The Somatosensory System Codes Five
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Somatosensory Systems
Somatosensory Systems Sue Keirstead, Ph.D. Assistant Professor Dept. of Integrative Biology and Physiology Stem Cell Institute E-mail: [email protected] Tel: 612 626 2290 Class 9: Somatosensory System (p. 292-306) 1. Describe the 3 main types of somatic sensations: 1. tactile: light touch, deep pressure, vibration, cold, hot, etc., 2. pain, 3. Proprioception. 2. List the types of sensory receptors that are found in the skin (Figure 9.11) and explain what determines the optimum type of stimulus that will activate each. 3. Describe the two different modality-specific ascending somatosensory pathways and note which modalities are carried in each (Figure 9.10 and 9.13). 4. Describe how it is possible for us to differentiate between stimuli of different modalities in the same body part (i.e. fingertip). Consider this at the level of 1) the sensory receptors and 2) the neurons onto which they synapse in the ascending sensory systems. 5. Explain how one might determine the location of a spinal cord injury based on the modality of sensation that is lost and the region of the body (both the side of the body and body part) where sensation is lost (Figure 9.18). 6. Describe how incoming sensory inputs from primary sensory axons can be modified at the level of the spinal cord and relate this to the mechanism of action of some common pain medications (Figure 9-18). 7. Describe the homunculus and explain the significance of the size of the region of the somatosensory cortex devoted to a particular body part. Cerebral cortex Interneuron Thalamus Interneuron 4 Integration of sensory Stimulus input in the CNS 1 Stimulation Sensory Axon of sensory of sensory receptor neuron receptor Graded potential Action potentials 2 Transduction 3 Generation of of the stimulus action potentials Copyright © 2016 by John Wiley & Sons, Inc. -
Chemoreception
Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath. -
The Roles and Functions of Cutaneous Mechanoreceptors Kenneth O Johnson
455 The roles and functions of cutaneous mechanoreceptors Kenneth O Johnson Combined psychophysical and neurophysiological research has nerve ending that is sensitive to deformation in the resulted in a relatively complete picture of the neural mechanisms nanometer range. The layers function as a series of of tactile perception. The results support the idea that each of the mechanical filters to protect the extremely sensitive recep- four mechanoreceptive afferent systems innervating the hand tor from the very large, low-frequency stresses and strains serves a distinctly different perceptual function, and that tactile of ordinary manual labor. The Ruffini corpuscle, which is perception can be understood as the sum of these functions. located in the connective tissue of the dermis, is a rela- Furthermore, the receptors in each of those systems seem to be tively large spindle shaped structure tied into the local specialized for their assigned perceptual function. collagen matrix. It is, in this way, similar to the Golgi ten- don organ in muscle. Its association with connective tissue Addresses makes it selectively sensitive to skin stretch. Each of these Zanvyl Krieger Mind/Brain Institute, 338 Krieger Hall, receptor types and its role in perception is discussed below. The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2689, USA; e-mail: [email protected] During three decades of neurophysiological and combined Current Opinion in Neurobiology 2001, 11:455–461 psychophysical and neurophysiological studies, evidence has accumulated that links each of these afferent types to 0959-4388/01/$ — see front matter © 2001 Elsevier Science Ltd. All rights reserved. a distinctly different perceptual function and, furthermore, that shows that the receptors innervated by these afferents Abbreviations are specialized for their assigned functions. -
Pacinian Corpuscle Neuroma: a Rare Case Report with Review of Literature
vv ISSN: 2641-3116 DOI: https://dx.doi.org/10.17352/ojor CLINICAL GROUP Received: 03 June, 2020 Case Report Accepted: 26 June, 2020 Published: 27 June, 2020 *Corresponding author: Sujit Kumar Singh, Junior Pacinian corpuscle neuroma: A Resident, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak, India, Tel: +91-9477943631; E-mail: rare case report with review of ORCID: https://orcid.org/0000-0002-2285-6905 Keywords: Pacinian corpuscle; Neuroma; Pacinian Literature corpuscle Sujit Kumar Singh1*, Umesh Yadav2, Ajay Sheoran2, RC https://www.peertechz.com Siwach3, Ashish Devgan3, Kshitish Chandra Behera4, Amandeep Verma1, Karunesh Ranjan1 and Surinder Jaiswal5 1Junior Resident, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak, India 2Assistant Professor, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak 3Senior Professor, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak 4Senior Resident, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak 5Junior Resident, Department of Orthopaedics, Pt. B.D. Sharma PGIMS, Rohtak Abstract The authors discuss an interesting case of a Pacinian corpuscle neuroma in the fi nger of a young woman who presented with severe digital pain. The clinical signs were very prominent. The patient had complete pain relief following excision of the tumor. Pacinian corpuscle neuromas are rare, with only about few cases reported in the literature. The histology, presenting features and associated conditions are discussed in detail. In addition to a neuroma or glomus tumor, Pacinian corpuscle hyperplasia should be considered in the differential diagnosis of digital or palmar pain of unknown etiology. Introduction Neural tumours composed exclusively of Pacinian corpuscles or showing focal Pacinian differentiation are extremely rare and have only occasionally been reported in the literature. -
