December 2015 March 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical
CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical Institute Department of Neuroscience University of Texas Southwestern Medical Center 5323 Harry Hines Blvd., NA4.118 Dallas, Texas 75390-9111 (214) 648-1876, FAX (214) 648-1801 Email: [email protected] DATE OF BIRTH: December 16, 1951 NATIONALITY: U.S. Citizen by birth EDUCATION: 1981-1983 Pharmacology Research Associate Training Program, National Institute of General Medical Sciences, Laboratory of Clinical Sciences and Laboratory of Cell Biology, National Institutes of Health, Bethesda, MD 1979-1981 Ph.D., Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, Dr. Michael Menaker, Advisor. Summer 1977 Hopkins Marine Station, Stanford University, Pacific Grove, California 1975-1979 Department of Zoology, University of Texas, Austin, Texas 1970-1974 B.A. in Biology, Swarthmore College, Swarthmore, Pennsylvania PROFESSIONAL EXPERIENCE: 2013-present Principal Investigator, Satellite, International Institute for Integrative Sleep Medicine, World Premier International Research Center Initiative, University of Tsukuba, Japan 2009-present Professor and Chair, Department of Neuroscience, UT Southwestern Medical Center 2009-present Loyd B. Sands Distinguished Chair in Neuroscience, UT Southwestern 2009-present Investigator, Howard Hughes Medical Institute, UT Southwestern 2009-present Professor Emeritus of Neurobiology and Physiology, and Walter and Mary Elizabeth Glass Professor Emeritus in the Life Sciences, Northwestern University -
Neurobiology, Endocrinology and Behavior E
Neurobiology, Endocrinology and Behavior E. Adkins-Regan, Cornell University, Ithaca, NY, USA C. S. Carter, University of Illinois at Chicago, Chicago, IL, USA ã 2010 Elsevier Ltd. All rights reserved. Introduction In subsequent centuries, many scientists examined and described the structure of the brain and nervous system Two types of mechanisms, neural and hormonal, have in an array of animal species. A common theme was to note been prominent in the history of research directed at what seemed to be marked differences in the organization uncovering the proximate physiological causes of animal of the brain, especially the forebrain, and in the relative behavior. During the first part of this history, the nervous sizes of structures and brain divisions, and to speculate and endocrine systems were envisioned as separate sys- about their relationship to behavior and intelligence. tems and were studied by somewhat different research With the publication of Charles Darwin’s theory of communities. As a result, research on physiological evolution by natural selection, these species differences mechanisms of animal behavior has tended to develop in brain structure and size began to be interpreted in an along two somewhat separate and parallel tracks. These evolutionary framework. Until the middle of the 1900s, dual origins are reflected in the organization of this sur- the dominant view had been that the brains (especially vey. Beginning in the twentieth century, several discov- forebrains) of different vertebrate classes (as represented eries led to the realization that the nervous and endocrine by a small number of species from each of the largest systems are physiologically integrated to a highly signifi- classes) were fundamentally different in organization, cant extent, which is of great importance for animal that they formed an evolutionary series progressing behavior. -
Masakazu Konishi
Masakazu Konishi BORN: Kyoto, Japan February 17, 1933 EDUCATION: Hokkaido University, Sapporo, Japan, B.S. (1956) Hokkaido University, Sapporo, Japan, M.S. (1958) University of California, Berkeley, Ph.D. (1963) APPOINTMENTS: Postdoctoral Fellow, University of Tübingen, Germany (1963–1964) Postdoctoral Fellow, Division of Experimental Neurophysiology, Max-Planck Institut, Munich, Germany (1964–1965) Assistant Professor of Biology, University of Wisconsin, Madison (1965–1966) Assistant Professor of Biology, Princeton University (1966–1970) Associate Professor of Biology, Princeton University (1970–1975) Professor of Biology, California Institute of Technology (1975– 1980) Bing Professor of Behavioral Biology, California Institute of Technology (1980– ) HONORS AND AWARDS (SELECTED): Member, American Academy of Arts and Sciences (1979) Member, National Academy of Sciences (1985) President, International Society for Neuroethology (1986—1989) F. O. Schmitt Prize (1987) International Prize for Biology (1990) The Lewis S. Rosenstiel Award, Brandeis University (2004) Edward M. Scolnick Prize in Neuroscience, MIT (2004) Gerard Prize, the Society for Neuroscience (2004) Karl Spencer Lashley Award, The American Philosophical Society (2004) The Peter and Patricia Gruber Prize in Neuroscience, The Society for Neuroscience (2005) Masakazu (Mark) Konishi has been one of the leaders in avian neuroethology since the early 1960’s. He is known for his idea that young birds initially remember a tutor song and use the memory as a template to guide the development of their own song. He was the fi rst to show that estrogen prevents programmed cell death in female zebra fi nches. He also pioneered work on the brain mechanisms of sound localization by barn owls. He has trained many students and postdoctoral fellows who became leading neuroethologists. -
Auditory and Vestibular Efferents (Springer Handbook of Auditory
Springer Handbook of Auditory Research For other titles published in this series, go to www.springer.com/series/2506 David K. Ryugo ● Richard R. Fay Arthur N. Popper Editors Auditory and Vestibular Efferents Editors David K. Ryugo Richard R. Fay Garvan Institute of Medical Research Department of Psychology Program in Neuroscience Loyola University of Chicago 384 Victoria St., Level 7 6525 N. Sheridan Rd. Darlinghurst, NSW 2010 Chicago, Illinois 60626 Australia USA [email protected] [email protected] Arthur N. Popper University of Maryland Department of Biology College Park, Maryland 20742-4415 USA [email protected] ISSN 0947-2657 ISBN 978-1-4419-7069-5 e-ISBN 978-1-4419-7070-1 DOI 10.1007/978-1-4419-7070-1 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010937633 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary -
Donald Griffin Was Able to Affect a Major Revolution in What Scien- Tists Do and Think About the Cognition of Nonhuman Ani- Mals
NATIONAL ACADEMY OF SCIENCES DONALD R. GRIFFIN 1915– 2003 A Biographical Memoir by CHARLES G. GROSS Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 86 PUBLISHED 2005 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. DONALD R. GRIFFIN August 3, 1915–November 7, 2003 BY CHARLES G. GROSS OST SCIENTISTS SEEK—but never attain—two goals. The M first is to discover something so new as to have been previously inconceivable. The second is to radically change the way the natural world is viewed. Don Griffin did both. He discovered (with Robert Galambos) a new and unique sensory world, echolocation, in which bats can perceive their surroundings by listening to echoes of ultrasonic sounds that they produce. In addition, he brought the study of animal consciousness back from the limbo of forbidden topics to make it a central subject in the contemporary study of brain and behavior. EARLY YEARS Donald R. (Redfield) Griffin was born in Southampton, New York, but spent his early childhood in an eighteenth- century farmhouse in a rural area near Scarsdale, New York. His father, Henry Farrand Griffin, was a serious amateur historian and novelist, who worked as a reporter and in advertising before retiring early to pursue his literary inter- ests. His mother, Mary Whitney Redfield, read to him so much that his father feared for his ability to learn to read. His favorite books were Ernest Thompson Seton’s animal 3 4 BIOGRAPHICAL MEMOIRS stories and the National Geographic Magazine’s Mammals of North America. -
Neuromechanics of Coordination During Swallowing in Aplysia Californica
1470 • The Journal of Neuroscience, February 1, 2006 • 26(5):1470–1485 Behavioral/Systems/Cognitive Neuromechanics of Coordination during Swallowing in Aplysia californica Hui Ye,1 Douglas W. Morton,2 and Hillel J. Chiel1,2,3 Departments of 1Biomedical Engineering, 2Neuroscience, and 3Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080 Bernstein (1967) hypothesized that preparation of the periphery was crucial for correct responses to motor output. To test this hypothesis in a behaving animal, we examined the roles of two identified motor neurons, B7 and B8, which contribute to feeding behavior in the marine mollusk Aplysia californica. Neuron B7 innervates a hinge muscle and has no overt behavioral effect during smaller-amplitude (type A) swallows, because the hinge muscle is too short to exert force. Neuron B8 activates a muscle (I4) that acts solely to grasp material during type A swallows. During larger-amplitude (type B) swallows, the behavioral actions of both motor neurons change, because the larger-amplitude anterior movement of the grasper sets up the periphery to respond differently to motor outputs. The larger anterior movement stretches the hinge muscle, so that activating neuron B7 mediates the initial retraction phase of swallowing. The changed position of the I4 muscle allows neuron B8 not only to induce grasping but also to pull material into the buccal cavity, contributing to retraction. Thus, larger-amplitude swallows are associated with the expression of two new degrees of freedom (use of the hinge to retract and use of the grasper to retract) that are essential for mediating type B swallows. These results provide a direct demonstration of Bernstein’s hypothesis that properly positioning the periphery can be crucial for its ability to correctly respond to motor output and also demonstrate that biomechanical context can alter the functions of identified motor neurons. -
