The ATLAS Experiment at the CERN Large Hadron Collider

Total Page:16

File Type:pdf, Size:1020Kb

The ATLAS Experiment at the CERN Large Hadron Collider The ATLAS Experiment at the CERN Large Hadron Collider A 30 minute tour Peter Krieger University of Toronto P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 0 The Standard Model of Particle Physics SU(3)C SU(2)L U(1)Y e μ Consistent with all existing experimental data BUT e L μ L L No Higgs yet u c t 19 free parameters (masses, couplings etc) three (?) generations of fundamental fermions d s b L L L Hierarchy problem (need Supersymmetry) Charge ratios of quarks and leptons (GUTs) No gravity (need string theory ?) ± 0 0 W ,Z Higgs H A Number candidates for physics beyond the SM g Expected mass scale for new physics ~ 1 TeV P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 1 Beyond the Standard Model Hierarchy problem: there are two fundamental energy scales that we know -17 of: the electroweak scale and the Planck scale: MEW / Mplanck 10 Naturalness problem: radiative corrections to the mass of a fundamental scalar (e.g. the Higgs) scale like 2 where is the energy scale to which the theory remains valid. This yields a fine-tuning problem for the Higgs mass unless: Could be gravity if there a) There is new physics at the ~ TeV energy scale are extra dimensions b) There is some symmetry protecting the Higgs mass against large radiative corrections (Supersymmetry) If the Higgs is not discovered with a mass < 800 GeV, expect the dynamics of WW, ZZ scattering to reveal new physics at this energy scale We MUST see something at LHC energies P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 2 Vector Boson Scattering 2 Cross-section grows with s E CM . Eventually violates unitarity (probability) unless there are additional processes. Need to add with M H 1 TeV P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 3 Constraints on the Higgs Mass LEP Direct Search Limit MH > 114 GeV Low mass Higgs is favoured P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 4 Supersymmetry Each SM boson (fermion) has a fermionic (bosonic) supersymmetric partner with IDENTICAL MASS and Standard Model COUPLINGS leptons sleptons ~ ~ ~ e μ e μ gauginos higgsinos gluinos ~ ~ ~ ± ~ ± 0 ~ 0 ~ e μ e μ W W h h g g 0 ~ 0 0 ~ 0 ~ Z Z H H u c t u~ ~c t ~ 0 ~ 0 ~ ~ A A d s b d ~s b ~ H ± H ± quarks squarks Obviously we do not see such particles. So we say SUSY is a broken symmetry. However, most motivations for SUSY require a mass scale of less than about 1 TeV P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 5 Force Unification with and without SUSY Weak-scale SUSY seems to allow for force unifications at high energy (running of coupling constants with energy): No SUSY with SUSY Assumes a TeV scale SUSY particle mass spectrum P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 6 R-parity R-Parity is a quantum number which distinguishes SM and supersymmetric particles R = (1)3(BL)+2S Most supersymmetric models assume R-Parity Conservation This has two important consequences: Supersymmetric particles must be produced in pairs There must be some Lightest Supersymmetric Particle or LSP ~0 This LSP is usually the lightest neutralino 1 which can be a good Cold Dark Matter candidate. This leads to an experimental signature of large transverse missing energy. In the case of pair production of squarks and gluinos at the LHC, the standard signature is jets + missing energy P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 7 Cosmological Issues Evidence is that dark matter is predominantly “cold”, e.g. non-relativistic. Popular candidate is the WIMP (Weakly Interacting Massive Particle). The LSP can be a very good candidate for this. P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 8 Some Basic Collider Physics How does one calculate the rate for some physics process at a collider ? M = sum of all contributing processes, here for e+e- W+W- Define cross-section |M|2 units of (length)2 f bunch crossing frequency Define luminosity L N A ~Number of ~ cross-sectional size of the beams particle bunches times numbers of particles in each Instantaneous production rate N = L bunch P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 9 Hadron Colliders vs Electron Positron Colliders Bending a charged particle in a magnetic field costs energy emitted in the form of synchrotron radiation: 2 2 4 4 e 1 4 E = • or E 3 m4 For fixed radius machine (i.e. in the LEP tunnel at CERN with = 6.28km) synchrotron radiation loss for protons is less that that for electrons by the amount Cannot (feasibly) build electron synchrotrons 4 m of arbitrarily high energy. Need either: e 1013 hadron collider mp linear electron positron collider P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 10 The Large Hadron Collider at CERN Proton-proton collider installed into the 27km circumference LEP ring at CERN in Geneva Switzerland: pp centre-of-mass energy of 14 TeV constituent centre-of-mass energies ~ 1-2 TeV luminosity of 1033 cm-2s-1 (low luminosity) 1034 cm-2s-1 (high luminosity) proton bunch spacing of 25 ns (40MHz collision frequency) Physics goals: whatever TeV-scale physics is there to be discovered • Higgs boson • Extended gauge theories • Supersymmetry • Compositeness • Extra dimensions • Low-scale gravity P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 11 CERN Aerial View P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 12 LHC Accelerator Chain P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 13 The CERN Large Hadron Collider P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 14 Cutaway View LHC/ATLAS (Graphic) P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 15 The LHC Tunnel P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 16 Quadrupole Magnets from Canada P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 17 The proton-proton total cross-section = 1034 cm-2/s · 100mb · 10-27cm-2/mb = 109/s L tot LHC 109/s · 25ns 25 interactions / bunch crossing This is referred to as “pileup” P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 18 Min-Bias Events at High Luminosity (1034 cm-2s-1) High event rate results in large detector occupancies High charged particle multiplicity visible in tracking detector ATLAS H P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 19 Production cross-sections at the LHC P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 20 Higgs Branching Fractions vs MH In terms of discovery potential, MH matters a lot. Low mass is tricky due to huge QCD backgrounds. P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 21 Higgs Discovery Significance at ATLAS 1 L dt = 30 fb Vector boson fusion important in the low ATLAS mass region for example, VBF H + P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 22 LHC luminosity profile and physics reach early physics O(1fb-1) P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 23 Collider Detectors Events reconstructed based on particles stable enough to be detected Tracking EM Hadronic Muon Detector Detector Calorimeters 0 nK, L e± μ ± ± , p 0 nK, L Charged e±, muons particle momentum, -------Hadrons, jets---------- particle ID P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 24 Calorimeters vs Magnetic Spectrometers A calorimeter measures particle / jet energies via total energy deposition in the device e.g. absorption of entire particle / jet energy through a showering process (EM or hadronic). Magnetic spectrometers measure particle momenta via curvature in a known magnetic field (usually solenoidal, but also toroidal in the case of the ATLAS muon spectrometer). For a given design, the depth of a calorimeter capable of providing full containment of high energy particles scales like ln(E). For a magnetic spectrometer, the resolution p/p, for a given detector size, scales like sqrt(E). Magnetic spectrometers must get larger at higher energies, to achieve the same momentum resolution. In ATLAS, most of the detector volume is occupied by the muon spectrometer. P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 25 The ATLAS Detector people shown for scale P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 26 ATLAS Event Slice P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 27 The ATLAS Canada Collaboration Alberta 42 University/Lab Physicists Carleton Montreal 150 People, including engineers, McGill Simon technicians and students Fraser Regina 20 Undergraduate students Toronto 60 Graduate Students TRIUMF 20 Postdocs UBC Victoria York Other Important Activities High Level Trigger Focus has been on LAr Calorimetry ATLAS Computing TRT Electronics Four NSERC funded projects: ATLAS Upgrades (SLHC) Hadronic Endcap Calorimeter Beam Conditions Monitors Beam Testing / Analysis Hadronic Forward Calorimeter Calorimeter Calibration Endcap Signal Cryogenic Feedthroughs Physics Studies / Analysis Radiation Hardness Studies Front-End Board Electronics Pixel Testing and Assembly P.Krieger, University of Toronto WNPPC'08, Banff, February 2008 28 ATLAS Collaboration (Status October 2007) 37 Countries 167 Institutions 2000 Scientific Authors total (1600 with a PhD) CANADA: ~ 4% of collaboration Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen,
