Impact of the Presence of Dicyphus Tamaninii Wagner
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Correlation of Stylet Activities by the Glassy-Winged Sharpshooter, Homalodisca Coagulata (Say), with Electrical Penetration Graph (EPG) Waveforms
ARTICLE IN PRESS Journal of Insect Physiology 52 (2006) 327–337 www.elsevier.com/locate/jinsphys Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms P. Houston Joosta, Elaine A. Backusb,Ã, David Morganc, Fengming Yand aDepartment of Entomology, University of Riverside, Riverside, CA 92521, USA bUSDA-ARS Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648, USA cCalifornia Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501, USA dCollege of Life Sciences, Peking Univerisity, Beijing, China Received 5 May 2005; received in revised form 29 November 2005; accepted 29 November 2005 Abstract Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce’s disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips. -
Download the Full Report Pdf, 424.3
VKM Report 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Opinion of the Panel on Plant Production Products of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Opinion of the Panel on Plant Production Products of the Norwegian Scientific Committee for Food Safety 18.03.2015 ISBN: 978-82-8259-161-4 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM (2015). Risk assessment of Macrolophus pygmaeus as biological control product. Opinion of the Panel on Plant Protection Products of the Norwegian Scientific Committee for Food Safety. VKM Report 2015:06, ISBN: 978-82-8259-161-4, Oslo, Norway. Available online: www.vkm.no VKM Report 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Authors preparing the draft opinion Torsten Källqvist (chair), May-Guri Sæthre Assessed and approved The opinion has been assessed and approved by Panel on Plant Protection Products of VKM. Members of the panel are: Torsten Källqvist (chair), Katrine Borgå, Hubert Dirven, Ole Martin Eklo, Merete Grung, Jan Ludvig Lyche, Marit Låg, Asbjørn M Nilsen, Line Emilie Sverdrup (Panel members in alphabetical order after chair of the panel) Acknowledgment May-Guri Sæthre from the Panel of Plant health of the Norwegian Scientific Committee for Food Safety is acknowledged for her valuable work on this opinion. Project manager from the VKM secretariat has been Edgar Rivedal Competence of VKM experts Persons working for VKM, either as appointed members of the Committee or as external experts, do this by virtue of their scientific expertise, not as representatives for their employers or third party interests. -
Influence of Plant Parameters on Occurrence and Abundance Of
HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf. -
Hemiptera, Heteroptera, Miridae, Isometopinae) from Borneo with Remarks on the Distribution of the Tribe
ZooKeys 941: 71–89 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.941.47432 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Two new genera and species of the Gigantometopini (Hemiptera, Heteroptera, Miridae, Isometopinae) from Borneo with remarks on the distribution of the tribe Artur Taszakowski1*, Junggon Kim2*, Claas Damken3, Rodzay A. Wahab3, Aleksander Herczek1, Sunghoon Jung2,4 1 Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland 2 Laboratory of Systematic Entomology, Depart- ment of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea 3 Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Jalan Universiti, BE1410, Darussalam, Brunei 4 Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea Corresponding author: Artur Taszakowski ([email protected]); Sunghoon Jung ([email protected]) Academic editor: F. Konstantinov | Received 21 October 2019 | Accepted 2 May 2020 | Published 16 June 2020 http://zoobank.org/B3C9A4BA-B098-4D73-A60C-240051C72124 Citation: Taszakowski A, Kim J, Damken C, Wahab RA, Herczek A, Jung S (2020) Two new genera and species of the Gigantometopini (Hemiptera, Heteroptera, Miridae, Isometopinae) from Borneo with remarks on the distribution of the tribe. ZooKeys 941: 71–89. https://doi.org/10.3897/zookeys.941.47432 Abstract Two new genera, each represented by a single new species, Planicapitus luteus Taszakowski, Kim & Her- czek, gen. et sp. nov. and Bruneimetopus simulans Taszakowski, Kim & Herczek, gen. et sp. nov., are described from Borneo. -
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges tions; J. T. Polhemus, for advising on taxonomic prob lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only. -
Dicyphus Hesperus) Whitefly Predatory Bug
