The Most Common Predators of Bemisia Tabaci (Genn.): Biology

Total Page:16

File Type:pdf, Size:1020Kb

The Most Common Predators of Bemisia Tabaci (Genn.): Biology Journal of Biological Control, 28(1): 1–16, 2014 Review Article The most common predators of Bemisia tabaci (Genn.): Biology, predation, preferences, releases, alternative food resources, combined use, current efforts and future perspectives FIRAS A. AL-ZYOUD Dept. of Plant Protection and IPM, Faculty of Agriculture, Mu’tah University, Karak, 61710 Jordan Corresponding author email: [email protected] ABSTRACT: The cotton whitefly, Bemisia tabaci (Genn.) (Hom.:Aleyrodidae) is a serious pest of greenhouses, horticulture and field crops, and ornamentals worldwide. B. tabaci has been spreading into new territories and causing extensive damage for almost a century and continues to be a severe pest worldwide. However, resistance to insecticides has rendered chemical control ineffective for the management of B. tabaci. Thus, biological control serves as an alternative and has great potential for use against B. tabaci. Biological control of B. tabaci has been used since more than 40 years, and many attempts have ended with complete success. Biological control of B. tabaci by predators represents a key strategy whose potential has gone largely unrealized in many cropping systems. While a great deal of information is available concerning parasitoids of B. tabaci, much less is known about potential of predators as bio-agents. Concomitantly, this paper reviews predators’ biology, predation, preferences and releases. In addition, combined use of predators and parasitoids, intraguild predation, alternative food resources and omnivory of predators were discussed. In addition, the paper presents the efforts in biological control of B. tabaci using selected predators, and highlights research gaps and directions deserving further development to create a better understanding of these predators on different crops to control B. tabaci. In spite of hundreds of predators attacking B. tabaci, this review is restricted to the most common predators namely; beetles (Serangium parcesetosum, Delphastus catalinae and Nephaspis oculatus), bugs (Orius laevigatus, Macrolophus caliginosus and Nesidiocoris tenuis), lacewings (Chrysoperla carnea and C. pallens), and mites (Amblyseius swirskii and Euseius ovalis). In conclusion, based on information presented herein it appears that predators might be best suited for inclusion in multiple species biological control program for B. tabaci. It is hoped that this paper will help in better understanding of types of future studies necessary for implementing successful biological control programs. KEY WORDS: Bemisia tabaci, whiteflies, predators, biological control, predation, preferences, alternative food resources, combined use (Article chronicle: Received: 08-03-2014 Revised: 20-03-2014 Accepted: 22-03-2014) BACKGROUND The binomial B. tabaci is here used in the broadest sense to include all members of the species complex. Bemisia tabaci The cotton whitefly causes damage to plants in The cotton whitefly, Bemisia tabaci (Genn.) (Homop- three ways; firstly by sucking the plant sap, thus weak- tera: Aleyrodidae) is a highly polyphagous pest of more than ening plant growth shown by leaf chlorosis, reduction 600 plant species in tropics and subtropics (Oliveira et al., in plant vigor, and general plant stunting (Bedford et al., 2001), and temperate regions of the world (Greenberg et al., 1994). Physiological disorders caused by direct nymphal 2000). Bemisia tabaci ranks among the most serious pests at- feeding include irregular ripening and incompletely de- tacking greenhouse crops (Gerling et al., 2001), horticultur- velopment of external color. Secondly, B. tabaci secretes al crops (Ko et al., 2002), field crops and ornamental plants large amount of honeydew which enhances the growth of worldwide (Al-Zyoud and Sengonca, 2004a; Goolsby et al., sooty moulds causing negative effect on plant photosyn- 2005). Bemisia tabaci likely came from India, and it is now- thesis (Abboud and Ahmad, 2006), and this results in less adays considered a noxious species in much of the World. growth, lower yield and poor plant quality (Brown et al., B. tabaci was firstly classified as a pest in Greece around 1995), finally lessening the plant market value or yields 1889 and in the USA in 1897 (Brown et al., 1995). becoming unmarketable (Giustina et al., 1999). Thirdly, Bemisia tabaci outbreaks in cotton firstly occurred in late B. tabaci is considered the most common vector of plant 1920s in India, and then in the Sudan and Iran in the 1950s viruses worldwide. More than 150 plant viruses are known (Horowitz, 1986). In greenhouses, Bemisia tabaci was re- to be transmitted by B. tabaci and the number continues corded to cause serious damage to vegetables in 1974 in to grow up (Jones, 2003). Being a vector of hundreds of Turkey and to poinsettia in 1986 in the USA (Ohto, 1990). plant viruses, a small population of B. tabaci is sufficient 1 AL-ZYOUD to cause considerable damage to plants. These viral plant suppression (Khan and Wan, 2008a, b). Natural enemies diseases have resulted in devastating