Development and Characterisation of Silicon Solar Cells with Recombination Interconnects for Future Tandem Solar Cell
Total Page:16
File Type:pdf, Size:1020Kb
Uppsala Universitet MASTER OF SCIENCE IN PHYSICS DEGREE THESIS Development and Characterisation of Silicon Solar Cells with Recombination Interconnects for Future Tandem Solar Cell Author: Supervisor: Marika Gugole Jonathan Scragg July 4, 2018 Abstract In this project commercial BSF Si solar cells have been processed in order to develop a suitable interconnect for a possible tandem solar cell. The Ag original top contacts have been removed and ◦ ◦ replaced with TiSi2 formed using the SALICIDE process at 3 different temperatures: 500 C, 650 C and 750 ◦C. Raman spectroscopy and EDS maps have been used to prove the successful formation of ◦ the TiSi2 contacts for the 750 C temperature. As part of this work we also developed a MATLAB script which successfully fits the measured IV curve of a Si solar cell and extrapolates the values of the components of the equivalent circuit. The script also identifies and quantifies the energy losses percentage for different loss mechanisms. The script was used to characterize commercial BSF Si solar cells and to simulate their behavior in a tandem configuration by IV measurements under filtered light. The results of this characterization was used to predict the requirements of a possible top solar cell for a tandem configuration. Popul¨arvetenskaplig Sammanfattning Kiselbaserade solceller ¨arden vanligaste typen av solceller och solcellsmarknaden best˚arungef¨arav 90% kiselceller. Men, kiselbaserade solceller n˚arsnart sin begr¨ansningi form av effektivitet. I Bild 1 ses rekord uppm¨attaeffektivitetsm¨atningper ˚aroch vi ser att de kiselbaserade cellerna n¨armarsig 27%. Den teoretiska effektiviteten ben¨amns p˚aengelska som Shockley-Queisser limit och utstakas till ungef¨ar33%. D¨aremot,om man kombinerar flera celler p˚avarandra (s˚aatt de arbetar i en tandemkonfiguration) eller koncentrerar ljuset s˚akan h¨ogreeffektivitet uppn˚as.En v¨agatt g˚af¨oratt tillverka en s˚adantandemcell kan vara att anv¨andasig av en kiselcell som bas och kombinera denna med en tunnfilms solcell som toppcell. F¨oratt lyckas med en s˚adankonstellation s˚afinns det framf¨orallttv˚ahinder att komma igenom. Den f¨orstasv˚arigheten¨aratt tillverka en toppcell med l¨ampligabandgapsegenskaper och den andra sv˚arigheten ¨aratt utveckla en passande kontaktytan mellan de tv˚acellerna. Det finns m˚angaf¨ordelarmed att anv¨andaen kiselcell som tandembas, kisel ¨arv¨alk¨ant, billigt och begr¨ansarutvecklingskostnaderna till tunnfilmscellen. Ytterligare, ekonomiska och milj¨ov¨anligavinster kan inh¨amtas om man kan ˚atervinna och upparbeta gamla solceller som tandembas. N¨arsolceller f¨or˚aldrassyns det som en f¨orlusti effektivitet d˚aenstaka celler i en PV-modul tappar effektivitet eller helt slutar fungera, ofta s˚a¨ardet dock sj¨alva PV- modulen som f¨or˚aldratsoch i s˚adant fall, med nya mellankontakter ("recombination interconnects"), kan cellen anv¨andassom en bas i en tandemkonfiguration. Mellankontakten fungerar som en transportv¨ag f¨orelektroner som skapas i bascellen och l˚aterdem rekombineras med h˚alfr˚antoppcellen, detta ¨ar viktigt f¨oratt skapa en str¨omgenom cellstapeln. S¨arskiltviktigt blir det d˚aatt ers¨attaden silver- blypasta som vanligtvis kopplar ihop en PV- moduls toppsida med en mellankontakt som klarar av de tuffa processerna som generellt anv¨andsvid tunnfilmstillverkning. Vid h¨ogatemperaturer diffunderar silvret i pastan in i kiselbasen och f¨orst¨orden. Fokuspunkten i det h¨arprojektet kommer vara att ers¨atta silver-blykontakterna med en titansilicid som ¨ark¨andf¨oratt skapa bra kontakt mellan b˚adep- och n- typs kiseldopningar utan att f¨orst¨oradem vid h¨ogretemperaturer likt silver-blypastan. F¨oratt tillverka silicider, som ¨aren metal-kiselblandning, s˚abeh¨over kisel och titan hettas upp i kontakt med varandra. D¨arf¨or,var det v¨aldigtviktigt att helt avl¨agsna silver-blypastan f¨oratt exponera kislet under och f¨oratt ˚astadkomma detta var en reng¨oringsrutinutvecklad och till¨ampadi det h¨arprojektet. Vilket leder oss till m˚alet med projektet som var att f¨orst utveckla just denna rutin, optimera silicidbildningen och sedan f¨orhoppningsvisskapa en bra mellankontakt. Contents 1 Introduction 1 2 Theoretical background 3 2.1 Theory of solar cells . 3 2.1.1 Semiconductor materials . 3 2.1.2 Doping of semiconductors . 4 2.1.3 The p-n junction . 4 2.1.4 The solar cell . 5 2.1.5 The current-voltage characteristic (IV) . 6 2.1.6 Losses during the energy conversion process . 7 2.1.7 The equivalent circuit . 8 2.1.8 Quantum efficiency (QE) . 10 2.2 Tandem solar cells . 10 2.3 Metal-semiconductor contact . 11 2.3.1 Ag paste contacts . 13 2.3.2 Silicides and SALICIDE process . 14 3 Method 15 3.1 BSF Silicon solar cells . 15 3.2 IV measurement setup . 