INDIA in CMS Experiment at the LHC

Total Page:16

File Type:pdf, Size:1020Kb

INDIA in CMS Experiment at the LHC INDIA in CMS Experiment at the LHC Research in the branch of Particle Physics deals with the building blocks of matter and the fundamental forces. The Large Hadron Collider (LHC) at CERN, Geneva, Switzerland is the largest ever human endeavour with the involvement of about 10 thousand scientists addressing mysteries of nature at the deepest level. India joined the LHC project in its early phase and contributes to all aspects: machine, experiments and computing. CMS LHC machine LHCf LHC control room LHCb ALICE ATLAS As of July 2012, the CMS experimental collaboration comprises of 4300 people from 179 institutes in 41 countries including India. Visva Delhi IIT Panjab BARC SINP TIFR Bharati University Bombay NISER University 35 faculty members, 20 engineers and 40 students from 8 institutes & universities. Indian participation in CMS is jointly supported by DAE and DST. http://cms.web.cern.ch/ LHC: the discovery machine at the energy and luminosity frontiers In the last decades the theoretical description of the elementary particles, better known as the Standard Model, is tested very precisely (to better than 0.1%). However, there are still several important issues which are not understood well. Some of them are: What is the origin of the masses of the elementary particles? Do the elementary particles of today have further sub-structures? What is the nature of the dark matter that constitutes about 20% of the universe? Why is there no antimatter in today’s universe? Physicists hope to find answers to these questions through the experiments at the LHC. Hadron collider machines at the energy frontier are capable of discovering new, heavy particles. They also probe the behaviour of forces at high energy. The experiments test the ideas about the evolution of the universe. What happens at the LHC Parameters in 2012 operation The LHC is the world's most powerful microscope, exploring a distance scale of Beam Energy 8* 10 12 eV 10-18 m. luminosity 7* 10 33/cm 2 /s Protons moving in opposite directions at number of bunches/beam 1380 99.999999% of the speed of light smash into each other to recreate conditions of number of protons/bunch 1.6* 10 11 the universe which existed a fraction of a second after the big bang. Currently the LHC collides protons at a centre of mass energy of 8 TeV (equivalent to 0.0000012 Joule per proton pair) every 50 nano seconds at few points where the experimental collaborations have put up detectors to study the outcome of these collisions. At the LHC there are two multipurpose experiments, CMS and ATLAS. Additionally there are other dedicated experiments, ALICE, LHC-b and LHC-f. The preparation for the LHC project – machine and experiments alike – took almost two decades. The LHC machine has started delivering collision less than three years back. The LHC project is expected to continue for the next 20 years. CMS, the acronym for Compact Muon Solenoid, is an excellent detector consisting of 3 main subsystems with an envelope of high magnetic field of 3.8 Tesla : • The tracking detector to identify and measure passage along the beam direction of the charged particles, like, electrons, muons, etc. • The calorimeters to measure the energy and direction of particles, like, electrons, photons, pions, protons, etc. • The muon system to detect and measure the momentum of muon. Cartoon of CMS Detector INDIA INDIA India in CMS experiment Salient contributions from India: Indian Institutes: 1. Detector R&D in 1990s 1. Bhabha Atomic Research 2. Study of scintillator material for the electromagnetic detector and design Centre (BARC) Mumbai of its granularity 2. Delhi University Delhi 3. Optimization of tracker detector material/geometry 4. Fabrication of subdetector systems, installation, testing 3. Indian Instute of Technology 5. Physics studies for optimization of detector in preparatory stage (IIT) Bombay 6. Software development for detector simulation 4. National Institute of Science 7. Studies with test beam, cosmic muons Education and Research 8. Data collection, data quality monitor (sometimes remotely from India). (NISER), Bhubaneswar 9. Understanding of detector performance, possible improvements 5. Panjab University, Chandigarh 10. Calibration of detector 6. Saha Institute of Nuclear 11. Physics analyses, review of collision data leading to publications Physics (SINP), Kolkata 12. Several collaboration-wide responsibilities within CMS 13. Representing collaboration in international conferences 7. Tata Institute of Fundamental 14. In CMS grid computing via Tier2 centre Research (TIFR), 15. Detector upgrade for future operational phases of LHC including R&D Mumbai 8. Visva Bharati University, Santiniketan Indian hardware contributions in the currently operating CMS detector: Hadron Outer (HO) Calorimeter, in barrel region (TIFR, Panjab University) Logistic support to neighboring Silicon Preshower detector of Electro Magnetic Calorimeter in endcap region country Shri Lanka (BARC, Delhi