Trends in Predatory Mite Production and Delivery Systems Overview

Total Page:16

File Type:pdf, Size:1020Kb

Trends in Predatory Mite Production and Delivery Systems Overview Overview • Clear trends in mite production – Move from plant based rearing to factitious host rearing – A move towards generalists Trends in predatory mite production and – Developments in formulation – Developments in delivery systems delivery systems – New factitious host species – Intellectual Property rights • Possible future trends Dr Richard GreatRex – Regulatory pressure (biodiversity) restricts use of new species Syngenta Bioline – Regulatory pressure (crop protection) encourages IPM Plant based production systems Rearing without plants • Limited yield per unit area dependent upon:- • Use a factitious host – a stored product mite – Plant health – pest “carrying capacity” where pest is used • Use a rearing substrate – bran, vermiculite – Rate of growth and cycle time • Rear in controlled environments – Light intensity and seasonality – Yield per unit volume advantages – Plant density – Yield consistency and quality • Limited capacity for treatment per unit area of production • Bulk processing reduces labour requirements • High costs • Higher yield/unit area – Land and facility costs • Lower facility and energy costs per mite/unit control – Energy consumption for heating/cooling, lighting • Less seasonality • Increasing rapidly – High labour costs for production and harvest • Poor for specialist predators – good for generalists • Essential for specialist predators Development of a Biological control product Rearing on factitious prey Amblyline cu CRS • Amblyseius (Neoseiulus) cucumeris and A.(N) barkeri reared on Acarus siro in bran • 1990 - Development and introduction of • Move to Tyrophagus putrescentiae – more vigorous mite, higher ‘CRS’ sachet by Bunting Biological yield potential Control – Works very well for N. cucumeris – Unique product giving continuous release of mites over 6 weeks - predator • Major improvements in production yield and uniformity does not need to establish • Capacity expansion – partial mechanisation of processes – No intellectual property rights • Has been an industrial scale process for >15 years • Competitor copies within 6 months • Development of delivery systems to improve product use and – No market recognition of the difference performance between products: “It’s all Amblyseius cucumeris” – Products are not the same! Impact of formulation and environment on emergence of A. cucumeris from sachets 7000 Growth room new formulation 6000 Greenhouse new formulation 5000 Growth room previous 4000 formulation 3000 2000 Number of mites 1000 0 7 14 21 28 35 42 Days You can blow them So how do you distribute 3131 –– 49% 49% survivalsurvival ofof mites in different crops? Phytoseiulus persimilispersimilis You can distribute them manually You can distribute them mechanically You can re-invent the sachet - Gemini sachets Grower reaction? 30 25 • Not really impressed • Too much labour needed for distribution of the product 20 Introduction needs 20 hours/hectare 15 Labour costs are 50% of the total production costs of chrysanthemums 10 Pest control (total) is 2-3% maximum. 5 Water resistant – contents stay dry 0 More predatory mites, better thrips 3 4 5 6 7 8 control Gemini Standard Patented delivery system An alternative system Percentage ICM in Dutch chrysanthemums Growers have Uses existing spray booms for 100 financialfinancial problemsproblems crop placement inin 20082008 90 700700 haha totaltotal 80% reduction in labour 80 490 ha using ICM Entire bed treated in 5 - 10 490 ha using ICM 70 minutes Bioline share = 80% Better distribution of the predatory 60 mites 50 No trauma to the mites 40 Water resistant 30 Per crop cycle produces 20 8,500 mites/m 5,000 mites/m² 10 0 2001 2002 2003 2004 2005 2006 2007 2008 DesignDesign is is protected protected by by our our existing existing patent! patent! Other distribution systems Factitious prey • Tyrophagus putrescentiae • A very useful Astigmatid mite • Long history of use – even a Chinese Patent! • Permits high density rearing of a few Phytoseiid mite species • Other species will eat them too, but:- – T. putrescentiae is too vigorous – Completely overwhelms cultures – Mass production is not consistent or economically feasible An expanding range of predators and target So how do we move on? pests • Other food sources Prey mites Predatory mites Targets – Artificial diets? – Pollen? Pre- Acarus siro Neoseiulus cucumeris Thrips – Other stored product mites? 