The Scope of Neuroethology
THE BEHAVIORAL AND BRAIN SCIENCES (1984) 7, 367-412 Printed in the United States of America The scope of neuroethology Graham Hoyle Institute of Neuroscience, University of Oregon, Eugene, Oreg. 97403 Abstract: Neuroethology, an interdisciplinary subdivision of neuroscience, has emerged in recent years. Since 1976 there has been a regular session under this heading at the annual meeting of the Society for Neuroscience. In 1980 two introductory texts in English were published on the subject (Ewert 1980; Guthrie 1980), and a third (Camhi 1984) was published recently. There is widespread interest in neural mechanisms underlying behavior, but they encompass such a vast array of often unrelated topics that proponents do not share common goals. This article describes the emergence of ethology as a discipline, pointing out that its practitioners were successful because they confined their research to stereotyped, complex, nonlearned, innate behavioral acts. A limited number of profoundly significant principles emerged. Each of these is redefined. The major concepts of earlier ethology were embodied in a simple hydraulic model used by Konrad Lorenz in 1949 (Lorenz 1950). It is pointed out that this model implies the existence of common neurophysiological mechanisms and neuronal circuitry. This model has now been made obsolete by neurophysiological progress, but with appropriate ~nodificationsan updated version may still be useful in focusing attention on possible principles. The initial aim of neuroethology should be to examine the neurophysiological events in a variety of behaviors, exhibited by diverse animals from different phyla, which meet the criteria of innate behavioral acts. The behaviors should be sufficiently complex to interest ethologists, yet they should be addressable with neurophysiological methods down to the cellular level. -
Neuroethology in Neuroscience Why Study an Exotic Animal
Neuroethology in Neuroscience or Why study an exotic animal Nobel prize in Physiology and Medicine 1973 Karl von Frisch Konrad Lorenz Nikolaas Tinbergen for their discoveries concerning "organization and elicitation of individual and social behaviour patterns". Behaviour patterns become explicable when interpreted as the result of natural selection, analogous with anatomical and physiological characteristics. This year's prize winners hold a unique position in this field. They are the most eminent founders of a new science, called "the comparative study of behaviour" or "ethology" (from ethos = habit, manner). Their first discoveries were made on insects, fishes and birds, but the basal principles have proved to be applicable also on mammals, including man. Nobel prize in Physiology and Medicine 1973 Karl von Frisch Konrad Lorenz Nikolaas Tinbergen Ammophila the sand wasp Black headed gull Niko Tinbergen’s four questions? 1. How the behavior of the animal affects its survival and reproduction (function)? 2. By how the behavior is similar or different from behaviors in other species (phylogeny)? 3. How the behavior is shaped by the animal’s own experiences (ontogeny)? 4. How the behavior is manifested at the physiological level (mechanism)? Neuroethology as a sub-field in brain research • A large variety of research models and a tendency to focus on esoteric animals and systems (specialized behaviors). • Studying animals while ignoring the relevancy to humans. • Studying the brain in the context of the animal’s natural behavior. • Top-down approach. Archer fish Prof. Ronen Segev Ben-Gurion University Neuroethology as a sub-field in brain research • A large variety of research models and a tendency to focus on esoteric animals and systems (specialized behaviors). -
On Neuromechanical Approaches for the Study of Biological and Robotic Grasp and Manipulation Francisco J
Valero-Cuevas and Santello Journal of NeuroEngineering and Rehabilitation (2017) 14:101 DOI 10.1186/s12984-017-0305-3 REVIEW Open Access On neuromechanical approaches for the study of biological and robotic grasp and manipulation Francisco J. Valero-Cuevas1,2* and Marco Santello3 Abstract Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. -