Branched Cells in the Epidermis: an Overview
0022-202X/ 80/ 7501-0006$02.00/0 THE JOURNAL OF INVESTIGATIVE D ERMATOLOGY, 75:6-11, 1980 Vol. 75, No.1 Copyrighl © 1980 by The Williams & Wilkins Co. Printed in U.S.A. Branched Cells in the Epidermis: An Overview A. S. BREATHNACH, M.Sc., M.D. Department of Anatomy, St. Mary's Hospital Medical School (University of London), London, W.2, UK Current knowledge concerning the nature, lineage, due, no doubt, to overconcentration upon their own pet clear and function of the Langerhans cell, Merkel cell, and, to cells, to the fact that no specific stains for lymphocytes had a lesser extent, the melanocyte, are reviewed under been evolved, to the unacceptability of Andrew's conclusions headings that emphasize the confederate constitution of [ 4] that lymphocytes were capable of differentiating into prac the epidermis as a compound tissue composed of a vari tically every other variety of epidermal cell, and finally to the ety of cellular elements; the role of the lymphocyte as a lack of an obvious reason for their presence there at all under component of normal epidermis is also considered. It normal circumstances. appears that the function of the Langerhans cell has Today; a further 20 yr along the way, this question of intrae finally been established, i.e., it serves as a front-line pidermallymphocytes has become an issue of vital importance, element in immune reactions of the skin. Develop not only in relation to individual immunopathologic situations, mentally, it is of mesenchymal origin. The Merkel cell but also from the wider points of view put forward by Fichthel still presents a number of problems centering around ius, Groth, and Liden [5] and Streilein [6] in connection with questions of its lineage, the nature of its characteristic the skin as an immunologic inductive microenvironment, and granules, and the "synaptic" relationship between it and the possible existence of a subpopulation of lymphocytes sub the associated neurite. -
Pacinian Corpuscle Tumor
International Journal of Medical and Health Research International Journal of Medical and Health Research ISSN: 2454-9142 Received: 10-08-2019; Accepted: 12-09-2019 www.medicalsciencejournal.com Volume 5; Issue 11; November 2019; Page No. 48-51 Pacinian corpuscle tumor Dr. Pathik Shah1, Dr. Hiten Kareliya2, Dr. Salome3, Dr. Tushar Toprani4 1 Department of Internal Medicine, Indian Oil Corporation limited, Vadodara, Gujarat, India 2 Consultant Infectious diseases, Prime Hospital, Vadodara, Gujarat, India 3 Senior Histopathologist, Toprani Lab, Vadodara, Gujarat, India 4 Senior Pathologist, Toprani Lab, Vadodara, Gujarat, India Abstract The authors discuss an interesting case of a Pacinian corpuscle neuroma in the finger of a young woman who presented with severe digital pain. The pain was initially attributed to pus collection in the interphalangeal joint of the thumb. The clinical signs were very subtle. The patient had complete pain relief following excision of the tumor. Pacinian corpuscle neuromas are rare, with only about few cases reported in the literature. The histology, presenting features and associated conditions are discussed in detail. In addition to a neuroma or glomus tumor, Pacinian corpuscle hyperplasia should be considered in the differential diagnosis of digital or palmar pain of unknown etiology. Keywords: Pacinian cell neuroma, Pacinian corpuscle neuroma, Painful hand lesions 1. Introduction Schematic diagram of the microscopic structure of a Pacinian corpuscles are mechanoreceptors found in human Pacinian corpuscle showing a single unmyelinated nerve and other animals. They are distributed in the dermis from fiber surrounded by connective tissue lamellae. The part of the fingers and palm of the hand, the conjunctiva, near the nerve outside the capsule is myelinated joints, in the mesenteries, branching blood vessels, penis, urethra, clitoris, parietal peritoneum and loose connective tissue. -
Somatosensory Function in Speech Perception