SHEET 223 - DICYPHUS Dicyphus (Dicyphus hesperus) Whitefly Predatory Bug Target Pests Greenhouse whitefly (Trialeurodes vaporariorum), Tobacco whitefly (Bemisia tabaci). Dicyphus will feed on two-spotted spider mite (Tetranychus urticae), Thrips and Moth eggs but will not control these pests. Plants Note: Since Dicyphus is also a plant feeder it should not be used on crops such as Gerbra which can be damaged. Most of the work with Dicyphus has been on vegetable crops such as tomato, pepper and eggplant where it will not cause plant damage by plant feeding. Description The predatory bug, Dicyphus hesperus is similar to Macrolophus caliginosus, which is being used in Europe to control whitefly, spider mites, moth eggs and aphids. The use of Dicyphus is being studied by D. Gillespie (Agriculture and Agri-Foods Canada Research Station, Agassiz, BC). Dicyphus should not be used on its own to replace other biological control agents. It is best used along with other biological control agents in greenhouse tomato crops that have, or (because of past history) are expected to have. whitefly, spider mite, or thrips problems. • Eggs are laid inside plant tissue and are not easily seen. • Adults are slender (6mm), black and green with red eyes and can fly • Nymphs are green with red eyes Use in Biological Control • Release Dicyphus as soon as whiteflies are found, early in the season at a rate of 0.25-0.5 bugs/m2 (10 ft2) of infested area; repeat in 2-3 weeks. • Release batches of 100 adults together in one area where whitefly is present or add supplementary food (frozen moth eggs: i.e. -
Hemiptera: Miridae: Orthotylinae) in Different Instars
RESEARCH ARTICLE The structure and morphologic changes of antennae of Cyrtorhinus lividipennis (Hemiptera: Miridae: Orthotylinae) in different instars 1☯ 2☯ 3 3 1 Han-Ying Yang , Li-Xia Zheng , Zhen-Fei Zhang , Yang Zhang , Wei-Jian WuID * 1 Laboratory of Insect Ecology, South China Agricultural University, Guangzhou, China, 2 College of Agronomy, Jiangxi Agricultural University, Nanchang, China, 3 Plant Protection Institute, Guangdong a1111111111 Agricultural Science Academy, Guangzhou, China a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 Abstract Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae: Orthotylinae), including nymphs and OPEN ACCESS adults, are one of the dominant predators and have a significant role in the biological con- Citation: Yang H-Y, Zheng L-X, Zhang Z-F, Zhang trol of leafhoppers and planthoppers in irrigated rice. In this study, we investigated the Y, Wu W-J (2018) The structure and morphologic antennal morphology, structure and sensilla distribution of C. lividipennis in different changes of antennae of Cyrtorhinus lividipennis instars using scanning electron microscopy. The antennae of both five different nymphal (Hemiptera: Miridae: Orthotylinae) in different instars. PLoS ONE 13(11): e0207551. https://doi. stages and adults were filiform in shape, which consisted of the scape, pedicel and flagel- org/10.1371/journal.pone.0207551 lum with two flagellomeres. There were significant differences found in the types of anten- Editor: Feng ZHANG, Nanjing Agricultural nal sensilla between nymphs and adults. The multiporous placodea sensilla (MPLA), University, CHINA basiconica sensilla II (BAS II), and sensory pits (SP) only occurred on the antennae of Received: August 8, 2018 adult C. -
An Annotated Catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha)
Zootaxa 3845 (1): 001–101 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3845.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C77D93A3-6AB3-4887-8BBB-ADC9C584FFEC ZOOTAXA 3845 An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) HASSAN GHAHARI1 & FRÉDÉRIC CHÉROT2 1Department of Plant Protection, Shahre Rey Branch, Islamic Azad University, Tehran, Iran. E-mail: [email protected] 2DEMNA, DGO3, Service Public de Wallonie, Gembloux, Belgium, U. E. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Malipatil: 15 May 2014; published: 30 Jul. 2014 HASSAN GHAHARI & FRÉDÉRIC CHÉROT An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) (Zootaxa 3845) 101 pp.; 30 cm. 30 Jul. 2014 ISBN 978-1-77557-463-7 (paperback) ISBN 978-1-77557-464-4 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3845 (1) © 2014 Magnolia Press GHAHARI & CHÉROT Table of contents Abstract . -
Marine Insects
UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats. -
Three Release Rates of Dicyphus Hesperus (Hemiptera: Miridae) for Management of Bemisia Tabaci (Hemiptera: Aleyrodidae) on Greenhouse Tomato