University). Current hardware involvements for the detector upgrade: Fabrication of Resistive Plate Chambers for the endcap muon system (BARC, Panjab University) Fabrication of read-out control cards for replacement of the photo-detectors for HO (TIFR) R&D Front/back-end electronics for HCAL (TIFR, SINP) R&D for subdetector systems suitable for the high-luminosity and high-energy operation of LHC, like tracking system A proton-on-proton collision event in CMS A lead-on-lead collision and first Z event in HI collision Multiple collisions during a single bunch crossing Motivation of the Experiments at the LHC The Standard Model is able to describe all the Particle zoo in Standard Model experimental observations till date. The Higgs particle is the consequence of the phenomenon which is responsible for the masses of all the fundamental particles. Discovery of the Higgs boson is therefore very crucial for the completeness of the theory of elementary particles and their interactions. The most important goal for the LHC experiments is to resolve the issue of Higgs (whether it exists or not). Since all the masses have to be measured experimentally, the LHC is indeed capable of producing the Higgs particle. The mandate of the major experiments, like CMS, are: 1. Resolve the issue of Higgs mechanism by Everyday matters We were missing this discovering the Higgs particle or ruling out its consists of only particle predicted in existence. these Standard Model till now 2. Probe the physics at the new energy region of TeV. Rediscovery of known physics at LHC as precursor to discovery Resonances in di-muon final state observed in p-p & Pb-Pb collisions Particle Physics of last lastcentury century rediscovered with rediscoveredearly LHC data. The main focus during the early phase of the experiment was on analyzing collision data to establish the detector performance along with various cross checks of known results as shown above. Occurrence of Higgs boson and other new, massive particles are very rare , once in few billion collisons. Hence data have to be collected for a long time. The foundation for the discovery of Higgs boson is laid with the measurement of background processes and comparing their rates as predicted in theory. The observation essentially implies excess of events above background expectation. Discovery of a new boson of mass 125 GeV H ZZ 4 l candidate http://cms.web.cern.ch/news/observation-new-particle-mass-125-gev • Search for the Higgs particle at the LHC is very challenging and required excellent performance of machine, all the subsystems of the CMS experiment as well as LHC computing . • The experimentally highly sensitive and high resolution discovery channels are when the Higgs particle decays in the modes : H2 photons and HZZ 4 charged leptons (pairs of electron, muon). • In the first case the resonance structure is detected above huge but smoothly falling background with a significance of 4.1 sigma. • In the second case again the peak is visible with 3.2 sigma significance. • Both the peaks are at the same position corresponding to a mass of about 125 GeV. • The combined confidence level of the observation of a resonance in CMS experiment is 5 sigma. • This corresponds to a probability of the background fluctuation to be at least as large as the observed maximum excess: less than 20 in a hundred million. • ATLAS experiment has similar result and hence there is independent confirmation. • This resonance is likely to be the Higgs boson being sought after. • Confirmation of its properties needs more data which is being collected and analyzed during current phase of LHC operation. • There are other possible discoveries at the LHC in the coming decade. Hadron Outer Calorimeter (HO) Participation from TIFR (Mumbai) and Panjab University (Chandigarh) • Importance : better jet energy measurement crucial for energy balance in event key observable for discoveries. • Fabrication of 432 Plastic scintillator tiles with wavelength shifting fibres covering about 400m2 . + 72 honeycomb panel housings • Photosensors for hadron calorimeter to be upgraded in future for better sensitivitites lot of R&D s in India. • Control boards for Silicon photo multiplier tubes for HO being fabricated and tested in India. HO detector units installed in CMS Tower structure of detector including HO Silicon single photon sensor Silicon Preshower Detector in Electromagnetic calorimeter Endcap region Participation from BARC and Delhi University Silicon preshowers in the endcap region of CMS detector provides the required sensitivity to identify Higgs to 2 photon decays in that region. Plays crucial role in the discovery of the Higgs particle. Two Endcaps: total 4200 silicon strip detectors covering an area of 17 m2 Strip width 1.8 mm, pitch 1.8 mm, area 63 mm 63 mm . Fabrication at BEL with the close supervision of BARC. Characterization studies at Delhi University Large area silicon detectors made in India for the first time. High quality of detectors, comparable with international producers. India has provided more than what was initially planned.