Recommended publications
  • The ATLAS Experiment
    The ATLAS Experiment Mapping the Secrets of the Universe Michael Barnett Physics Division July 2007 With help from: Joao Pequenao Paul Schaffner M. Barnett – July 2007 1 Large Hadron Collider CERN lab in Geneva Switzerland Protons will circulate in opposite directions and collide inside experimental areas 100 meters underground 17 miles around M. Barnett – July 2007 2 The ATLAS Experiment See animation M. Barnett – July 2007 3 Large Hadron Collider Numbers The fastest racetrack on the planet Trillions of protons will race around the 17-mile ring 11,000 times a second, traveling at 99.9999991% the speed of light. Seven times the energy of any previous accelerator. The emptiest space in the solar system Accelerating protons to almost the speed of light requires a vacuum as empty as interplanetary space. There is 10 times more atmosphere on the moon than there will be in the LHC. M. Barnett – July 2007 4 Large Hadron Collider Numbers The hottest spot in our galaxy Colliding protons will generate temperatures 100,000 times hotter than the sun (but in a minuscule space). Equivalent to a billionth of a second after the Big Bang M. Barnett – July 2007 5 LHC Exhibition at London Science Museum M. Barnett – July 2007 6 Large Hadron Collider Numbers The biggest most sophisticated detectors ever built Recording the debris from 600 million proton collisions per second requires building gargantuan devices that measure particles with 0.0004 inch precision. The most extensive computer system in the world Analyzing the data requires tens of thousands of computers around the world using the Grid.
    [Show full text]
  • Aaron Taylor Physics and Astronomy This
    Aaron Taylor Candidate Physics and Astronomy Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Sally Seidel , Chairperson Dr. Pavel Reznicek Dr. Huaiyu Duan Dr. Douglas Fields Dr. Bruce Schumm CERN-THESIS-2017-006 04/11/2016 SEARCH FOR NEW PHYSICS PROCESSES WITH HEAVY QUARK SIGNATURES IN THE ATLAS EXPERIMENT by AARON TAYLOR B.A., Mathematics, University of California, Santa Cruz, 2011 M.S., Physics, University of New Mexico, 2014 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico Albuquerque, New Mexico May, 2017 ©2017, Aaron Taylor iii Acknowledgements I would like to thank Professor Sally Seidel, for her constant support and guidance in my research. I would also like to thank her for her patience in helping me to develop my technical writing and presentation skills; without her assistance, I would never have gained the skill I have in that field. I would like to thank Konstantin Toms, for his constant assistance with the ATLAS code, and for generally giving advice on how to handle data analysis. The Bs → 4μ analysis likely wouldn’t have gotten anywhere without him. I would like to deeply thank Pavel Reznicek, without whom I would never have gotten as great an understanding of ATLAS code as I currently have. It is no exaggeration to say that I would not have been half as successful as I have been without his constant patience and understanding. Thank you. Many thanks to Martin Hoeferkamp, who taught me much about instrumentation and physical measurements.
    [Show full text]
  • Slides Lecture 1
    Advanced Topics in Particle Physics Probing the High Energy Frontier at the LHC Ulrich Husemann, Klaus Reygers, Ulrich Uwer University of Heidelberg Winter Semester 2009/2010 CERN = European Laboratory for Partice Physics the world’s largest particle physics laboratory, founded 1954 Historic name: “Conseil Européen pour la Recherche Nucléaire” Lake Geneva Proton-proton2500 employees, collider almost 10000 guest scientists from 85 nations Jura Mountains 8.5 km Accelerator complex Prévessin site (approx. 100 m underground) (France) Meyrin site (Switzerland) Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 2 Large Hadron Collider: CMS Experiment: Proton-Proton and Multi Purpose Detector Lead-Lead Collisions LHCb Experiment: B Physics and CP Violation ALICE-Experiment: ATLAS Experiment: Heavy Ion Physics Multi Purpose Detector Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 3 The Lecture “Probing the High Energy Frontier at the LHC” Large Hadron Collider (LHC) at CERN: premier address in experimental particle physics for the next 10+ years LHC restart this fall: first beam scheduled for mid-November LHC and Heidelberg Experimental groups from Heidelberg participate in three out of four large LHC experiments (ALICE, ATLAS, LHCb) Theory groups working on LHC physics → Cornerstone of physics research in Heidelberg → Lots of exciting opportunities for young people Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 4 Scope