insects Article Three Release Rates of Dicyphus hesperus (Hemiptera: Miridae) for Management of Bemisia tabaci (Hemiptera: Aleyrodidae) on Greenhouse Tomato Hugh A. Smith 1,* and Karol L. Krey 2 1 Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA 2 USDA-ARS, 5230 Konnowac Pass Road, Wapato, WA 98951, USA * Correspondence: hughasmith@ufl.edu; Tel.: +813-419-6588 Received: 11 June 2019; Accepted: 16 July 2019; Published: 19 July 2019 Abstract: The sweetpotato whitefly, Bemisia tabaci, is a pest of greenhouse-grown tomato. Restrictions on insecticides in enclosed structures and the presence of commercial pollinators limit the options for the chemical control of whiteflies in greenhouses, increasing the importance of biological controls. Dicyphus hesperus is a zoophytophagous mirid predator native to North America. Three release rates of D. hesperus were evaluated on greenhouse tomato for control of the sweetpotato whitefly. The release rates were one, two or three adult D. hesperus per tomato plant each week for three weeks in cages containing four tomato plants and one mullein banker plant. There were fewer whitefly eggs in cages receiving predators than untreated cages one week after the third release, and fewer whitefly nymphs in cages receiving predators two weeks after the third release. There were no statistical differences in whitefly eggs or nymphs among predator release treatments. The highest release rate resulted in a 60% reduction in whitefly nymphs. Forty-two days after the first predator releases, there were no differences among release treatments in the number of D. hesperus. Our results indicate that D. hesperus can contribute management of B. -
Macrolophus Pygmaeus (Rambur) As an Efficient Predator of the Tomato Leafminer Tuta Absoluta (Meyrick) in Europe
B A S E Biotechnol. Agron. Soc. Environ. 2014 18(4), 536-543 Focus on: Macrolophus pygmaeus (Rambur) as an efficient predator of the tomato leafminer Tuta absoluta (Meyrick) in Europe. A review Lara De Backer, Rudy Caparros Megido, Éric Haubruge, François J. Verheggen University of Liege - Gembloux Agro-Bio Tech. Unit of functional and evolutionary Entomology. Passage des Déportés, 2. B-5030 Gembloux (Belgium). E-mail: [email protected] Received on June 21, 2013; accepted on May 28, 2014. The tomato leafminer, Tuta absoluta (Meyrick), originates from South America, and remains one of the main tomato pests in this continent. Since its introduction to Europe in 2006, Mediterranean countries have also been exposed to this pest. Because of the endophytic habits of the larvae and ability of adults to reproduce parthenogenetically, chemicals and sexual pheromone- based control methods generate poor results. Recently, the use of biocontrol agents, such as Macrolophus pygmaeus Rambur (Heteroptera: Miridae), has been investigated as an alternative means of control, the results of which are presented in this review. Macrolophus pygmaeus is a mirid bug that is widely used to control different phytophagous insects in integrated pest management strategies through Europe. Several studies have confirmed the high predation potential of M. pygmaeus on T. absoluta under laboratory and semi-field conditions. This predator spontaneously colonizes tomato greenhouses in the southern Mediterranean countries. The use of banker plants (i.e., plants that provide a habitat to the predator) improves the colonization ability of this natural enemy. Hence, if the local population size is low, an augmentative strategy could be adopted. -
How Safe Is It to Rely on Macrolophus Pygmaeus (Hemiptera: Miridae) As a Biocontrol Agent in Tomato Crops?
ORIGINAL RESEARCH published: 10 September 2018 doi: 10.3389/fevo.2018.00132 How Safe Is It to Rely on Macrolophus pygmaeus (Hemiptera: Miridae) as a Biocontrol Agent in Tomato Crops? Juan A. Sanchez*, Elena López-Gallego, María Pérez-Marcos, Luis G. Perera-Fernández and María J. Ramírez-Soria Department of Crop Protection, Biological Control and Ecosystem Services, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain Omnivorous mirids (Hemiptera: Miridae) are unusual as biocontrol agents, as they feed on both plants and pests. Therefore, extensive knowledge of their ecological behavior is required to maximize their predatory side and to minimize crop damage. Macrolophus pygmaeus is a known predator of small arthropods, used in European tomato crops for more than 20 years. This mirid is currently considered harmless to tomato, although some controversy remains in relation to the status of the species. The aim of this work was to investigate the benefits that M. pygmaeus provides as a predator and the likely damage as a plant feeder. The experiment was carried out in 6 experimental Edited by: greenhouses in southern Spain. Two treatments, low and high M. pygmaeus populations, Alberto Pozzebon, were assayed in a complete factorial randomized design with three replicates. Low and Università degli Studi di Padova, Italy high M. pygmaeus populations were achieved by direct and pre-plant release methods, Reviewed by: respectively. Tomato plants with a lower number of M. pygmaeus had a significantly Antonio Biondi, Università degli Studi di Catania, Italy higher number of whiteflies and Tuta absoluta galleries than those with a higher number Barbara Letizia Ingegno, of the mirid, and vice versa.