2005 Tyrophagus putrescentiae T. tropicus Post- Acarus siro Neoseiulus cucumeris Thrips 2005 Tyrophagus putrescentiae Typhlodromips swirskii Whitefly T. tropicus T. montdorensis Spider mites Dermatophagoides farinae Neoseiulus californicus Eriophyid mites Carpoglyphus lactis Amblyseius andersoni Lepidoglyphus destructor Thyreophagus entomophaga Suidasia spp +++ Adaptive radiation? Development of intellectual property rights PhytoseiulusPhytoseiulus persimilispersimilis TyrophagusTyrophagus putrescentiaeputrescentiae IphiseusIphiseus • Research to develop new species, new rearing systems, and new degeneransdegenerans NeoseiulusNeoseiulus californicuscalifornicus Neoseiulus cucumeris delivery systems is expensive PollenPollen TetranychusTetranychus sppspp • Companies need a return on that investment x DermatophagoidesDermatophagoides farinae farinae TyphlodromipsTyphlodromips swirskiiswirskii • Rapid copying on new ideas destroys value CarpoglyphusCarpoglyphus lactislactis NeoseiulusNeoseiulus californicuscalifornicus – Removes incentive to innovate • Patenting protects investment LepidoglyphusLepidoglyphus destructor destructor AmblyseiusAmblyseius andersoniandersoni – Maintains value and income stream – Facilitates new research and development ThyreophagusThyreophagus TyphlodromipsTyphlodromips – Provides employment for Patent Attorneys! entomophagaentomophaga montdorensis AcarusAcarus sirosiro NeoseiulusNeoseiulus barkeribarkeri Euseius ovalis? Typhlodromalus limonicus? SuidasiaSuidasia spp spp Changing regulation Where next? • View of biological control is changing • Genetic modification? – Seen as a threat to biodiversity • Expanding the range by understanding the biology? – More countries implementing regulation • Greater use in outdoor cropping systems? – Increasing stringency of risk assessments – Increasing cost for producers • Movement into the crop protection mainstream? • At the same time, regulation of conventional crop protection is changing – Directive 2007/128/EC and Regulation 1107/2009 demand implementation of integrated solutions – IPM is compulsory – National action plans due for implementation in 2014 • Conflicting demands • Increasing demand for solutions, increasingly difficulty to bring them to market Summary • Key trends – Move from specialist to generalist predatory mites – Increasing range of factitious hosts – Increasing range of predatory mites – Increasing range of target pests and crops – Development of delivery systems – More efficient and more scaleable production systems – Increasing IP – Increasing regulatory challenges.
Recommended publications
  • Mesostigmata No
    16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ......................................................................................................................................................................
    [Show full text]
  • Swirskii-System Swirskii-Breeding- System Swirskii-Long-Life
    WOW-en WOW-en Key features SWIRSKII-SYSTEM ‐ Predatory mite SWIRSKII-BREEDING- ‐ Amblyseius (Typhlodromips) swirskii SYSTEM ‐ Highly voracious ‐ Very mobile SWIRSKII-LONG-LIFE- ‐ Wide range of preys SYSTEM ‐ Can survive on pollen ‐ Can adapt to high temperatures TECHNICAL DATA SHEET ‐ Rapid development, no diapause Mode of action ‐ Mainly predates on: o young eggs, crawlers and 2nd instar larvae of the greenhouse and tobacco whitefly o young larvae of the western flower thrips, onion thrips and chilli thrips ‐ To a certain degree feeds on spider mites and tarsonemids ‐ Consumes generally 5-10 preys a day Product specifications Product Package Package content e Targets Swirskii-System-25.000 500 ml 25.000 predatory mites ‐ Greenhouse and Tobacco whitefly Swirskii-System-125.000 5 l 125.000 predatory mites (Trialeurodes vaporariorum and Swirskii-Breeding-System-100 100 sachets 250 predatory mites/sachet* Bemisia tabaci) ‐ Thrips (Frankliniella occidentalis) Swirskii-Breeding-System-500 500 sachets 250 predatory mites/sachet* ‐ Spider mites (2° effect) Swirskii-Long-Life-System-500 500 sachets 250 predatory mites/sachet° ‐ Tarsonemid mites (2° effect) *Approx. 1.500 mites walk out over a 6 week period °Approx. 2.500 mites walk out over a 8 week period Crops Note: all mites are on bran carrier ‐ Vegetable crops: i.e. pepper, eggplant, cucumber, bean Storage ‐ Soft fruits: i.e. raspberries, strawberries Use immediately upon receipt. If not possible, product can be briefly stored ‐ Ornamental crops: gerbera, horizontally in a dark room with enough ventilation at 15°C/59°F and 75% RH. poinsettia, chrysanthemum, roses Always respect the use-by-date. ‐ Medicinal cannabis Dose rate Registration number Mode Dosage Area Repeat Swirskii-system AUT-Pfl.
