Macrolophus Pygmaeus (Rambur) March 2014

Total Page:16

File Type:pdf, Size:1020Kb

Macrolophus Pygmaeus (Rambur) March 2014 EPA report Import and release of Macrolophus pygmaeus (Rambur) March 2014 Advice to the Decision Making Committee on application APP201254: – To import and release Macrolophus pygmaeus as biocontrol agents for whitefly (Trialeurodes vaporariorum), under section 34 of the Hazardous Substances and New Organisms Act 1996 www.epa.govt.nz 2 Application for approval to import and release Macrolophus pygmaeus (APP201254) Executive Summary and Recommendation In November 2013, Tomatoes New Zealand made an application to the Environmental Protection Authority (EPA) seeking to import and release Macrolophus pygmaeus for use as an augmentative biocontrol agent to control greenhouse whitefly in tomato glasshouses. Their application stems from the desire to improve the competitiveness of the New Zealand tomato industry. The applicant asserts the key to improving competitiveness is the use of Integrated Pest Management (IPM) to manage pests in commercial glasshouses. Not only does this approach offer cost savings, it can reduce the use of harmful chemical inputs; improving people’s health, lowering environmental impacts and increasing the export potential of the product. We consider that IPM can, in the right circumstances, provide a win-win solution to both consumers and producers and we applaud this focus by the industry. Integrated Pest Management by original definition is the integration of biocontrol with chemical applications, so that the latter have least impact on natural enemies. Thus a significant aspect of this approach is the use of natural enemies to control insect pests. This use of natural enemies has a long history both overseas and in New Zealand. To this effect the tomato industry is looking to introduce a new biological control agent (BCA), Macrolophus pygmaeus, a natural predator of the greenhouse whitefly (Trialeurodes vaporariorum). We recognise the need for additional pest control measures in New Zealand to provide for a rounded management programme, and we understand that Macrolophus pygmaeus is a candidate suitable for investigation. It is widely used in Europe and is potentially more effective at lower temperatures than agents currently available in New Zealand. We have conducted a risk assessment under clause 27(1) of the Hazardous Substances and New Organisms (Methodology) Order 1998 (the Methodology)1, and weighed all the risks, costs and benefits associated with this application. Our risk assessment suggests that the applicant underestimated the risks, and may also be underestimating the benefit of releasing Macrolophus pygmaeus. The environmental risk of the release is New Zealand wide in scale and is irreversible. On the other hand, the applicant has not demonstrated the human health benefits to glass house workers, and the ongoing economic contribution of the tomato industry to the New Zealand economy. Despite this it is worth noting the important social aspects of this application. The tomato industry, and in fact the wider horticultural sector, clearly needs and wants to increase its adoption of IPM, and we agree that new BCAs can play a valuable role in this. Furthermore, there is ongoing environmental damage occurring in New Zealand as a result of habitat modification from urban sprawl, dairying, increased infrastructure, indiscriminate agrichemical use, ongoing arthropod incursions, damage by existing vertebrate pests, and exploitation of our natural resources through fishing and mining for example. The Decision Making 1 Clause 26 of the Methodology states: Taking into account the measures available (if any) for risk management. The Authority may approve an application where a substance or organism poses negligible risks to the environment and human health and safety if it is evident that the benefits associated with that substance or organism outweigh the costs. Clause 27 states: (1) where clause 26 does not apply, the Authority must take into account the extent to which the risks and any costs associated with that substance or organism may be outweighed by the benefits. March 2014 3 Application for approval to import and release Macrolophus pygmaeus (APP201254) Committee needs to be cognisant of these facts, and to take into account whether introducing Macrolophus pygmaeus presents risks and benefits over and above those already occurring in the country. It is our recommendation that Macrolophus pygmaeus meets the Minimum Standards of the Hazardous Substances and New Organisms (HSNO) Act and therefore the crux of this decision is the weighting of benefits against environmental risk. Given the level of information we have available, our recommendation to the HSNO Decision Making Committee is to decline this application. While we do not consider that the risks pose significant harm to people, the environment or the economy, we do not consider that the applicant has made a strong case for the long term benefits to be realised. If anyone has more information that can clarify these benefits we encourage them to come forward at the hearing. March 2014 4 Application for approval to import and release Macrolophus pygmaeus (APP201254) Table of Contents 1 The application process .................................................................................................................. 6 Purpose of this document .............................................................................................................. 6 The application .............................................................................................................................. 6 Submissions .................................................................................................................................. 