crop reduction rang- are operating continuously on all life stages of the white- ing from 20% to 100% throughout plant growing regions fly, and keepB. tabaci populations under control (Goolsby in the world with losses estimated at billions of dollars et al., 2005). Although biological control alone has not (Giustina et al., 1999). completely been able to solve B. tabaci problem in crops, The pest has a high reproductive potential and can reach natural enemies still play an important role in IPM pro- up to 400 eggs/female. Eggs are laid on the under part of grams of agricultural crop (Naranjo and Ellsworth, 2009). the leaves in groups. After the egg stage, B. tabaci hatchling Nevertheless, interest in biological control continues to in- develops through four nymphal instars until it reaches adult- crease worldwide (Castane, 2002) due to the development hood (Brown et al., 1995). The insect has 11-15 generations/ of pesticide resistance (Elbert and Nauen, 2000; Kranthi year, and the development occurs between 10°C and 32°C, et al., 2001) and successful use of natural enemies against but 27°C appears to be the optimum (Giustina et al., 1999). B. tabaci (Stansly et al., 2005). Nowadays, research efforts are focusing on controlling B. tabaci through Biological control mechanisms that do not cause side effects to human and its environment (Al-Zyoud, 2012). Public concern for The cotton whitefly has been spreading into new ter- health risks associated with pesticides is evidenced by the ritories, causing severe damage for almost a century and increasing market for organic produce, valued in the USA continues to be a serious pest of vegetables and field crops at $10 billion and in the EU at $13 billion (Dimitri and in much of the World (Gerling et al., 2001). Farmers de- Oberholtzer, 2005). pend heavily on the use of insecticides for B. tabaci con- trol (Manzano et al., 2003; Naveed et al., 2011). However, Importance of predators B. tabaci population quickly reappears after insecticide applications because immatures are distributed on the un- Biological control of B. tabaci through the release of derside of plant leaves (Al-Zyoud and Sengonca, 2004a), natural enemies (parasitoids, predators and pathogens) has and are not in contact with insecticides applied through fo- been used since more than 40 years, and many attempts liar application. In addition, B. tabaci has been declared a have ended with complete success. One biological control difficult pest to control by insecticides because of its high mechanism of controlling B. tabaci is the use of fungal mobility, high reproductive rate, and quick life cycle (Drost pathogens. Some species of fungi have been developed as et al., 1998; Gerling and Steinberg, 2003). High doses bio-agents against B. tabaci (Meekes et al., 1996; Chen and and frequent pesticide application have adversely affected Feng, 1999; James and Jaronski, 2000). But, fungi are slow B. tabaci natural enemies (Lacey et al., 1993) and human acting compared to insecticides, exhibit poor adulticidal ac- life by increasing pollution as well as disturbed the whole tivity, incompatible with many commonly used fungicides, ecosystems (Ashraf et al., 2010). Furthermore, reliance relatively expensive, have limited shelf life, and dependent on chemical applications for managing B. tabaci leads to on favorable environmental conditions (Faria and Wraight, development of resistance by the pest to many common- 2001). In addition, development of fungi as bio-agents of ly used conventional insecticides (Elbert and Nauen, 2000; B. tabaci is still at a fairly early stage, and some strains of Kranthi et al., 2001). The resistance of B. tabaci to insecti- whitefly have developed resistance to their fungal patho- cides has rendered chemical control ineffective (Prabhaker gens, i.e. Verticillium lecanii (Hoddle, 1999). et al., 1985). Thus, concerns about human health and envi- Other natural enemies of B. tabaci are parasitoids, ronment mandate the development of alternatives to chem- which kill their host once their development has been com- ical control of B. tabaci. pleted. Extensive listed fauna of parasitoids were used to There is a growing body of interest in finding control control B. tabaci (DeBarro et al., 2000). The best studied methods for B. tabaci other than insecticides, particularly and used of these parasitoids are various Eretmocerus spe- in regions which are unable to sustain heavy pesticide us- cies (i.e. Er. mundus Mercet) (Stansly et al., 2005; Urbaneja age (Gerling et al., 2001). During the past decades more et al., 2007), and many species of the genera Encarsia (i.e. efforts have been made towards the development of safe En. formosa Gahan) (DeBarro et al., 2000; Hu et al., 2003). alternatives for B. tabaci management. Thus, biological Nevertheless, in spite of B. tabaci being a host of many control has great potential for use against B. tabaci based parasitoids, it seems that control of this pest by parasitoids on the abundance of potential bio-agents (Heinz et al., is not achieved due to the extensive host range and mobility 1999). Biological control is an ecological approach that of the pest (Gerling and Steinberg, 2003).