    [Show full text]
  • Typhlodromips Swirskii (Athias- Henriot) As a Biological Control Agent for Panonychus Citri (Mcgregor) (Phytoseiidae, Tetranychidae) M
    ACARJNES, 4: 11-14, 2010 Typhlodromips swirskii (Athias- Henriot) as a biological control agent for Panonychus citri (McGregor) (Phytoseiidae, Tetranychidae) M. M. E. Elmoghazy Agric. Zoology and Nematology Dept., Fac. of Agric .. Alazhar Univ., Cairo. Egypt. e-Mail: [email protected] (Received: March 10, 201 0) ABSTRACT Typhlodromips swirskii was able to develop and reproduce when fed on Panonychus citri. T·~mperature negatively affected its biology. Generation period and adult female longevity decreased from (I 0.59±0.42) and (3 I. 72±0.97) at 20 oc_ to (7.81±0.40) and (21.72±0.41) days at 30 oc_ respectively. Also female laid an average of(33.75±2.64) eggs at 20 °C., decreased to (24.19±1.72) days at 30 8 C. However, rm was 0.14 and 0.18 at both degrees respectively. T. swirskii proved to be effective predator for P. cirri, as at high level of eight predators/ orange seedling, Citrus aurantium L., it gave the highest percent reduction from 27.27% after a five days to 88.89% after a month from release. Key Words: Typhlodromips swirskii, Biological control, Panonychus citri. INTRODUCTION as well as its influence when released at different levels, in suppressing population of P. citri infesting Predaceous phytoseiid mites are important citrus seedlings, Citrus ourantium L. natural enemies of several phytophagous mites and other pests on various crops. Typhlodromips swirskii MATERIALS AND METHODS (Athias-Henriot) became commercially available in 2005 and is used in Europe as a control agent for Mite cultures whitenies and thrips (Gerson and Weintraub, 2007).
    [Show full text]
  • Effect of Different Types of Prey on Fecundity of the Phytoseii
    Effect of different types of prey on fecundity of the phytoseiid mite Typhlodromips swirskii (Athias-Henriot), a potential biological control agent for horticultural greenhouse pests in the Canary Islands 1Estrella Hernández-Suárez, 1Mª del Cristo Velásquez, 1Mª Inmaculada Paz-González, 2Francisco J. González, 1Aurelio Carnero and 3Francisco J. Ferragut 1Instituto Canario de Investigaciones Agrarias, Dpt. De Entomología. Crta del Boquerón s/n., 38080 La Laguna –Tenerife (Canary Islands), Spain. 2Koppert Canarias, C./ Roble s/n, Polígono Industrial de Arinaga, Agüimes-Gran Canaria (Canary Islands), Spain. 3Instituto Agroforestal Mediterráneo, Dpt. Ecosistemas Agroforestales, Universidad Politécnica, C../ de Vera 14, 46022 Valencia, Spain. Abstract: An increasing number of commercial greenhouse growers from the Canary Islands employ beneficial insects to control pests, but effective biological control of some horticultural pests represent a handicap to the implementation of Integrated Pest Management Programs in our archipelago. That is the case of the western flower thrip Frankliniella occidentalis (Pergande) in cucumber, the broad mite Polyphagotarsonemus latus (Banks) in sweetpepper, and the tomato ruset mite Aculops lycopersici (Massee) and the glasshouse whitefly Trialeurodes vaporariorum (Westwood) in tomato. Typhlodromips swirskii (Athias-Henriot) has shown a high efficacy against the sweetpotato whitefly Bemisia tabaci (Gennadius), and it has been evaluated as biocontrol agent of many other pests (Tetranychus urticae Koch, Eriophyes dioscoridis Soliman & Abou-Awas, Thrips tabaci Lind, Aphis gossypii Glover, etc.). This present work aim to study whether T. swirskii could be used for biological control of different key pests in commercial horticultural greenhouses in the Canary Islands. As the first step, preliminary laboratory trials have been conducted to study the suitability of different types of preys and non-prey food substances (pollen) on the biology of a commercially available strain of the phytoseiid predator T.
