, Ontario §§Masonite Architectural – Marshfield, WI §§Masonite Architectural – Northumberland, PA §§Masonite Architectural – Saint-Ephrem, Quebec Functional Unit The declared unit is a wood door leaf, measuring 21 ft2 (1.95 m2) at a nominal 1-3/4 inch (44.45 mm) thickness. Results represent a production weighted average wood door leaf. EPD Number and Period of Validity SCS-EPD-04154 Beginning Date: September 13, 2016 – End Date: September 12, 2021 Version: August 9, 2017 Product Category Rule Product Category Rule for Preparing an Environmental Product Declaration for Interior Architectural Wood Door Leaves (March 2015). Program Operator SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com Environmental Product Declaration Masonite® Architectural Table of Contents Product and Company Information . cover Company Description . 3 Product Scope . 3 Material Content . 4 Product Life Cycle Flow Diagram. .5 Additional Environmental Information. 6 Life Cycle Assessment Stages and Reported Information . .8 Life Cycle Impact Assessment. .8 References . 15 Disclaimers: This Environmental Product Declaration (EPD) conforms to ISO 14025, 14040, ISO 14044, and ISO 21930. This declaration is an environmental product declaration in accordance with ISO 14025 that describes environmental characteristics of the described product and provides transparency and disclosure of environmental impacts.
    [Show full text]