Recommended publications
  • Mesostigmata No
    16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ......................................................................................................................................................................
    [Show full text]
  • Swirskii-System Swirskii-Breeding- System Swirskii-Long-Life
    WOW-en WOW-en Key features SWIRSKII-SYSTEM ‐ Predatory mite SWIRSKII-BREEDING- ‐ Amblyseius (Typhlodromips) swirskii SYSTEM ‐ Highly voracious ‐ Very mobile SWIRSKII-LONG-LIFE- ‐ Wide range of preys SYSTEM ‐ Can survive on pollen ‐ Can adapt to high temperatures TECHNICAL DATA SHEET ‐ Rapid development, no diapause Mode of action ‐ Mainly predates on: o young eggs, crawlers and 2nd instar larvae of the greenhouse and tobacco whitefly o young larvae of the western flower thrips, onion thrips and chilli thrips ‐ To a certain degree feeds on spider mites and tarsonemids ‐ Consumes generally 5-10 preys a day Product specifications Product Package Package content e Targets Swirskii-System-25.000 500 ml 25.000 predatory mites ‐ Greenhouse and Tobacco whitefly Swirskii-System-125.000 5 l 125.000 predatory mites (Trialeurodes vaporariorum and Swirskii-Breeding-System-100 100 sachets 250 predatory mites/sachet* Bemisia tabaci) ‐ Thrips (Frankliniella occidentalis) Swirskii-Breeding-System-500 500 sachets 250 predatory mites/sachet* ‐ Spider mites (2° effect) Swirskii-Long-Life-System-500 500 sachets 250 predatory mites/sachet° ‐ Tarsonemid mites (2° effect) *Approx. 1.500 mites walk out over a 6 week period °Approx. 2.500 mites walk out over a 8 week period Crops Note: all mites are on bran carrier ‐ Vegetable crops: i.e. pepper, eggplant, cucumber, bean Storage ‐ Soft fruits: i.e. raspberries, strawberries Use immediately upon receipt. If not possible, product can be briefly stored ‐ Ornamental crops: gerbera, horizontally in a dark room with enough ventilation at 15°C/59°F and 75% RH. poinsettia, chrysanthemum, roses Always respect the use-by-date. ‐ Medicinal cannabis Dose rate Registration number Mode Dosage Area Repeat Swirskii-system AUT-Pfl.
    [Show full text]
  • Download the Full Report Pdf, 424.3
    VKM Report 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Opinion of the Panel on Plant Production Products of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Opinion of the Panel on Plant Production Products of the Norwegian Scientific Committee for Food Safety 18.03.2015 ISBN: 978-82-8259-161-4 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM (2015). Risk assessment of Macrolophus pygmaeus as biological control product. Opinion of the Panel on Plant Protection Products of the Norwegian Scientific Committee for Food Safety. VKM Report 2015:06, ISBN: 978-82-8259-161-4, Oslo, Norway. Available online: www.vkm.no VKM Report 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Authors preparing the draft opinion Torsten Källqvist (chair), May-Guri Sæthre Assessed and approved The opinion has been assessed and approved by Panel on Plant Protection Products of VKM. Members of the panel are: Torsten Källqvist (chair), Katrine Borgå, Hubert Dirven, Ole Martin Eklo, Merete Grung, Jan Ludvig Lyche, Marit Låg, Asbjørn M Nilsen, Line Emilie Sverdrup (Panel members in alphabetical order after chair of the panel) Acknowledgment May-Guri Sæthre from the Panel of Plant health of the Norwegian Scientific Committee for Food Safety is acknowledged for her valuable work on this opinion. Project manager from the VKM secretariat has been Edgar Rivedal Competence of VKM experts Persons working for VKM, either as appointed members of the Committee or as external experts, do this by virtue of their scientific expertise, not as representatives for their employers or third party interests.