Somatosensory function in speech perception Takayuki Itoa, Mark Tiedea,b, and David J. Ostrya,c,1 aHaskins Laboratories, 300 George Street, New Haven, CT 06511; bResearch Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139; and cDepartment of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, Canada H3A 1B1 Edited by Fernando Nottebohm, The Rockefeller University, Millbrook, NY, and approved December 4, 2008 (received for review October 7, 2008) Somatosensory signals from the facial skin and muscles of the vocal taken from a computer-generated continuum between the words tract provide a rich source of sensory input in speech production. head and had. We found that perception of these speech sounds We show here that the somatosensory system is also involved in varied in a systematic manner depending on the direction of skin the perception of speech. We use a robotic device to create stretch. The presence of any perceptual change at all depended patterns of facial skin deformation that would normally accom- on the temporal pattern of the stretch, such that perceptual pany speech production. We find that when we stretch the facial change was present only when the timing of skin stretch was skin while people listen to words, it alters the sounds they hear. comparable to that which occurs during speech production. The The systematic perceptual variation we observe in conjunction findings are consistent with the hypothesis that the somatosen- with speech-like patterns of skin stretch indicates that somatosen- sory system is involved in the perceptual processing of speech. sory inputs affect the neural processing of speech sounds and The findings underscore the idea that there is a broad nonau- shows the involvement of the somatosensory system in the per- ditory basis to speech perception (17–21). -
Diversification and Specialization of Touch Receptors in Skin
Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Diversification and Specialization of Touch Receptors in Skin David M. Owens1,2 and Ellen A. Lumpkin1,3 1Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 2Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032 3Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032 Correspondence: [email protected] Our skin is the furthest outpost of the nervous system and a primary sensor for harmful and innocuous external stimuli. As a multifunctional sensory organ, the skin manifests a diverse and highly specialized array of mechanosensitive neurons with complex terminals, or end organs, which are able to discriminate different sensory stimuli and encode this information for appropriate central processing. Historically, the basis for this diversity of sensory special- izations has been poorly understood. In addition, the relationship between cutaneous me- chanosensory afferents and resident skin cells, including keratinocytes, Merkel cells, and Schwann cells, during the development and function of tactile receptors has been poorly defined. In this article, we will discuss conserved tactile end organs in the epidermis and hair follicles, with a focus on recent advances in our understanding that have emerged from studies of mouse hairy skin. kin is our body’s protective covering and skills, including typing, feeding, and dressing Sour largest sensory organ. Unique among ourselves. Touch is also important for social ex- our sensory systems, the skin’s nervous system change, including pair bonding and child rear- www.perspectivesinmedicine.org gives rise to distinct sensations, including gentle ing (Tessier et al. -
Fine Structure of Eimer's Organ in the Coast Mole (Scapanus Orarius)
THE ANATOMICAL RECORD 290:437–448 (2007) Fine Structure of Eimer’s Organ in the Coast Mole (Scapanus orarius) PAUL D. MARASCO,1 PAMELA R. TSURUDA,2 DIANA M. BAUTISTA,2 3 AND KENNETH C. CATANIA * 1Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 2Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 3Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee ABSTRACT Eimer’s organ is a small, densely innervated sensory structure found on the glabrous rhinarium of most talpid moles. This structure consists of an epidermal papilla containing a central circular column of cells as- sociated with intraepidermal free nerve endings, Merkel cell neurite complexes, and lamellated corpuscles. The free nerve endings within the central cell column form a ring invested in the margins of the column, surrounding 1–2 fibers that pass through the center of the column. A group of small-diameter nociceptive free nerve endings that are immuno- reactive for substance P surrounds this central ring of larger-diameter free nerve endings. Transmission electron microscopy revealed a high concentration of tonofibrils in the epidermal cells of the central column, suggesting they are more rigid than the surrounding keratinocytes and may play a mechanical role in transducing stimuli to the different recep- tor terminals. The intraepidermal free nerve endings within the central column begin to degrade 15 mm from the base of the stratum corneum and do not appear to be active within the keratinized outer layer. The pe- ripheral free nerve endings are structurally distinct from their counter- parts in the central column and immunocytochemical double labeling with myelin basic protein and substance P indicates these afferents are unmyelinated. -
Mechanisms of Mechanotransduction in the Pacinian Corpuscle