    [Show full text]
  • Arxiv:2001.07837V2 [Hep-Ex] 4 Jul 2020 Scale Funding Will Be Requested at Different Stages Across the Globe
    Brazilian Participation in the Next-Generation Collider Experiments W. L. Aldá Júniora C. A. Bernardesb D. De Jesus Damiãoa M. Donadellic D. E. Martinsd G. Gil da Silveirae;a C. Henself H. Malbouissona A. Massafferrif E. M. da Costaa C. Mora Herreraa I. Nastevad M. Rangeld P. Rebello Telesa T. R. F. P. Tomeib A. Vilela Pereiraa aDepartamento de Física Nuclear e Altas Energias, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, CEP 20550-900, Rio de Janeiro, Brazil bUniversidade Estadual Paulista (Unesp), Núcleo de Computação Científica Rua Dr. Bento Teobaldo Ferraz, 271, 01140-070, Sao Paulo, Brazil cInstituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, CEP 05508-090, São Paulo, Brazil dUniversidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Caixa Postal 68528, 21941-972 Rio de Janeiro, Brazil eInstituto de Física, Universidade Federal do Rio Grande do Sul , Av. Bento Gonçalves, 9550, CEP 91501-970, Caixa Postal 15051, Porto Alegre, Brazil f Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr. Xavier Sigaud, 150, CEP 22290-180 Rio de Janeiro, RJ, Brazil E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: This proposal concerns the participation of the Brazilian High-Energy Physics community in the next-generation collider experiments.
    [Show full text]
  • Arxiv:2003.07868V3 [Hep-Ph] 21 Jul 2020 Ejmnc Allanach, C
    CERN-LPCC-2020-001, FERMILAB-FN-1098-CMS-T, Imperial/HEP/2020/RIF/01 Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2 We report on the status of efforts to improve the reinterpretation of searches and mea- surements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data. Waleed Abdallah,1, 2 Shehu AbdusSalam,3 Azar Ahmadov,4 Amine Ahriche,5, 6 Gaël Alguero,7 Benjamin C. Allanach,8, ∗ Jack Y. Araz,9 Alexandre Arbey,10, 11 Chiara Arina,12 Peter Athron,13 Emanuele Bagnaschi,14 Yang Bai,15 Michael J. Baker,16 Csaba Balazs,13 Daniele Barducci,17, 18 Philip Bechtle,19, ∗ Aoife Bharucha,20 Andy Buckley,21, † Jonathan Butterworth,22, ∗ Haiying Cai,23 Claudio Campagnari,24 Cari Cesarotti,25 Marcin Chrzaszcz,26 Andrea Coccaro,27 Eric Conte,28, 29 Jonathan M. Cornell,30 Louie D. Corpe,22 Matthias Danninger,31 Luc Darmé,32 Aldo Deandrea,10 Nishita Desai,33, ∗ Barry Dillon,34 Caterina Doglioni,35 Matthew J. Dolan,16 Juhi Dutta,1, 36 John R. Ellis,37 Sebastian Ellis,38 Farida Fassi,39 Matthew Feickert,40 Nicolas Fernandez,40 Sylvain Fichet,41 Thomas Flacke,42 Benjamin Fuks,43, 44, ∗ Achim Geiser,45 Marie-Hélène Genest,7 Akshay Ghalsasi,46 Tomas Gonzalo,13 Mark Goodsell,43 Stefania Gori,46 Philippe Gras,47 Admir Greljo,11 Diego Guadagnoli,48 Sven Heinemeyer,49, 50, 51 Lukas A.
    [Show full text]
  • The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland
    34th SLAC Summer Institute On Particle Physics (SSI 2006), July 17-28, 2006 The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland 1. INTRODUCTION The Large Hadron Collider (LHC) at CERN is now in its final installation and commissioning phase. It is a two-ring superconducting proton-proton collider housed in the 27 km tunnel previously constructed for the Large Electron Positron collider (LEP). It is designed to provide proton-proton collisions with unprecedented luminosity (1034cm-2.s-1) and a centre-of-mass energy of 14 TeV for the study of rare events such as the production of the Higgs particle if it exists. In order to reach the required energy in the existing tunnel, the dipoles must operate at 1.9 K in superfluid helium. In addition to p-p operation, the LHC will be able to collide heavy nuclei (Pb-Pb) with a centre-of-mass energy of 1150 TeV (2.76 TeV/u and 7 TeV per charge). By modifying the existing obsolete antiproton ring (LEAR) into an ion accumulator (LEIR) in which electron cooling is applied, the luminosity can reach 1027cm-2.s-1. The LHC presents many innovative features and a number of challenges which push the art of safely manipulating intense proton beams to extreme limits. The beams are injected into the LHC from the existing Super Proton Synchrotron (SPS) at an energy of 450 GeV. After the two rings are filled, the machine is ramped to its nominal energy of 7 TeV over about 28 minutes. In order to reach this energy, the dipole field must reach the unprecedented level for accelerator magnets of 8.3 T.