Recommended publications
  • The ATLAS Experiment
    The ATLAS Experiment Mapping the Secrets of the Universe Michael Barnett Physics Division July 2007 With help from: Joao Pequenao Paul Schaffner M. Barnett – July 2007 1 Large Hadron Collider CERN lab in Geneva Switzerland Protons will circulate in opposite directions and collide inside experimental areas 100 meters underground 17 miles around M. Barnett – July 2007 2 The ATLAS Experiment See animation M. Barnett – July 2007 3 Large Hadron Collider Numbers The fastest racetrack on the planet Trillions of protons will race around the 17-mile ring 11,000 times a second, traveling at 99.9999991% the speed of light. Seven times the energy of any previous accelerator. The emptiest space in the solar system Accelerating protons to almost the speed of light requires a vacuum as empty as interplanetary space. There is 10 times more atmosphere on the moon than there will be in the LHC. M. Barnett – July 2007 4 Large Hadron Collider Numbers The hottest spot in our galaxy Colliding protons will generate temperatures 100,000 times hotter than the sun (but in a minuscule space). Equivalent to a billionth of a second after the Big Bang M. Barnett – July 2007 5 LHC Exhibition at London Science Museum M. Barnett – July 2007 6 Large Hadron Collider Numbers The biggest most sophisticated detectors ever built Recording the debris from 600 million proton collisions per second requires building gargantuan devices that measure particles with 0.0004 inch precision. The most extensive computer system in the world Analyzing the data requires tens of thousands of computers around the world using the Grid.
    [Show full text]
  • Aaron Taylor Physics and Astronomy This
    Aaron Taylor Candidate Physics and Astronomy Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Sally Seidel , Chairperson Dr. Pavel Reznicek Dr. Huaiyu Duan Dr. Douglas Fields Dr. Bruce Schumm CERN-THESIS-2017-006 04/11/2016 SEARCH FOR NEW PHYSICS PROCESSES WITH HEAVY QUARK SIGNATURES IN THE ATLAS EXPERIMENT by AARON TAYLOR B.A., Mathematics, University of California, Santa Cruz, 2011 M.S., Physics, University of New Mexico, 2014 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico Albuquerque, New Mexico May, 2017 ©2017, Aaron Taylor iii Acknowledgements I would like to thank Professor Sally Seidel, for her constant support and guidance in my research. I would also like to thank her for her patience in helping me to develop my technical writing and presentation skills; without her assistance, I would never have gained the skill I have in that field. I would like to thank Konstantin Toms, for his constant assistance with the ATLAS code, and for generally giving advice on how to handle data analysis. The Bs → 4μ analysis likely wouldn’t have gotten anywhere without him. I would like to deeply thank Pavel Reznicek, without whom I would never have gotten as great an understanding of ATLAS code as I currently have. It is no exaggeration to say that I would not have been half as successful as I have been without his constant patience and understanding. Thank you. Many thanks to Martin Hoeferkamp, who taught me much about instrumentation and physical measurements.