    [Show full text]
  • Dicyphus Hesperus) Whitefly Predatory Bug
    SHEET 223 - DICYPHUS Dicyphus (Dicyphus hesperus) Whitefly Predatory Bug Target Pests Greenhouse whitefly (Trialeurodes vaporariorum), Tobacco whitefly (Bemisia tabaci). Dicyphus will feed on two-spotted spider mite (Tetranychus urticae), Thrips and Moth eggs but will not control these pests. Plants Note: Since Dicyphus is also a plant feeder it should not be used on crops such as Gerbra which can be damaged. Most of the work with Dicyphus has been on vegetable crops such as tomato, pepper and eggplant where it will not cause plant damage by plant feeding. Description The predatory bug, Dicyphus hesperus is similar to Macrolophus caliginosus, which is being used in Europe to control whitefly, spider mites, moth eggs and aphids. The use of Dicyphus is being studied by D. Gillespie (Agriculture and Agri-Foods Canada Research Station, Agassiz, BC). Dicyphus should not be used on its own to replace other biological control agents. It is best used along with other biological control agents in greenhouse tomato crops that have, or (because of past history) are expected to have. whitefly, spider mite, or thrips problems. • Eggs are laid inside plant tissue and are not easily seen. • Adults are slender (6mm), black and green with red eyes and can fly • Nymphs are green with red eyes Use in Biological Control • Release Dicyphus as soon as whiteflies are found, early in the season at a rate of 0.25-0.5 bugs/m2 (10 ft2) of infested area; repeat in 2-3 weeks. • Release batches of 100 adults together in one area where whitefly is present or add supplementary food (frozen moth eggs: i.e.
    [Show full text]
  • Impact of the Presence of Dicyphus Tamaninii Wagner
    Biological Control 25 (2002) 123–128 www.academicpress.com Impact of the presence of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on whitefly (Homoptera: Aleyrodidae) predation by Macrolophus caliginosus (Wagner) (Heteroptera: Miridae) EEric Lucas1 and Oscar Alomar* Departament de Proteccio Vegetal, Institut de Recerca i Tecnologia Agroalimentaries Centre de Cabrils, E-08348 Cabrils, Barcelona, Spain Received 11 May 2001; accepted 20 May 2002 Abstract Macrolophus caliginosus (Wagner) is currently commercialized in Europe for the control of whiteflies in tomato greenhouses. Another mirid predator, Dicyphus tamaninii Wagner, spontaneously colonizes Mediterranean greenhouses. The impact of the presence of D. tamaninii on predation of the greenhouse whitefly (Trialeurodes vaporariorum Westwood) by M. caliginosus was investigated in the laboratory on tomato plants during four days. No significant interspecific competition was recorded between mirid nymphs and no significant intraguild predation was observed. Higher level of predation of the whitefly populations was achieved by D. tamaninii alone, than by M. caliginosus alone. Predation by the heterospecific combination (M. caliginosus + D. tamaninii) was similar to the results obtained by conspecific treatments. No intraspecific competition was recorded with D. tamaninii, nor with M. caliginosus. Finally, the distribution of whitefly predation on the plant by the mirids changed according to the predator treatment. The heterospecific combination of both mirids had a higher predation rate on lower leaves of the plant than monospecific combinations. Overall, the presence of D. tamaninii did not disrupt whitefly predation by M. caliginosus and could even increase the level of predation. Ó 2002 Elsevier Science (USA). All rights reserved. Keywords: Dicyphus tamaninii; Macrolophus caliginosus; Trialeurodes vaporariorum; Lycopersicon esculentum; Intraguild predation; Zoophytophagy; Miridae; Biological control; Greenhouse whitefly 1.