    [Show full text]
  • Tevatron Accelerator Physics and Operation Highlights A
    FERMILAB-CONF-11-129-APC TEVATRON ACCELERATOR PHYSICS AND OPERATION HIGHLIGHTS A. Valishev for the Tevatron group, FNAL, Batavia, IL 60510, U.S.A. Abstract Table 1: Integrated luminosity performance by fiscal year. The performance of the Tevatron collider demonstrated FY07 FY08 FY09 FY10 continuous growth over the course of Run II, with the peak luminosity reaching 4×1032 cm-2 s-1, and the weekly Total integral (fb-1) 1.3 1.8 1.9 2.47 -1 integration rate exceeding 70 pb . This report presents a review of the most important advances that contributed to Until the middle of calendar year 2009, the luminosity this performance improvement, including beam dynamics growth was dominated by improvements of the antiproton modeling, precision optics measurements and stability production rate [2], which remains stable since. control, implementation of collimation during low-beta Performance improvements over the last two years squeeze. Algorithms employed for optimization of the became possible because of implementation of a few luminosity integration are presented and the lessons operational changes, described in the following section. learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects. COLLIDER RUN II PERFORMANCE Tevatron collider Run II with proton-antiproton collisions at the center of mass energy of 1.96 TeV started in March 2001. Since then, 10.5 fb-1 of integrated luminosity has been delivered to CDF and D0 experiments (Fig. 1). All major technical upgrades of the accelerator complex were completed by 2007 [1].
    [Show full text]
  • MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
    Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.
    [Show full text]
  • The Compact Linear E E− Collider (CLIC): Physics Potential
    + The Compact Linear e e− Collider (CLIC): Physics Potential Input to the European Particle Physics Strategy Update on behalf of the CLIC and CLICdp Collaborations 18 December 2018 1) Contact person: P. Roloff ∗ †‡ §¶ Editors: R. Franceschini , P. Roloff∗, U. Schnoor∗, A. Wulzer∗ † ‡ ∗ CERN, Geneva, Switzerland, Università degli Studi Roma Tre, Rome, Italy, INFN, Sezione di Roma Tre, Rome, Italy, § Università di Padova, Padova, Italy, ¶ LPTP, EPFL, Lausanne, Switzerland Abstract + The Compact Linear Collider, CLIC, is a proposed e e− collider at the TeV scale whose physics poten- tial ranges from high-precision measurements to extensive direct sensitivity to physics beyond the Standard Model. This document summarises the physics potential of CLIC, obtained in detailed studies, many based on full simulation of the CLIC detector. CLIC covers one order of magnitude of centre-of-mass energies from 350 GeV to 3 TeV, giving access to large event samples for a variety of SM processes, many of them for the + first time in e e− collisions or for the first time at all. The high collision energy combined with the large + luminosity and clean environment of the e e− collisions enables the measurement of the properties of Stand- ard Model particles, such as the Higgs boson and the top quark, with unparalleled precision. CLIC might also discover indirect effects of very heavy new physics by probing the parameters of the Standard Model Effective Field Theory with an unprecedented level of precision. The direct and indirect reach of CLIC to physics beyond the Standard Model significantly exceeds that of the HL-LHC. This includes new particles detected in challenging non-standard signatures.