    [Show full text]
  • Slides Lecture 1
    Advanced Topics in Particle Physics Probing the High Energy Frontier at the LHC Ulrich Husemann, Klaus Reygers, Ulrich Uwer University of Heidelberg Winter Semester 2009/2010 CERN = European Laboratory for Partice Physics the world’s largest particle physics laboratory, founded 1954 Historic name: “Conseil Européen pour la Recherche Nucléaire” Lake Geneva Proton-proton2500 employees, collider almost 10000 guest scientists from 85 nations Jura Mountains 8.5 km Accelerator complex Prévessin site (approx. 100 m underground) (France) Meyrin site (Switzerland) Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 2 Large Hadron Collider: CMS Experiment: Proton-Proton and Multi Purpose Detector Lead-Lead Collisions LHCb Experiment: B Physics and CP Violation ALICE-Experiment: ATLAS Experiment: Heavy Ion Physics Multi Purpose Detector Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 3 The Lecture “Probing the High Energy Frontier at the LHC” Large Hadron Collider (LHC) at CERN: premier address in experimental particle physics for the next 10+ years LHC restart this fall: first beam scheduled for mid-November LHC and Heidelberg Experimental groups from Heidelberg participate in three out of four large LHC experiments (ALICE, ATLAS, LHCb) Theory groups working on LHC physics → Cornerstone of physics research in Heidelberg → Lots of exciting opportunities for young people Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 4 Scope
    [Show full text]
  • Arxiv:2001.07837V2 [Hep-Ex] 4 Jul 2020 Scale Funding Will Be Requested at Different Stages Across the Globe
    Brazilian Participation in the Next-Generation Collider Experiments W. L. Aldá Júniora C. A. Bernardesb D. De Jesus Damiãoa M. Donadellic D. E. Martinsd G. Gil da Silveirae;a C. Henself H. Malbouissona A. Massafferrif E. M. da Costaa C. Mora Herreraa I. Nastevad M. Rangeld P. Rebello Telesa T. R. F. P. Tomeib A. Vilela Pereiraa aDepartamento de Física Nuclear e Altas Energias, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, CEP 20550-900, Rio de Janeiro, Brazil bUniversidade Estadual Paulista (Unesp), Núcleo de Computação Científica Rua Dr. Bento Teobaldo Ferraz, 271, 01140-070, Sao Paulo, Brazil cInstituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, CEP 05508-090, São Paulo, Brazil dUniversidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Caixa Postal 68528, 21941-972 Rio de Janeiro, Brazil eInstituto de Física, Universidade Federal do Rio Grande do Sul , Av. Bento Gonçalves, 9550, CEP 91501-970, Caixa Postal 15051, Porto Alegre, Brazil f Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr. Xavier Sigaud, 150, CEP 22290-180 Rio de Janeiro, RJ, Brazil E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: This proposal concerns the participation of the Brazilian High-Energy Physics community in the next-generation collider experiments.
    [Show full text]
  • Arxiv:2003.07868V3 [Hep-Ph] 21 Jul 2020 Ejmnc Allanach, C
    CERN-LPCC-2020-001, FERMILAB-FN-1098-CMS-T, Imperial/HEP/2020/RIF/01 Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2 We report on the status of efforts to improve the reinterpretation of searches and mea- surements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data. Waleed Abdallah,1, 2 Shehu AbdusSalam,3 Azar Ahmadov,4 Amine Ahriche,5, 6 Gaël Alguero,7 Benjamin C. Allanach,8, ∗ Jack Y. Araz,9 Alexandre Arbey,10, 11 Chiara Arina,12 Peter Athron,13 Emanuele Bagnaschi,14 Yang Bai,15 Michael J. Baker,16 Csaba Balazs,13 Daniele Barducci,17, 18 Philip Bechtle,19, ∗ Aoife Bharucha,20 Andy Buckley,21, † Jonathan Butterworth,22, ∗ Haiying Cai,23 Claudio Campagnari,24 Cari Cesarotti,25 Marcin Chrzaszcz,26 Andrea Coccaro,27 Eric Conte,28, 29 Jonathan M. Cornell,30 Louie D. Corpe,22 Matthias Danninger,31 Luc Darmé,32 Aldo Deandrea,10 Nishita Desai,33, ∗ Barry Dillon,34 Caterina Doglioni,35 Matthew J. Dolan,16 Juhi Dutta,1, 36 John R. Ellis,37 Sebastian Ellis,38 Farida Fassi,39 Matthew Feickert,40 Nicolas Fernandez,40 Sylvain Fichet,41 Thomas Flacke,42 Benjamin Fuks,43, 44, ∗ Achim Geiser,45 Marie-Hélène Genest,7 Akshay Ghalsasi,46 Tomas Gonzalo,13 Mark Goodsell,43 Stefania Gori,46 Philippe Gras,47 Admir Greljo,11 Diego Guadagnoli,48 Sven Heinemeyer,49, 50, 51 Lukas A.