6 Background ................................................................................................................................... 7 New Zealand Biological Control Industry ........................................................................................... 7 Industry pressure and ongoing need for Integrated Pest Management ............................................. 8 Glasshouse pests ............................................................................................................................ 10 2 The organism proposed for release ............................................................................................. 10 3 Risk and benefit assessment ........................................................................................................ 11 Minimum standards ..................................................................................................................... 12 CLIMEX Modelling ........................................................................................................................... 12 Habitat modelling ............................................................................................................................. 14 Propagule pressure ......................................................................................................................... 14 Dispersal .......................................................................................................................................... 15 Photoperiod ..................................................................................................................................... 16 Establishment potential .................................................................................................................... 17 Host range ....................................................................................................................................... 17 Plant host preferences ..................................................................................................................... 21 Conclusion on the minimum standards ....................................................................................... 22 The ability to establish an undesirable self-sustaining population and the ease of eradication . 23 Effects of any inseparable organism ........................................................................................... 23 Adverse effects ............................................................................................................................ 23 Adverse effects on fauna ................................................................................................................. 24 Adverse effects on flora ................................................................................................................... 25 Other adverse effects ...................................................................................................................... 26 Precautionary approach ................................................................................................................... 27 Conclusion on adverse effects .................................................................................................... 27 Positive effects ............................................................................................................................ 27 Human Health .................................................................................................................................. 27 Economic ......................................................................................................................................... 29 Conclusion on positive effects ....................................................................................................
Recommended publications
  • Biology of Macrolophus Caliginosus (Heteroptera: Miridae) Predator of Trialeurodes Vaporariorum (Homoptera: Aleyrodidae)
    International Journal of Biology July, 2009 Biology of Macrolophus caliginosus (Heteroptera: Miridae) Predator of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) Mohd Rasdi, Z., Fauziah, I. & Wan Mohamad, W.A.K Faculty of Applied Science, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia Tel: 60-9-490-2000 E-mail: [email protected] Syed Abdul Rahman, S.R Malaysian Agricultural Research and Development Institute (MARDI) Cameron Highlands, 39000 Pahang, Malaysia Tel: 60-5-491-1255 E-mail: [email protected] Che Salmah, M.R. School of Biological Sciences, Universiti Sains Malaysia 11800 Pulau Pinang, Malaysia Tel: 60-4-653-4061 E-mail: [email protected] Kamaruzaman, J. (Corresponding author) Department of Forest Production, Universiti Putra Malaysia Serdang, 43400 Selangor, Malaysia Tel: 60-3-8946-7176 E-mail: [email protected] This project is funded by Ministry of Higher Education, Malaysia (Sponsoring information) Abstract Macrolophus caliginosus Wagner (Heteroptera: Miridae) is a highly polyphagous predatory bug, which has proven to be effective in controlling many insect pests of greenhouse vegetables (eggplant, tomato, and cucumber) especially whiteflies, aphids, and thrip. It is mainly used as a biological control auxiliary against T. vaporariorum Westwood (Homoptera: Aleyrodidae). The greenhouse whitefly, Trialeurodes vaporariorum is particularly harmful to tomato plants grown under the greenhouse. It has become prevalent whenever crops are frequently sprayed with insecticides. Biological control is becoming important for controlling this insect pest. A mirid bug management programme has been developed for an Integrated Pest Management (IPM) in tomato. The objective of the programme was to keep the predator population densities high enough in order to maintain T.