    [Show full text]
  • Scirtothrips Dorsalis (Chilli Thrips)
    Scirtothrips dorsalis (Chilli thrips) Joe Chamberlin Matt Ciomperlik Amanda Hodges Jeff Michel Cindy McKenzie S. Ludwig L.S. Osborne Cristi Palmer C. Regelbrugge L. Schmale D. Schuble S. dorsalis Synonyms: Chilli, Castor, Berry, Assam and Yellow Tea Thrips Host Plants: Over 150 host plants including banana, beans, chrysanthemum, citrus, corn, cotton, cocoa, eggplant, ficus, grape, grasses, holly, jasmine, kiwi, litchi, longan, mango, onion, peach, peanut, pepper, rose, soybean, strawberry, tea, tobacco, tomato, viburnum, etc. ECONOMIC IMPORTANCE Major pest of: • strawberries in Queensland, Australia • tea in Japan and Taiwan • citrus in Japan and Taiwan (Chiu et al. 1991, Tatara and Furuhushi 1992, Tschuchiya et al 1995) • cotton in the Ivory Coast (Bournier 1999) • soybeans in Indonesia (Miyazaki et al.1984) • chillies and castor bean in India • peanuts in several states in India (Mound and Palmer 1981). • Ananthakrishnan (1984) also reports damage to the following hosts: cashew, tea, chillies, cotton, tomato, mango, castor bean, tamarind, and grape. • Rose in India Is Scirtothrips dorsalis a Serious Economic Pest for the US? • Assuming an overall U.S. crop yield loss from Chilli Thrips of 5 percent the total crop value loss would equal $3.0 billion (primary hosts $583 million and secondary hosts $2.43 billion). • Assuming an overall U.S. crop yield loss from Chilli Thrips of 10 percent the total crop value loss would equal $5.98 billion (primary hosts $1.2 billion and secondary hosts $4.78 billion). Identification http://mrec.ifas.ufl.edu/lso/DOCUMENTS/identification%
    [Show full text]
  • Effect of Three Pollen Grains on Life Table Parameters of Neoseiulus Californicus (Acari: Phytoseiidae)
    International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-4, Issue-9, September 2017 Effect of three pollen grains on life table parameters of Neoseiulus californicus (Acari: Phytoseiidae) Maryam Rezaie Abstract— Neoseiulus californicus (McGregor) is a predatory study was to focus on the effect of three pollens (corn pollen, mite that can control spider mites. The effect of different diets date pollen and walnut pollen) on the performance of the such as, corn pollen, walnut pollen and date pollen along with predatory mite N. californicus to mass rearing of this predator the two-spotted spider mite (Tetranychus urticae Koch) eggs on by demographic parameters of this predator on these pollens life table parameters of the predatory mite was determined on with T. urticae. strawberry detached leaves in Petri dishes. The experiments were carried out under laboratory conditions at 27 ± 1°C, 16L: 8D h photo-period and 70 ± 5% RH. Life table parameters were II. MATH analysed based on age-stage, two-sex life table. There was no Colony: The stock culture of T. urticae was maintained on significant difference of total longevity among the different diets. common beans (Phaseolus vulgaris L.) in a growth chamber The fecundity rate on date pollen (14.21±2.92 eggs) was higher (27± 1 °C, 70±5 RH and 16: 8 hours L:D). Neoseiulus than the other diets tested. The intrinsic rate of increase (r) of the predatory mites fed with date pollen (0.201±0.032 day -1) californicus was obtained from ‘Koppert Biological Systems’ was higher than the other treatments.