November 2019 March 2011
International Society for Neuroethology Newsletter/November 2019 March 2011 International Society for Neuroethology PHONE: +1-785-843-1235 P.O. Box 1897 (or 1-800-627-0629 Ext. 233) Lawrence, KS 66044, USA FAX: +1-785-843-1274 Website: http://neuroethology.org/ Facebook: https://www.facebook.com/groups/neuroethology/ E-mail: [email protected] ISN Officers THIS ISSUE FEATURES President: Eric Warrant, Department of Biology, Lund • President’s Column by Eric Warrant University, Biology Building, Sölvegatan 35 • Heiligenberg Travel Award Winners 223 62 Lund, Sweden • Physics and Biology by Ana Amador and Gabriel PHONE: +46 46 222 93 41 Mindlin E-mail: [email protected] • Invited Symposia for the 2020 ICN by Uwe Homberg and Cindy Moss Rui Oliveira Treasurer: Mark Bee, Department of Ecology, • Looking Ahead to Lisbon by Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108 USA The Prez Says PHONE: +1-612-624-6749 Eric Warrant E-mail: [email protected] President of the ISN Secretary: Gabriella Wolff, Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800 USA E-mail: [email protected] Past-President: Catharine Rankin, Department of Psychology, Kenny Room 3525 – 2136 West Mall, University of British Columbia, Vancouver, BC Canada V6T 1Z4 PHONE: +1-604-822-5449 FAX: +1-604-822-7299 E-mail: [email protected] Hello everyone, and greetings from Australia! President-Elect: Karen Mesce, Department of Just now I am nearing the end of a three-week field Entomology and Graduate Program in Neuroscience, trip studying the remarkable migratory abilities of a University of Minnesota, 219 Hodson Hall, 1980 Folwell small and apparently unremarkable brown moth – Avenue, Saint Paul, MN 55108 USA the nocturnal Bogong moth Agrotis infusa. -
16207032 Lprob 1.Pdf
The Auditory Cortex Jeffery A. Winer · Christoph E. Schreiner Editors The Auditory Cortex 123 Editors Jeffery A. Winer Christoph E. Schreiner Department of Molecular & Cell Biology Coleman Memorial Laboratory University of California Department of Otolaryngology Berkeley, CA 94720-3200, USA University of California San Francisco, CA 94143-0732, USA [email protected] ISBN 978-1-4419-0073-9 e-ISBN 978-1-4419-0074-6 DOI 10.1007/978-1-4419-0074-6 Springer New York Dordrecht Heidelberg London © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Photograph courtesy of Jane A. Winer A. Photograph courtesy of Jane Jeffery A. Winer (1945–2008) Scholar, scientist, colleague, mentor, friend Photograph courtesy of Jane A. Winer Preface This volume is a summary and synthesis of the current state of auditory forebrain organization. -
Serotonergic Modulation of Plasticity of the Auditory Cortex Elicited by Fear Conditioning
4910 • The Journal of Neuroscience, May 2, 2007 • 27(18):4910–4918 Behavioral/Systems/Cognitive Serotonergic Modulation of Plasticity of the Auditory Cortex Elicited by Fear Conditioning Weiqing Ji and Nobuo Suga Department of Biology, Washington University, St. Louis, Missouri 63130 In the awake big brown bat, 30 min auditory fear conditioning elicits conditioned heart rate decrease and long-term best frequency (BF) shifts of cortical auditory neurons toward the frequency of the conditioned tone; 15 min conditioning elicits subthreshold cortical BF shifts that can be augmented by acetylcholine. The fear conditioning causes stress and an increase in the cortical serotonin (5-HT) level. Serotonergic neurons in the raphe nuclei associated with stress and fear project to the cerebral cortex and cholinergic basal forebrain. Recently, it has been shown that 5-HT2A receptors are mostly expressed on pyramidal neurons and their activation improves learning and ␣ memory. We applied 5-HT, an agonist ( -methyl-5-HT), or an antagonist (ritanserin) of 5-HT2A receptors to the primary auditory cortex and discovered the following drug effects: (1) 5-HT had no effect on the conditioned heart rate change, although it reduced the auditory responses; (2) 4 mM 5-HT augmented the subthreshold BF shifts, whereas 20 mM 5-HT did not; (3) 20 mM 5-HT reduced the long-term BF shifts and changed them into short-term; (4) ␣-methyl-5-HT increased the auditory responses and augmented the subthreshold BF shifts aswellasthelong-termBFshifts;(5)incontrast,ritanserinreducedtheauditoryresponsesandreversedthedirectionoftheBFshifts.Our data indicate that the BF shift can be modulated by serotonergic neurons that augment or reduce the BF shift or even reverse the direction of the BF shift.