    [Show full text]
  • Prospects of Measuring the Branching Fraction of the Higgs Boson
    ILD-PHYS-2020-002 09 September 2020 Prospects of measuring the branching fraction of the Higgs boson decaying into muon pairs at the International Linear Collider Shin-ichi Kawada∗, Jenny List∗, Mikael Berggren∗ ∗ DESY, Notkestraße 85, 22607 Hamburg, Germany Abstract The prospects for measuring the branching fraction of H µ+µ at the International → − Linear Collider (ILC) have been evaluated based on a full detector simulation of the Interna- tional Large Detector (ILD) concept, considering centre-of-mass energies (√s) of 250 GeV + + and 500 GeV. For both √s cases, the two final states e e− qqH and e e− ννH 1 → → 1 have been analyzed. For integrated luminosities of 2 ab− at √s = 250 GeV and 4 ab− at √s = 500 GeV, the combined precision on the branching fraction of H µ+µ is estim- → − ated to be 17%. The impact of the transverse momentum resolution for this analysis is also studied∗. arXiv:2009.04340v1 [hep-ex] 9 Sep 2020 ∗This work was carried out in the framework of the ILD concept group 1 Introduction 1 Introduction A Standard Model (SM)-like Higgs boson with mass of 125 GeV has been discovered by the ATLAS ∼ and CMS experiments at the Large Hadron Collider (LHC) [1, 2]. Recently, the decay mode of the Higgs boson to bottom quarks H bb has been observed at the LHC [3, 4], as well as the ttH production → process [5, 6], both being consistent with the SM prediction. However, there are several important questions to which the SM does not offer an answer: it neither explains the hierarchy problem, nor does it address the nature of dark matter, the origin of cosmic inflation, or the baryon-antibaryon asymmetry in the universe.
    [Show full text]
  • Tuning the HF Calorimeter Gflash Simulation Using CMS Data Jeff Van Harlingen1 Rahmat Rahmat2 Eduardo Ibarra García Padilla3
    Tuning the HF Calorimeter GFlash Simulation Using CMS Data Jeff Van Harlingen1 Rahmat Rahmat2 Eduardo Ibarra García Padilla3 1Madison Junior High School (NCUSD 203) 2Mid-America Christian University 3Universidad Nacional Autónoma de México Outline .LHC and CMS Description .Particle Collisions .The Higgs Boson .HF Calorimeter at CMS .GFlash Speed and Accuracy Tuning .Future Applications Large Hadron Collider (LHC) .Located at CERN in Switzerland .Four major experiments (CMS, ATLAS, ALICE, and LHCb) .The LHC is a 27-km ring lined with superconducting magnets Large Hadron Collider (LHC) .Two particle-beams are accelerated close to the speed of light .Collisions between these high-energy beams, create particles that could tell us about the fundamental building blocks of the universe Compact Muon Solenoid (CMS) .14,000 Ton Detector .One of the largest science collaborations in history: .4,300 physicists, engineers, technicians, etc. .182 Universities and institutions .42 countries represented .21 meters long .15 meters wide .15 meters high Compact Muon Solenoid (CMS) Compact Muon Solenoid (CMS) Compact Muon Solenoid (CMS) Solenoid Creates 4 Tesla magnetic field to bend the path of particles Silicon Tracker Measuring the positions of passing charged particles allows us to reconstruct their tracks. Electromagnetic Calorimeter Measure the energies of electrons and photons Hadronic Calorimeter Measure the energies of hadronic particles (Pions) Muon Chambers Tracks Muon Trajectories Hadronic Forward Calorimeter Measure the energies of hadronic and electromagnetic particles How do we detect particles? “Just as hunters can identify animals from tracks in mud or snow, physicists identify subatomic particles from the traces they leave in detectors” -CERN .Accelerators .Tracking Devices .Calorimeters .Particle ID Detectors Step-by-Step Collision 1.