    [Show full text]
  • Typhlodromips Swirskii (Athias- Henriot) As a Biological Control Agent for Panonychus Citri (Mcgregor) (Phytoseiidae, Tetranychidae) M
    ACARJNES, 4: 11-14, 2010 Typhlodromips swirskii (Athias- Henriot) as a biological control agent for Panonychus citri (McGregor) (Phytoseiidae, Tetranychidae) M. M. E. Elmoghazy Agric. Zoology and Nematology Dept., Fac. of Agric .. Alazhar Univ., Cairo. Egypt. e-Mail: [email protected] (Received: March 10, 201 0) ABSTRACT Typhlodromips swirskii was able to develop and reproduce when fed on Panonychus citri. T·~mperature negatively affected its biology. Generation period and adult female longevity decreased from (I 0.59±0.42) and (3 I. 72±0.97) at 20 oc_ to (7.81±0.40) and (21.72±0.41) days at 30 oc_ respectively. Also female laid an average of(33.75±2.64) eggs at 20 °C., decreased to (24.19±1.72) days at 30 8 C. However, rm was 0.14 and 0.18 at both degrees respectively. T. swirskii proved to be effective predator for P. cirri, as at high level of eight predators/ orange seedling, Citrus aurantium L., it gave the highest percent reduction from 27.27% after a five days to 88.89% after a month from release. Key Words: Typhlodromips swirskii, Biological control, Panonychus citri. INTRODUCTION as well as its influence when released at different levels, in suppressing population of P. citri infesting Predaceous phytoseiid mites are important citrus seedlings, Citrus ourantium L. natural enemies of several phytophagous mites and other pests on various crops. Typhlodromips swirskii MATERIALS AND METHODS (Athias-Henriot) became commercially available in 2005 and is used in Europe as a control agent for Mite cultures whitenies and thrips (Gerson and Weintraub, 2007).
    [Show full text]
  • Effect of Different Types of Prey on Fecundity of the Phytoseii
    Effect of different types of prey on fecundity of the phytoseiid mite Typhlodromips swirskii (Athias-Henriot), a potential biological control agent for horticultural greenhouse pests in the Canary Islands 1Estrella Hernández-Suárez, 1Mª del Cristo Velásquez, 1Mª Inmaculada Paz-González, 2Francisco J. González, 1Aurelio Carnero and 3Francisco J. Ferragut 1Instituto Canario de Investigaciones Agrarias, Dpt. De Entomología. Crta del Boquerón s/n., 38080 La Laguna –Tenerife (Canary Islands), Spain. 2Koppert Canarias, C./ Roble s/n, Polígono Industrial de Arinaga, Agüimes-Gran Canaria (Canary Islands), Spain. 3Instituto Agroforestal Mediterráneo, Dpt. Ecosistemas Agroforestales, Universidad Politécnica, C../ de Vera 14, 46022 Valencia, Spain. Abstract: An increasing number of commercial greenhouse growers from the Canary Islands employ beneficial insects to control pests, but effective biological control of some horticultural pests represent a handicap to the implementation of Integrated Pest Management Programs in our archipelago. That is the case of the western flower thrip Frankliniella occidentalis (Pergande) in cucumber, the broad mite Polyphagotarsonemus latus (Banks) in sweetpepper, and the tomato ruset mite Aculops lycopersici (Massee) and the glasshouse whitefly Trialeurodes vaporariorum (Westwood) in tomato. Typhlodromips swirskii (Athias-Henriot) has shown a high efficacy against the sweetpotato whitefly Bemisia tabaci (Gennadius), and it has been evaluated as biocontrol agent of many other pests (Tetranychus urticae Koch, Eriophyes dioscoridis Soliman & Abou-Awas, Thrips tabaci Lind, Aphis gossypii Glover, etc.). This present work aim to study whether T. swirskii could be used for biological control of different key pests in commercial horticultural greenhouses in the Canary Islands. As the first step, preliminary laboratory trials have been conducted to study the suitability of different types of preys and non-prey food substances (pollen) on the biology of a commercially available strain of the phytoseiid predator T.