    [Show full text]
  • Download the Full Report Pdf, 424.3
    VKM Report 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Opinion of the Panel on Plant Production Products of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Opinion of the Panel on Plant Production Products of the Norwegian Scientific Committee for Food Safety 18.03.2015 ISBN: 978-82-8259-161-4 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM (2015). Risk assessment of Macrolophus pygmaeus as biological control product. Opinion of the Panel on Plant Protection Products of the Norwegian Scientific Committee for Food Safety. VKM Report 2015:06, ISBN: 978-82-8259-161-4, Oslo, Norway. Available online: www.vkm.no VKM Report 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Authors preparing the draft opinion Torsten Källqvist (chair), May-Guri Sæthre Assessed and approved The opinion has been assessed and approved by Panel on Plant Protection Products of VKM. Members of the panel are: Torsten Källqvist (chair), Katrine Borgå, Hubert Dirven, Ole Martin Eklo, Merete Grung, Jan Ludvig Lyche, Marit Låg, Asbjørn M Nilsen, Line Emilie Sverdrup (Panel members in alphabetical order after chair of the panel) Acknowledgment May-Guri Sæthre from the Panel of Plant health of the Norwegian Scientific Committee for Food Safety is acknowledged for her valuable work on this opinion. Project manager from the VKM secretariat has been Edgar Rivedal Competence of VKM experts Persons working for VKM, either as appointed members of the Committee or as external experts, do this by virtue of their scientific expertise, not as representatives for their employers or third party interests.
    [Show full text]
  • Parasites (Hymenoptera: Braconidae) Near Belleville, Ontario, Canada
    Naturaliste can - 1 07: 87-93 (1980). PLANT BUG HOSTS (HETEROPTERA: MIRIDAE) OF SOME EUPHORINE PARASITES (HYMENOPTERA: BRACONIDAE) NEAR BELLEVILLE, ONTARIO, CANADA C. C. LOAN Biosystematics Research Institute, Agriculture Canada, Research Branch, Ottawa KlA 0C6 Resume Nous avons e'eve des Euphorines parasites (14 espbces de Peristenus et 4 de Leiophron) b partir de 28 especes de Mirides, recoltes pres de Belleville, Ontario. Nous avons, en plus, obtenu plusieurs immatures d'Euphorines indeterminees chez 24 autres espbces d'hotes. Les parasites de chaque espece se rencontrent dans les nymphes d'une ou plusieurs especes de mirides. La majorite des hates et tous les parasites nont qu'une seule generation annuelle. L'attaque des para- sites ne se produit que durant la periode nymphale de I'hote. Les adultes hivernent en diapause, dans les cocons. Le taux de parasitisme est de 16 6 64%. Abstract Euphorine parasites, comprising 14 species of Peristenus and four of Leio- phron, were reared from 28 plant bug species collected near Belleville, Ontario. Immature, unidentifiable euphorines were found in 24 other host species. Each of the parasite species attacked nymphs of one or more plant bugs. Most of the hosts, and all the parasites have one generation per year. Parasitism was limited to the portion of the season when the host(s) was in the nymphal stage. The over- wintered parasites were inactive as diapausing adults in cocoons until the growing season of the following year. From 16-64 per cent of host nymphs were parasitized. Introduction Materials and methods Species of the euphorine genera Periste- Plant bugs were collected during May- nus Foerster and Leiophron Nees parasitize August in representative habitats immediately nymphs of plant bugs (Miridae).
    [Show full text]
  • Population Development of Tuta Absoluta (Meyrick) (Lepidoptera: Gelechiidae) Under Simulated UK Glasshouse Conditions
    Insects 2013, 4, 185-197; doi:10.3390/insects4020185 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Population Development of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under Simulated UK Glasshouse Conditions Andrew G. S. Cuthbertson 1,*, James J. Mathers 1, Lisa F. Blackburn 1, Anastasia Korycinska 1, Weiqi Luo 1, Robert J. Jacobson 2 and Phil Northing 1 1 The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK; E-Mails: [email protected] (J.J.M.); [email protected] (L.F.B.); [email protected] (A.K.); [email protected] (W.L.); [email protected] (P.N.) 2 Rob Jacobson Consultancy Ltd., 5 Milnthorpe Garth, Bramham, LS23 6TH, UK; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-01904-462-201; Fax: +44-01904-462-111. Received: 11 March 2013; in revised form: 23 April 2013 / Accepted: 25 April 2013 / Published: 15 May 2013 Abstract: Tomato leafminer Tuta absoluta (Meyrick) is a major pest of tomato plants in South America. It was first recorded in the UK in 2009 where it has been subjected to eradication policies. The current work outlines T. absoluta development under various UK glasshouse temperatures. The optimum temperature for Tuta development ranged from 19±23 °C. At 19 °C, there was 52% survival of T. absoluta from egg to adult. As temperature increased (23 °C and above) development time of the moth would appear to decrease.