15 3.3 IV curve fitting and loss analysis . 16 3.4 QE measurement setup . 19 3.5 Behavior of the cells under filtered light (IV and QE) . 20 3.6 SEM (Scanning Electron Microscope) . 20 3.7 Raman spectroscopy . 21 3.8 Replacing the Ag contacts . 22 4 Results 23 4.1 IV curve fitting and loss analysis . 23 4.2 Behavior of the cells under filtered light (IV and QE) . 23 4.3 Replacing the Ag contacts . 24 5 Discussion 28 5.1 IV curve fitting and loss analysis . 28 5.2 Behavior of the cells under filtered light (IV and QE) . 29 5.3 Replacing the Ag contacts . 30 6 Conclusion and outlook 31 7 Acknowledgements 32 A The diode equation 33 B Measured and extracted parameters 34 1 Introduction Silicon based solar cells are the most common type of solar cells, consisting in 90% of the market. However, this technology is approaching its limit in term of efficiency. Figure 1 shows the record efficiencies for the different technologies and the Si technology is recorded to be 26.1%, for mono-crystalline Si under no concentration, and 27.6% for mono-crystalline Si under concentration. According to the Shockley- Queisser detailed balance the theoretical efficiency limit for Si technology is estimated to be 32% [1]. On the other hand, the limit for multi-junction (or tandem) solar cells, consisting in, as the name suggest, in a stack of more than one cell working "in tandem", is estimated to be 42% under no concentration and 55% under concentration, for two cells in the stack [2]. One approach in the multi-junction technology is to combine a Si solar cell with a low band gap (1.14 eV), as bottom cell, and a wider band gap (≈ 1.7 eV) thin film solar cell as top cell. To reach this goal, there are two main challenges to address. The first challenge regards the development of a suitable high band gap top cell and the second challenge regards the development of a suitable "recombination interconnect". The combination of a Si solar cell and a wider band gap top cell has already the great advantage of using the well known and economically convenient Si technology for the bottom cell, resulting in the need of only developing a suitable top cell. In particular it could have a great advantage from an economical and environmental point of view, if one consider the upcycling of pre-existing Si cells. As mentioned in the beginning of this introduction, the Si technology has the biggest part of the PV market. This means that there will be a large amount of Si based PV modules that will soon have to be disposed. However, if the PV modules will not be efficient anymore, some of the single Si cells that make up the module could in principle still be efficient. The reason behind this is that the major causes of efficiency loss of the PV modules are related with the degradation of the modules themselves and not with the degradation of all the solar cells which are part of the module [3]. Hence, these cells could be recycled, or better, upcycled, as bottom cell for a tandem cell. The challenge resides in the development of a suitable "recombination interconnect", where the electrons collected from the bottom cell can efficiently recombine with the holes collected from the top cell in order to allow a continuous current flow through the stack. In particular, there is the need of replacing the Silver-Lead paste based contacts [4]. Silver would indeed diffuse towards the p-n junction of the solar cell during the deposition of the top cell, at temperatures higher than 500◦, hence shunting the solar cell. In this project, the focus is on the replacement of these Silver-Lead based contacts with a Titanium Silicide interconnection since Titanium Silicide is known to make a good contact with both p- and n-type Si and at the same time resist high temperatures [5][6]. However, the Silicide formation requires a "clean" Si surface, especially, it requires an intimate contact between the Si and the metal. In the Si technology, standard cleaning procedures are used to prepare the Si surface, for example to clean and prevent oxides, which unfortunately cannot be used on a finished solar cell, if there is a need to preserve the other components of the device. Hence, a cleaning procedure and Silicide formation process have to be developed for this particular case. The aim of this project is then, first, to develop and test this procedure, and then optimize the Silicide formation process in order to achieve, if possible, a good interconnect. As a side project, for both get used to the characterisation techniques and to better understand the behavior of the cells in a possible tandem configuration, the cells are characterised under filtered light. 1 Figure 1: Efficiency chart. Taken from [7] 2 2 Theoretical background In this first section, a basic theory of semiconductors materials and solar cell devices is presented to allow the reader to understand the reasons behind the project and the work that has been done to achieve the results.