    [Show full text]
  • Scirtothrips Dorsalis (Chilli Thrips)
    Scirtothrips dorsalis (Chilli thrips) Joe Chamberlin Matt Ciomperlik Amanda Hodges Jeff Michel Cindy McKenzie S. Ludwig L.S. Osborne Cristi Palmer C. Regelbrugge L. Schmale D. Schuble S. dorsalis Synonyms: Chilli, Castor, Berry, Assam and Yellow Tea Thrips Host Plants: Over 150 host plants including banana, beans, chrysanthemum, citrus, corn, cotton, cocoa, eggplant, ficus, grape, grasses, holly, jasmine, kiwi, litchi, longan, mango, onion, peach, peanut, pepper, rose, soybean, strawberry, tea, tobacco, tomato, viburnum, etc. ECONOMIC IMPORTANCE Major pest of: • strawberries in Queensland, Australia • tea in Japan and Taiwan • citrus in Japan and Taiwan (Chiu et al. 1991, Tatara and Furuhushi 1992, Tschuchiya et al 1995) • cotton in the Ivory Coast (Bournier 1999) • soybeans in Indonesia (Miyazaki et al.1984) • chillies and castor bean in India • peanuts in several states in India (Mound and Palmer 1981). • Ananthakrishnan (1984) also reports damage to the following hosts: cashew, tea, chillies, cotton, tomato, mango, castor bean, tamarind, and grape. • Rose in India Is Scirtothrips dorsalis a Serious Economic Pest for the US? • Assuming an overall U.S. crop yield loss from Chilli Thrips of 5 percent the total crop value loss would equal $3.0 billion (primary hosts $583 million and secondary hosts $2.43 billion). • Assuming an overall U.S. crop yield loss from Chilli Thrips of 10 percent the total crop value loss would equal $5.98 billion (primary hosts $1.2 billion and secondary hosts $4.78 billion). Identification http://mrec.ifas.ufl.edu/lso/DOCUMENTS/identification%
    [Show full text]
  • Effect of Three Pollen Grains on Life Table Parameters of Neoseiulus Californicus (Acari: Phytoseiidae)
    International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-4, Issue-9, September 2017 Effect of three pollen grains on life table parameters of Neoseiulus californicus (Acari: Phytoseiidae) Maryam Rezaie Abstract— Neoseiulus californicus (McGregor) is a predatory study was to focus on the effect of three pollens (corn pollen, mite that can control spider mites. The effect of different diets date pollen and walnut pollen) on the performance of the such as, corn pollen, walnut pollen and date pollen along with predatory mite N. californicus to mass rearing of this predator the two-spotted spider mite (Tetranychus urticae Koch) eggs on by demographic parameters of this predator on these pollens life table parameters of the predatory mite was determined on with T. urticae. strawberry detached leaves in Petri dishes. The experiments were carried out under laboratory conditions at 27 ± 1°C, 16L: 8D h photo-period and 70 ± 5% RH. Life table parameters were II. MATH analysed based on age-stage, two-sex life table. There was no Colony: The stock culture of T. urticae was maintained on significant difference of total longevity among the different diets. common beans (Phaseolus vulgaris L.) in a growth chamber The fecundity rate on date pollen (14.21±2.92 eggs) was higher (27± 1 °C, 70±5 RH and 16: 8 hours L:D). Neoseiulus than the other diets tested. The intrinsic rate of increase (r) of the predatory mites fed with date pollen (0.201±0.032 day -1) californicus was obtained from ‘Koppert Biological Systems’ was higher than the other treatments.