    [Show full text]
  • Biology and Ecology of the Predatory Mite Iphiseius Degenerans (Berlese) (Acari: Phytoseiidae)
    (Acari: Phytoseiidae) (Acari: of the predatory mite Biology and ecology Iphiseius degenerans (Berlese) ir. Isabelle Vantornhout Isabelle ir. Biology and ecology of the predatory mite Iphiseius degenerans (Berlese) (Acari: Phytoseiidae) ir. Isabelle Vantornhout 2006 ISBN 90-5989-131-7 FACULTEIT BIO-INGENIEURSWETENSCHAPPEN Promotors: Prof. dr. ir. Luc Tirry Department of Crop Protection, Laboratory of Agrozoology Prof. dr. ir. Patrick De Clercq Department of Crop Protection, Laboratory of Agrozoology Dean: Prof. dr. ir. Herman Van Langenhove Rector: Prof. dr. Paul Van Cauwenberge ir. Isabelle VANTORNHOUT BIOLOGY AND ECOLOGY OF THE PREDATORY MITE IPHISEIUS DEGENERANS (BERLESE) (ACARI: PHYTOSEIIDAE) Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Dutch translation of the title: Biologie en ecologie van de roofmijt Iphiseius degenerans (Berlese)(Acari: Phytoseiidae) Please refer to this work as follows: Vantornhout, I. 2006. Biology and ecology of the predatory mite Iphiseius degenerans (Berlese) (Acari: Phytoseiidae). PhD thesis, Ghent University, Ghent, Belgium. ISBN 90-5989-131-7 The author and the promotor give the authorisation to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. VOORWOORD Eindelijk is het zover! Het schrijven van dit voorwoord betekent het einde van een drukke, maar leerrijke periode. Eentje die startte op 5 januari 2000, de dag waarop de eerste populatie roofmijten werd geleverd. Drie weken later waren ze allemaal dood…. Een scenario dat zich, jammer genoeg, nog een aantal keer zou herhalen.
    [Show full text]
  • Microscopic Analysis of the Microbiota of Three Commercial Phytoseiidae Species (Acari: Mesostigmata)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Central Archive at the University of Reading Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata) Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Sumner-Kalkun, J. C., Baxter, I. and Perotti, M. A. (2020) Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata). Experimental and Applied Acarology. ISSN 0168-8162 doi: https://doi.org/10.1007/s10493-020-00520-3 Available at http://centaur.reading.ac.uk/87844/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1007/s10493-020-00520-3 Publisher: Springer All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Experimental and Applied Acarology https://doi.org/10.1007/s10493-020-00520-3 Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata) Jason C. Sumner‑Kalkun1 · Ian Baxter2 · M. Alejandra Perotti3 Received: 21 December 2019 / Accepted: 19 June 2020 © The Author(s) 2020 Abstract Microbes associated with the external and internal anatomy of three commercially avail- able predatory mite species—Phytoseiulus persimilis, Typhlodromips (= Amblyseius) swirskii, and Neoseiulus (= Amblyseius) cucumeris—were examined using light micros- copy, confocal laser scanning microscopy and fuorescence in-situ hybridization (FISH).
    [Show full text]
  • Swirskiline Tech Sheet
    PEST CONTROL Effective prevention and control of multiple thrips and whitefly species in vegetables, fruits and flowers. WHICH CROPS WHICH PESTS DOES SWIRSKILINE DOES SWIRSKILINE PROTECT? CONTROL? Strawberries Western Flower thrips Gerberas Chili thrips Poinsettias Onion thrips Roses Greenhouse whitefly Cucumbers Silverleaf/Potato whitefly Peppers Aubergines Swirskiline Why use Swirskiline? Amblyseius (Typhlodromips) swirskii is a predatory mite that breeds extremely quickly under warm and humid environmental conditions. It predates on whiteflies, thrips and other pests. In the absence of prey it can also survive on the plant by feeding on pollen or mould. Swirskii prefers a warm humid climate, but can survive cooler nights during the winter months in semi-protected crops by moving lower down the plants where it benefits from the warmer micro-climate closer to the ground. • Predates on whiteflies, thrips and other pests. • For protected crops grown at > 20°C. • Easy application. • Amblyseius swirskii breed extremely quickly under warm, humid conditions. • In the absence of prey, it can feed on pollen, allowing it to survive longer in the crop. AVAILABLE DELIVERY SYSTEMS Swirskiline is available in a wide of range of release systems: Gemini sachet Sachets release a breeding colony of mites onto the plant, even before the target pest is present. The breeding colony is contained within a small paper sachet, which is carefully designed to maintain the colony in good condition. Mites continue to emerge from sachets over several weeks and in much higher numbers than with a single broadcast release. In addition to our original CRS sachets, Swriskiline is CSR sachet available in several other sachets: consist of two sachets that can be stood similar to a hinge This Mini sachet • Gemini sachets .