    [Show full text]
  • Dicyphus Hesperus) Whitefly Predatory Bug
    SHEET 223 - DICYPHUS Dicyphus (Dicyphus hesperus) Whitefly Predatory Bug Target Pests Greenhouse whitefly (Trialeurodes vaporariorum), Tobacco whitefly (Bemisia tabaci). Dicyphus will feed on two-spotted spider mite (Tetranychus urticae), Thrips and Moth eggs but will not control these pests. Plants Note: Since Dicyphus is also a plant feeder it should not be used on crops such as Gerbra which can be damaged. Most of the work with Dicyphus has been on vegetable crops such as tomato, pepper and eggplant where it will not cause plant damage by plant feeding. Description The predatory bug, Dicyphus hesperus is similar to Macrolophus caliginosus, which is being used in Europe to control whitefly, spider mites, moth eggs and aphids. The use of Dicyphus is being studied by D. Gillespie (Agriculture and Agri-Foods Canada Research Station, Agassiz, BC). Dicyphus should not be used on its own to replace other biological control agents. It is best used along with other biological control agents in greenhouse tomato crops that have, or (because of past history) are expected to have. whitefly, spider mite, or thrips problems. • Eggs are laid inside plant tissue and are not easily seen. • Adults are slender (6mm), black and green with red eyes and can fly • Nymphs are green with red eyes Use in Biological Control • Release Dicyphus as soon as whiteflies are found, early in the season at a rate of 0.25-0.5 bugs/m2 (10 ft2) of infested area; repeat in 2-3 weeks. • Release batches of 100 adults together in one area where whitefly is present or add supplementary food (frozen moth eggs: i.e.
    [Show full text]
  • Impact of the Presence of Dicyphus Tamaninii Wagner
    Biological Control 25 (2002) 123–128 www.academicpress.com Impact of the presence of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on whitefly (Homoptera: Aleyrodidae) predation by Macrolophus caliginosus (Wagner) (Heteroptera: Miridae) EEric Lucas1 and Oscar Alomar* Departament de Proteccio Vegetal, Institut de Recerca i Tecnologia Agroalimentaries Centre de Cabrils, E-08348 Cabrils, Barcelona, Spain Received 11 May 2001; accepted 20 May 2002 Abstract Macrolophus caliginosus (Wagner) is currently commercialized in Europe for the control of whiteflies in tomato greenhouses. Another mirid predator, Dicyphus tamaninii Wagner, spontaneously colonizes Mediterranean greenhouses. The impact of the presence of D. tamaninii on predation of the greenhouse whitefly (Trialeurodes vaporariorum Westwood) by M. caliginosus was investigated in the laboratory on tomato plants during four days. No significant interspecific competition was recorded between mirid nymphs and no significant intraguild predation was observed. Higher level of predation of the whitefly populations was achieved by D. tamaninii alone, than by M. caliginosus alone. Predation by the heterospecific combination (M. caliginosus + D. tamaninii) was similar to the results obtained by conspecific treatments. No intraspecific competition was recorded with D. tamaninii, nor with M. caliginosus. Finally, the distribution of whitefly predation on the plant by the mirids changed according to the predator treatment. The heterospecific combination of both mirids had a higher predation rate on lower leaves of the plant than monospecific combinations. Overall, the presence of D. tamaninii did not disrupt whitefly predation by M. caliginosus and could even increase the level of predation. Ó 2002 Elsevier Science (USA). All rights reserved. Keywords: Dicyphus tamaninii; Macrolophus caliginosus; Trialeurodes vaporariorum; Lycopersicon esculentum; Intraguild predation; Zoophytophagy; Miridae; Biological control; Greenhouse whitefly 1.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Functional Response and Predation Rate of Dicyphus Cerastii Wagner (Hemiptera: Miridae)
    insects Article Functional Response and Predation Rate of Dicyphus cerastii Wagner (Hemiptera: Miridae) Gonçalo Abraços-Duarte 1,2,* , Susana Ramos 1, Fernanda Valente 1,3, Elsa Borges da Silva 1,3 and Elisabete Figueiredo 1,2,* 1 Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; [email protected] (S.R.); [email protected] (F.V.); [email protected] (E.B.d.S.) 2 Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal 3 Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal * Correspondence: [email protected] (G.A.-D.); [email protected] (E.F.) Simple Summary: Biological control (BC) is an effective way to regulate pest populations in hor- ticultural crops, allowing the decrease of pesticide usage. On tomato, predatory insects like plant bugs or mirids provide BC services against several insect pests. Native predators are adapted to local conditions of climate and ecology and therefore may be well suited to provide BC services. Dicyphus cerastii is a predatory mirid that is present in the Mediterranean region and occurs in tomato greenhouses in Portugal. However, little is known about its contribution to BC in this crop. In this study, we evaluated how prey consumption is affected by increasing prey abundance on four different prey, in laboratory conditions. We found that the predator can increase its predation rate until a maximum is reached and that prey characteristics like size and mobility can affect predation.