    [Show full text]
  • Biology and Ecology of the Predatory Mite Iphiseius Degenerans (Berlese) (Acari: Phytoseiidae)
    (Acari: Phytoseiidae) (Acari: of the predatory mite Biology and ecology Iphiseius degenerans (Berlese) ir. Isabelle Vantornhout Isabelle ir. Biology and ecology of the predatory mite Iphiseius degenerans (Berlese) (Acari: Phytoseiidae) ir. Isabelle Vantornhout 2006 ISBN 90-5989-131-7 FACULTEIT BIO-INGENIEURSWETENSCHAPPEN Promotors: Prof. dr. ir. Luc Tirry Department of Crop Protection, Laboratory of Agrozoology Prof. dr. ir. Patrick De Clercq Department of Crop Protection, Laboratory of Agrozoology Dean: Prof. dr. ir. Herman Van Langenhove Rector: Prof. dr. Paul Van Cauwenberge ir. Isabelle VANTORNHOUT BIOLOGY AND ECOLOGY OF THE PREDATORY MITE IPHISEIUS DEGENERANS (BERLESE) (ACARI: PHYTOSEIIDAE) Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Dutch translation of the title: Biologie en ecologie van de roofmijt Iphiseius degenerans (Berlese)(Acari: Phytoseiidae) Please refer to this work as follows: Vantornhout, I. 2006. Biology and ecology of the predatory mite Iphiseius degenerans (Berlese) (Acari: Phytoseiidae). PhD thesis, Ghent University, Ghent, Belgium. ISBN 90-5989-131-7 The author and the promotor give the authorisation to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. VOORWOORD Eindelijk is het zover! Het schrijven van dit voorwoord betekent het einde van een drukke, maar leerrijke periode. Eentje die startte op 5 januari 2000, de dag waarop de eerste populatie roofmijten werd geleverd. Drie weken later waren ze allemaal dood…. Een scenario dat zich, jammer genoeg, nog een aantal keer zou herhalen.
    [Show full text]
  • Microscopic Analysis of the Microbiota of Three Commercial Phytoseiidae Species (Acari: Mesostigmata)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Central Archive at the University of Reading Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata) Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Sumner-Kalkun, J. C., Baxter, I. and Perotti, M. A. (2020) Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata). Experimental and Applied Acarology. ISSN 0168-8162 doi: https://doi.org/10.1007/s10493-020-00520-3 Available at http://centaur.reading.ac.uk/87844/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1007/s10493-020-00520-3 Publisher: Springer All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Experimental and Applied Acarology https://doi.org/10.1007/s10493-020-00520-3 Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata) Jason C. Sumner‑Kalkun1 · Ian Baxter2 · M. Alejandra Perotti3 Received: 21 December 2019 / Accepted: 19 June 2020 © The Author(s) 2020 Abstract Microbes associated with the external and internal anatomy of three commercially avail- able predatory mite species—Phytoseiulus persimilis, Typhlodromips (= Amblyseius) swirskii, and Neoseiulus (= Amblyseius) cucumeris—were examined using light micros- copy, confocal laser scanning microscopy and fuorescence in-situ hybridization (FISH).
    [Show full text]
  • Swirskiline Tech Sheet
    PEST CONTROL Effective prevention and control of multiple thrips and whitefly species in vegetables, fruits and flowers. WHICH CROPS WHICH PESTS DOES SWIRSKILINE DOES SWIRSKILINE PROTECT? CONTROL? Strawberries Western Flower thrips Gerberas Chili thrips Poinsettias Onion thrips Roses Greenhouse whitefly Cucumbers Silverleaf/Potato whitefly Peppers Aubergines Swirskiline Why use Swirskiline? Amblyseius (Typhlodromips) swirskii is a predatory mite that breeds extremely quickly under warm and humid environmental conditions. It predates on whiteflies, thrips and other pests. In the absence of prey it can also survive on the plant by feeding on pollen or mould. Swirskii prefers a warm humid climate, but can survive cooler nights during the winter months in semi-protected crops by moving lower down the plants where it benefits from the warmer micro-climate closer to the ground. • Predates on whiteflies, thrips and other pests. • For protected crops grown at > 20°C. • Easy application. • Amblyseius swirskii breed extremely quickly under warm, humid conditions. • In the absence of prey, it can feed on pollen, allowing it to survive longer in the crop. AVAILABLE DELIVERY SYSTEMS Swirskiline is available in a wide of range of release systems: Gemini sachet Sachets release a breeding colony of mites onto the plant, even before the target pest is present. The breeding colony is contained within a small paper sachet, which is carefully designed to maintain the colony in good condition. Mites continue to emerge from sachets over several weeks and in much higher numbers than with a single broadcast release. In addition to our original CRS sachets, Swriskiline is CSR sachet available in several other sachets: consist of two sachets that can be stood similar to a hinge This Mini sachet • Gemini sachets .
    [Show full text]