    [Show full text]
  • Microscopic Analysis of the Microbiota of Three Commercial Phytoseiidae Species (Acari: Mesostigmata)
    Experimental and Applied Acarology (2020) 81:389–408 https://doi.org/10.1007/s10493-020-00520-3 Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata) Jason C. Sumner‑Kalkun1 · Ian Baxter2 · M. Alejandra Perotti3 Received: 21 December 2019 / Accepted: 19 June 2020 / Published online: 7 July 2020 © The Author(s) 2020 Abstract Microbes associated with the external and internal anatomy of three commercially avail- able predatory mite species—Phytoseiulus persimilis, Typhlodromips (= Amblyseius) swirskii, and Neoseiulus (= Amblyseius) cucumeris—were examined using light micros- copy, confocal laser scanning microscopy and fuorescence in-situ hybridization (FISH). Four microbe morphotypes were observed on external body regions. These included three microfungi-like organisms (named T1, T2 and T3) and rod-shaped bacteria (T4). Mor- photypes showed unique distributions on the external body regions and certain microbes were found only on one host species. Microfungi-like T1 were present in all three species whereas T2 and T3 were present in only P. persimilis and T. swirskii, respectively. T1 and T2 microbes were most abundant on the ventral structures of the idiosoma and legs, most frequently associated with coxae, coxal folds, ventrianal shields and epigynal shields. T3 microbes were most abundant on legs and dorsal idiosoma. T4 microbes were less abun- dant and were attached to epigynal shields of N. cucumeris and T. swirskii. Signifcant dif- ferences in distribution between batches suggest temporal fuctuations in the microbiota of phytoseiids in mass-reared systems. FISH showed bacteria within the alimentary tract, in Malpighian tubules and anal atria. These may aid absorption of excretory products or maintaining gut physiology.
    [Show full text]
  • A Predator of Eriophyid and Tetranychid Mango Mites in Egypt
    ACARINES, 3: 59-64, 2009 Typhlodromips swirskii (Acari: Phytoseiidae): A Predator of Eriophyid and Tetranychid Mango Mites in Egypt B. A. Abou-Awad*, A. M. Metwally**and M. M. Al-Azzazy** *Plant Protection Dept., National Research Center, 12622 Dokki, Cairo, Egypt **Agricultural Zoology and Nematology Dept., Faculty of Agric., Al- Azhar Univ., Cairo ABSTRACT The predacious mite Typhlodromips swirskii (Athias-Henriot) successfully developed to the adult stage when fed on the motile stages of the mango bud mite Aceria mangiferae Sayed, the mango rust mite Metaculus mangiferae (Attiah), the leaf coating mite Cisaberoptus kenyae Keifer and nymphs of the mango red mite Oligonychus mangiferus (Rahman and Sabra) in the laboratory at different temperatures and relative humidities. The increase of temperature degree and decrease relative humidity from 25°C and 60% R.H. to 30°C & 55%R.H. and 35 °C & 50 %R.H. shortened development and increased reproduction and prey consumption. Different eriophyid prey species promoted faster development of the predator compared to feeding on the tetranychid nymphs. The rate of egg laying (2.62, 2.23, 2.35 and 1.83 eggs/♀/day) was recorded at the highest temperatures and lowest R.H., while the minimum reproduction (1.92, 1.72, 1.62 and 1.20 eggs/♀/day) was noted at the lowest temperature and highest R.H. when fed on the four aforementioned prey species, respectively. Life table parameters indicated that feeding T. swirskii on A. mangiferae led to the highest reproduction rate (rm = 0.216 and 0.157 females/female/day), while feeding on O. mangiferus gave the lowest reproduction rate (rm= 0.183 and 0.133) nymphs at 35°C and 50%R.H.
    [Show full text]
  • Amblyseius Swirskii (Athias-Henriot) (Acari:Phytoseiidae) and Phytoseiulus Longipes (Evans) (Acari:Phytoseiidae)
    Thermal biology and behaviour of two predatory Phytoseiid mites: Amblyseius swirskii (Athias-Henriot) (Acari:Phytoseiidae) and Phytoseiulus longipes (Evans) (Acari:Phytoseiidae) by Claire Marie Allen A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham September 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Amblyseius swirskii and Phytoseiulus longipes are targeted as biological control agents for the horticultural pest Tetranychus urticae. This study applies a standardised protocol to evaluate the risk of establishment of introduced species and investigates temperature related behavioural thresholds for all three species. Laboratory results demonstrate a low level of cold tolerance in A. swirskii and no diapause. Field studies recorded 100% mortality within two weeks of outdoor winter exposure. Amblyseius swirskii has a higher activity threshold temperature than it’s target prey T. urticae. Amblyseius swirskii lacks cold tolerance and is unlikely to establish outdoors and thus can be considered a ‘safe candidate’ for release. Laboratory results demonstrate that P. longipes can not diapause yet is more cold tolerant than A.
    [Show full text]