    [Show full text]
  • The ATLAS Detector: a General Purpose Experiment at the Large Hadron Collider at CERN
    FR9806097 The ATLAS detector: a general purpose experiment at the Large Hadron Collider at CERN J. Schwindling CEA, DSM/DAPNIA, CE Saclay, 91191 Gif sur Yvette, France 1 Introduction The ATLAS collaboration has designed a general purpose detector to be operated at the Large Hadron Collider (LHC) at CERN [1]. The design of the detector took into account the requirements from the physics and the constraints from the collider, but also the cost and technological aspects. It is supported by a large amount of detailed simulations and test activities. The performances which are required to meet the physics goals are the following: - The search for Higgs bosons through their decays into two photons or four elec- trons requires a good electromagnetic calorimetry. - The search for Higgs bosons decaying into four muons requires a robust muon system. - Supersymmetric particles often decay into an invisible neutralino plus other parti- cles, leading to a missing energy signature which can be measured with an hermetic detector. - The measurement of the top quark mass requires a good measurement of jets. - b quark and r lepton identification requires the precise measurement of secondary vertices. The ATLAS detector is shown in figure 1. It covers a large fraction of the 4n angle, offers robust and redundant physics measurements and allows for triggering at low PT (about 10 GeV) thresholds. In order to achieve the design LHC luminosity of 1034 cm"2 s"1, the bunch spacing will be only 25 ns, leading to about 20 minimum bias events ("pile-up") and about 1000 charged tracks produced at each bunch crossing.
    [Show full text]
  • What Is Next for the Lhc?
    Building new technologies Fuelling industry Particle accelerators, like those at the heart of the and economy LHC, are now being adopted for cancer therapies using WHAT IS NEXT protons which, unlike current therapies, deposit all their energy in the same place, making them ideal for treating FOR THE LHC? STFC funds the UK membership to CERN, which gives tumours near to delicate organs. UK scientists and engineers access to the vast amount of data and research that takes place. New technology and systems are still being developed around the LHC, allowing us to ask new questions and Since the LHC became operational, UK industry make exciting discoveries and progress in a range of has won valuable contracts at CERN worth different fields. £102 million (2010-2015). Of these, £15 million were awarded in 2015. Inspiring the next generation Engineering success This exciting science is prompting more young people to consider careers in physics and engineering, fields that Many engineering disciplines were involved in the are highly prized throughout the UK economy (during design, construction and maintenance of the LHC. the academic year that the Higgs boson was discovered, More than 1,600 superconducting magnets were British universities received 2,000 more applications for installed, with most weighing in excess of 27 tonnes, physics degrees than in previous years). in a collaborative effort involving more than 10,000 scientists and engineers from over 100 countries. CERN provides opportunities for both apprentices and graduates to visit and work at the site, so more Universities across the UK helped build the highly young people have the chance to build the career that sensitive detectors at the heart of the LHC’s they want.
    [Show full text]
  • Scaling Behavior of Circular Colliders Dominated by Synchrotron Radiation
    SCALING BEHAVIOR OF CIRCULAR COLLIDERS DOMINATED BY SYNCHROTRON RADIATION Richard Talman Laboratory for Elementary-Particle Physics Cornell University White Paper at the 2015 IAS Program on the Future of High Energy Physics Abstract time scales measured in minutes, for example causing the The scaling formulas in this paper—many of which in- beams to be flattened, wider than they are high [1] [2] [3]. volve approximation—apply primarily to electron colliders In this regime scaling relations previously valid only for like CEPC or FCC-ee. The more abstract “radiation dom- electrons will be applicable also to protons. inated” phrase in the title is intended to encourage use of This paper concentrates primarily on establishing scaling the formulas—though admittedly less precisely—to proton laws that are fully accurate for a Higgs factory such as CepC. colliders like SPPC, for which synchrotron radiation begins Dominating everything is the synchrotron radiation formula to dominate the design in spite of the large proton mass. E4 Optimizing a facility having an electron-positron Higgs ∆E / ; (1) R factory, followed decades later by a p,p collider in the same tunnel, is a formidable task. The CepC design study con- stitutes an initial “constrained parameter” collider design. relating energy loss per turn ∆E, particle energy E and bend 1 Here the constrained parameters include tunnel circumfer- radius R. This is the main formula governing tunnel ence, cell lengths, phase advance per cell, etc. This approach circumference for CepC because increasing R decreases is valuable, if the constrained parameters are self-consistent ∆E. and close to optimal.
    [Show full text]