    [Show full text]
  • A BOINC-Based Volunteer Computing Infrastructure for Physics Studies At
    Open Eng. 2017; 7:379–393 Research article Javier Barranco, Yunhai Cai, David Cameron, Matthew Crouch, Riccardo De Maria, Laurence Field, Massimo Giovannozzi*, Pascal Hermes, Nils Høimyr, Dobrin Kaltchev, Nikos Karastathis, Cinzia Luzzi, Ewen Maclean, Eric McIntosh, Alessio Mereghetti, James Molson, Yuri Nosochkov, Tatiana Pieloni, Ivan D. Reid, Lenny Rivkin, Ben Segal, Kyrre Sjobak, Peter Skands, Claudia Tambasco, Frederik Van der Veken, and Igor Zacharov LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN https://doi.org/10.1515/eng-2017-0042 Received October 6, 2017; accepted November 28, 2017 1 Introduction Abstract: The LHC@Home BOINC project has provided This paper addresses the use of volunteer computing at computing capacity for numerical simulations to re- CERN, and its integration with Grid infrastructure and ap- searchers at CERN since 2004, and has since 2011 been plications in High Energy Physics (HEP). The motivation expanded with a wider range of applications. The tradi- for bringing LHC computing under the Berkeley Open In- tional CERN accelerator physics simulation code SixTrack frastructure for Network Computing (BOINC) [1] is that enjoys continuing volunteers support, and thanks to vir- available computing resources at CERN and in the HEP tualisation a number of applications from the LHC ex- community are not sucient to cover the needs for nu- periment collaborations and particle theory groups have merical simulation capacity. Today, active BOINC projects joined the consolidated LHC@Home BOINC project. This together harness about 7.5 Petaops of computing power, paper addresses the challenges related to traditional and covering a wide range of physical application, and also virtualized applications in the BOINC environment, and particle physics communities can benet from these re- how volunteer computing has been integrated into the sources of donated simulation capacity.
    [Show full text]
  • Compact Muon Solenoid Detector (CMS) & the Token Bit Manager
    Compact Muon Solenoid Detector (CMS) & The Token Bit Manager (TBM) Alex Armstrong & Wyatt Behn Mentor: Dr. Andrew Ivanov Part 1: The TBM and CMS ● Understanding how the LHC and the CMS detector work as a unit ● Learning how the TBM is a vital part of the CMS detector ● Physically handling and testing the TBM chips in the Hi- bay Motivation ● The CMS detector requires upgrades to handle increased beam luminosity ● Minimizing data loss in the innermost regions of the detector will therefore require faster, lighter, more durable, and more functional TBM chips than the current TBM 05a We tested many of the new TBM08b and TBM09 chips to guarantee that they meet certain standards of operation. CERN Conseil Européen pour la Recherche Nucléaire (European Council for Nuclear Research) (1952) Image Credit:: http://home.web.cern.ch/ CERN -> LHC Large Hadron Collider (2008) Two proton beams 1) ATLAS travel in opposite 2) ALICE directions until 3) LHCb collision in detectors 4) CMS Image Credit: hep://home.web.cern.ch/topics/large--‐hadron--‐collider Image Credit: http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/collisions.htm CERN -> LHC -> CMS Compact Muon Solenoid (2008) Image Credit: hep://cms.web.cern.ch/ Image Credit: http://home.web.cern.ch/about/experiments/cms CMS Detector System Image Credit: hep://home.web.cern.ch/about/experiments/cms Inner Silicon Tracker Semiconductor detector technology used to measure and time stamp position of charged particles Inner layers consist of pixels for highest possible resolution Outer layers
    [Show full text]
  • HGCAL BEAM TEST Detailed Report/User GUIDE