1 Mechanisms of Mechanotransduction in the Pacinian Corpuscle Submitted by Svetlana Pitts-Yushchenko to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics, July 2013 The thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ………………………………………………………………… 2 3 Abstract Touch perception is important in most living organisms and extremely sensitive detection systems have evolved to meet this need. Pacinian corpuscles (PCs) are primary mechanoreceptors. In the human, they are found in the skin (where they act as touch receptors), in the joints, in muscles and in many organs (where they act as motion sensors). The purpose of the work described in this thesis is to investigate how the performance of the PC is achieved, with reference to structure, mechanical properties and possible transduction mechanisms. PCs were obtained from the equine hoof and their distribution and clustering were investigated. Corpuscles were located in the frog area of the hoof (the digital cushion); they were found to be surrounded by adipose tissue and often closely associated with blood vessels. The physiological implications of these observations are discussed. The structure and composition of corpuscles was investigated using confocal microscopy with histological stains for collagen, proteoglycans and lipids. Nonlinear microscopy was also used to investigate the distribution of collagen (by second- harmonic generation), elastin (by intrinsic two-photon fluorescence) and membrane 4 lipids (by coherent Raman imaging). -
Merkel Cell Carcinoma
Case Report Merkel cell carcinoma Eiman Nasseri MD FRCPC erkel cell carcinoma (MCC) is a rare yet highly aggressive tumour of the skin. While the dangers of other skin Mcancers like malignant melanoma are ingrained in most physicians’ minds—with the changing or atypical nevus often inciting an urgent biopsy—MCC remains an unfamiliar and neglected disease. Yet, the annual incidence of MCC is rising more quickly than that of melanoma, at 8% annually, and one-third of patients die within 3 years of diagno- sis.1,2 Despite these sobering figures, a timely diagnosis followed by exci- sion and radiotherapy can be curative in early disease. This article seeks EDITor’s KEY POINTS to familiarize family physicians with both the characteristics and the man- • Merkel cell carcinoma (MCC) is a rare but agement of MCC, so that they can quickly identify MCC patients and direct highly aggressive cutaneous neoplasm with a them to the appropriate specialists for care. rising incidence among elderly patients. The 3-year mortality rate is greater than 30%, Case description surpassing that of malignant melanoma. A 93-year-old white woman presented to the emergency department with an asymptomatic tumour on her left ear (Figure 1). She claimed that the lesion • The most common clinical features had appeared 2 months earlier and had been growing rapidly. The patient of MCC have been summarized by the was otherwise healthy and not taking any medications. On physical exami- acronym AEIOU: asymptomatic, expanding nation, her skin showed moderate photodamage. A 5- by 4-cm erythema- rapidly, immunosuppression, older than 50 tous, dome-shaped nodule was noted in her left conchal bowl. -
Diagnostic Accuracy of a Panel of Immunohistochemical and Molecular Markers to Distinguish Merkel Cell Carcinoma from Other Neuroendocrine Carcinomas
Modern Pathology (2019) 32:499–510 https://doi.org/10.1038/s41379-018-0155-y ARTICLE Diagnostic accuracy of a panel of immunohistochemical and molecular markers to distinguish Merkel cell carcinoma from other neuroendocrine carcinomas 1,2,3 4 1 3 3 Thibault Kervarrec ● Anne Tallet ● Elodie Miquelestorena-Standley ● Roland Houben ● David Schrama ● 5 2 6 7 8 Thilo Gambichler ● Patricia Berthon ● Yannick Le Corre ● Ewa Hainaut-Wierzbicka ● Francois Aubin ● 9 10 11 12 12 Guido Bens ● Flore Tabareau-Delalande ● Nathalie Beneton ● Gaëlle Fromont ● Flavie Arbion ● 13 2 2,14 1,2 Emmanuelle Leteurtre ● Antoine Touzé ● Mahtab Samimi ● Serge Guyétant Received: 14 July 2018 / Revised: 2 September 2018 / Accepted: 3 September 2018 / Published online: 22 October 2018 © United States & Canadian Academy of Pathology 2018 Abstract Merkel cell carcinoma is a rare neuroendocrine carcinoma of the skin mostly induced by Merkel cell polyomavirus integration. Cytokeratin 20 (CK20) positivity is currently used to distinguish Merkel cell carcinomas from other neuroendocrine carcinomas. However, this distinction may be challenging in CK20-negative cases and in cases without a 1234567890();,: 1234567890();,: primary skin tumor. The objectives of this study were first to evaluate the diagnostic accuracy of previously described markers for the diagnosis of Merkel cell carcinoma and second to validate these markers in the setting of difficult-to- diagnose Merkel cell carcinoma variants. In a preliminary set (n = 30), we assessed optimal immunohistochemical patterns (CK20, thyroid transcription factor 1 [TTF-1], atonal homolog 1 [ATOH1], neurofilament [NF], special AT-rich sequence- binding protein 2 [SATB2], paired box protein 5, terminal desoxynucleotidyl transferase, CD99, mucin 1, and Merkel cell polyomavirus-large T antigen) and Merkel cell polyomavirus load thresholds (real-time PCR).