    [Show full text]
  • 08 Chapter 03.Pdf
    16 Tea is a perennial monoculture crop, which provides suitable microclimate as well as continuous supply of food to number of arthropods. Each tea population within an agro-climatic area has its distinctive pest problem. The classical work of Watt and Mann (1903) offers the basic knowledge of tea pests occurring in Asia. Cranham ( 1966) and subsequently Muraleedharan (1983) reviewed the pest problems of this crop, on a global basis. Our knowledge of tea pests in North-East India is mainly based on the contribution of Cotes (1895), Watt and Mann (1903), Hainsworth (1992), Das (1965), Banerjee (1964, 1966a, 1966b, 1967, 1969, 1970, 1971 , 1976 and 1977) Gurusubramanian et al., (2005). Origin, taxonomic character and distribution of He/ope/tis spp Plant bugs of Genus Helopeltis are serious pest of various cultivated plants in the old world tropics. The damaging effect of these insects on tea plants in India was documented over a century ago in reports by Peal (1973) and Wood-mason (1884). It was in these early accounts that the common name "tea-bug" and "tea-mosquito" were established, along with various names referring to feeding injury such as "tea­ blight", " mosquito-blight" and "spot-blight" etc. Since the late 1800s over 100 species of plants have been reported as host for He lope/tis spp. including a number of major cash crops such as black pepper (Piper nigrum), cashew (A nacadium occidentale), cinchona (Cinchona spp.), cocoa (Theobroma cocoa) and Tea (Camellia sinensis). In tea it was first recorded in Java in the year 1847 (Rao, 1970). In Ind ia the pest was noticed in the year 1968 in Cachar (Watt and Mann, 1903) Helopeltis belongs to the subfamily Bryocorinae, tribe Dicyhini and subtribe Monaloniina, which is distinguished from other tribes of Bryocorinae by the elongate, 17 Oz [}'·C lCOJ cylindrical body form, the structure of the pretarsus, the reduced numbers of meso and metafemoral trichomae, the metathoracic sent efferent system lacking developed ostiole and evaporative area on metaepisternum and eggs with respiratory horns (Schuh, 1995).
    [Show full text]
  • Julius-Kühn-Archiv
    ICP-PR Honey Bee Protection Group 1980 - 2015 The ICP-PR Bee Protection Group held its fi rst meeting in Wageningen in 1980 and over the subsequent 35 years it has become the established expert forum for discussing the risk of pesticides to bees and developing solutions how to assess and manage this risk. In recent years it has enlarged its scope of interest from honey bees to many other pollinating insects such as bumble bees. The group organises international scientifi c symposia once in every three years. These are open to everyone interested. The group tries to involve as many countries as possible, by organising symposia each time in another European country. It operates with working groups studying specifi c problems and proposing solu- 450 tions that are subsequently discussed in plenary symposia. A wide range of experts active in this fi eld drawn Julius-Kühn-Archiv from regulatory authorities, industry, universities and research institutes across the European Union (EU) and beyond participates in the discussions. Pieter A. Oomen, Jens Pistorius (Editors) The proceedings of the symposia (such as these) are being published by the Julius Kühn Archive in Germany since the 2008 symposium in Bucharest, Romania. These proceedings are also accessible on internet, e.g., the 2011 Wageningen symposium is available on http://pub.jki.bund.de/index.php/JKA/issue/view/801. Hazards of pesticides to bees For more information about the Bee Protection Group, see the ‘Statement about the mission and role of the ICPPR Bee Protection Group’ on one of the opening pages in these proceedings.