    HGCAL BEAM TEST Detailed Report/User GUIDE PROJECT GUIDE: DAVID BARNEY NAME: DEEPAK KUMAR CHOUBEY, AAYUSH ANAND Acknowledgement This internship opportunity we had with HGCAL group at CERN was a great chance for learning and professional development. It is our first intern. we feel lucky to work with such highly experienced people in the world’s largest Nuclear Research Centre. Special thanks to P. Behera, D. Barney to put us here. we would also like to grab this opportunity to thank Andre David for continuously guiding us throughout this internship. We gained a lot of theoretical and practical aspect of knowledge with a motivation to use it further for ourself and the betterment of our professional career. Deepak, Aayush IIT Madras [email protected] [email protected] Table of Contents 1.Introduction………………………………………………………………………………………………………………………………………….4 #. CERN #. CMS #. HGCAL 2.Beam Test …………………..……………………………………………………………………………………………………………………….7 #. Overview #. Data Taking #. Data Analysis 3.Feedback/ Experience………….…………………………………………………………………………………………………………….18 4.References and contact details…………………………………………………………………………………………………………..19 1.INTRODUCTION #.CERN It is the world’s largest and most sophisticated Nuclear Research center, located at the border of Switzerland and France. Its provisional body was founded on 1952. It uses very large and complex instruments to study about fundamental particles. Here, particles are made to collide at a very large speed. This gives their physicists to study about the particle interactions and behavior after the collisions. European organization for nuclear research became renown after their famous discovery of Higgs boson. It has many experiments going on simultaneously at different locations in CERN. Its major experiments are *CMS (compact muon solenoid) *ATLAS ( a toroid LHC apparatus) *ALICE ( a large ion collider experiment) *LHC (large hadron collider) • and other experiments are ASACUSA, ATRAP, AWAKE, BASE, CAST, CLOUD, COMPASS, LHCf, MOEDAL, NA61/SHINE, NA62 etc.
    [Show full text]
  • Physics Potential of an Experiment Using LHC Neutrinos
    Available on the CMS information server CMS NOTE 2019-001 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 2019/03/05 Physics Potential of an Experiment using LHC Neutrinos N. Beni1, M. Brucoli2, S. Buontempo3, V. Cafaro4, G.M. Dallavalle4, S. Danzeca2, G. De Lellis5, A. Di Crescenzo3, V. Giordano4, C. Guandalini4, D. Lazic6, S. Lo Meo7, F. L. Navarria4, and Z. Szillasi1 1 Hungarian Academy of Sciences, Inst. for Nuclear Research (ATOMKI), Debrecen, Hungary, and CERN,Geneva, Switzerland 2 CERN, CH-1211 Geneva 23, Switzerland 3 Universita` di Napoli Federico II and INFN, sezione di Napoli, Italy 4 INFN sezione di Bologna and Dipartimento di Fisica dell’ Universita,` Bologna, Italy 5 CERN, Geneva, Switzerland, and Universita` Federico II and INFN sezione di Napoli, Italy 6 Boston University, Department of Physics, Boston, MA 02215, USA 7 INFN sezione di Bologna and ENEA Research Centre E. Clementel, Bologna, Italy Abstract Production of neutrinos is abundant at LHC. Flavour composition and energy reach of the neutrino flux from proton-proton collisions depend on the pseudorapidity h. At large h, energies can exceed the TeV, with a sizeable contribution of the t flavour. A dedicated detector could intercept this intense neutrino flux in the forward direction, and measure the interaction cross section on nucleons in the unexplored energy range arXiv:1903.06564v1 [hep-ex] 15 Mar 2019 from a few hundred GeV to a few TeV. The high energies of neutrinos result in a larger nN interaction cross section, and the detector size can be relatively small.
    [Show full text]
  • MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
    Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.
    [Show full text]