    [Show full text]
  • List of Biological Control Agents Widely Used in the Eppo Region
    EPPO Standards SAFE USE OF BIOLOGICAL CONTROL LIST OF BIOLOGICAL CONTROL AGENTS WIDELY USED IN THE EPPO REGION PM 6/3 English 2021 VERSION oepp eppo European and Mediterranean Plant Protection Organization 21 Boulevard Richard Lenoir, 75011 Paris, France APPROVAL EPPO Standards are approved by EPPO Council. The date of approval appears in each individual standard. In the terms of Article II of the IPPC, EPPO Standards are Regional Standards for the members of EPPO. REVIEW EPPO Standards are subject to periodic review and amendment. The next review date for this set of EPPO Standards is decided by the EPPO Working Party on Phytosanitary Regulations. AMENDMENT RECORD Amendments will be issued as necessary, numbered and dated. The dates of amendment appear in each individual standard (as appropriate). DISTRIBUTION EPPO Standards are distributed by the EPPO Secretariat to all EPPO member governments. Copies are available to any interested person under particular conditions upon request to the EPPO Secretariat. SCOPE The EPPO Standards on the safe use of biological control are intended to be used by NPPOs or equivalent authorities, in their capacity as bodies responsible for overseeing and, if appropriate, regulating the introduction and use of biological control agents. OUTLINE OF REQUIREMENTS NPPOs of the EPPO region generally promote the use of biological control in plant protection because, like other aspects of integrated pest management, it reduces risks to human health and the environment. Use of biological control agents may, nevertheless, present some risks, in particular for the environment if exotic agents are introduced from other continents, and for the user if agents are formulated as plant protection products.
    [Show full text]
  • Two New Species of Dicyphus FIEBER 1858 from the Iberian Peninsula and Canary Islands with Additional Data About the D
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2006 Band/Volume: 0019 Autor(en)/Author(s): Ribes Jordi, Baena Manuel Artikel/Article: Two new species of Dicyphus FIEBER 1858 from the Iberian Peninsula and Canary Islands with additional data about the D. globulifer-group of the subgenus Brachyceroea FIEBER 1858 (Hemiptera, Heteroptera, Miridae, Bryocorinae) 589-598 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Two new species of Dicyphus FIEBER 1858 from the Iberian Peninsula and Canary Islands with additional data about the D. globulifer-group of the subgenus Brachyceroea FIEBER 1858 (Hemiptera, Heteroptera, Miridae, Bryocorinae)1 J. RIBES & M. BAENA Abstract: Two new species of the genus Dicyphus FIEBER 1858 are described: D. (Brachyceroea) heissi J. RIBES & BAENA nov.sp. from the Sierra of Guadarrama (Madrid), Cordova city, and Las Cañadas (Tenerife island) and D. (Brachyceroea) matocqi BAENA & J. RIBES nov.sp. from northern Portugal. The female of D. (Brachyceroea) cerutti WAGNER 1941 is redescribed. Additional data and drawings of the male and female genitalia of the available species of the globulifer-group are given and a dichotomous key for the species of this group is provided. Key words: Brachyceroea, Dicyphus, new species, Portugal, Spain. Introduction We describe below two new species of the subgenus Brachyceroea: Dicyphus WAGNER (1951) in his revision of the (Brachyceroea) heissi nov.sp. and Dicyphus genus Dicyphus FIEBER 1858 divided it into (Brachyceroea) matocqi nov.sp. Moreover, four subgenera: Dicyphus s.str., Idolocoris due to the problems with lectotype designa- OUGLAS COTT Mesodicyphus D & S 1865, tion of Dicyphus (Brachyceroea) cerutti – in WAGNER (as new) and Brachyceroea FIEBER opinion of the junior author – the female of 1858.
    [Show full text]