Zoonosis Update

Total Page:16

File Type:pdf, Size:1020Kb

Zoonosis Update Zoonosis Update Rift Valley fever virus Brian H. Bird, ScM, PhD; Thomas G. Ksiazek, DVM, PhD; Stuart T. Nichol, PhD; N. James MacLachlan, BVSc, PhD, DACVP ift Valley fever virus is a mosquito-borne pathogen ABBREVIATIONS Rof livestock and humans that historically has been responsible for widespread and devastating outbreaks of BSL Biosafety level severe disease throughout Africa and, more recently, the MP-12 Modified passage-12x PFU Plaque-forming unit Arabian Peninsula. The virus was first isolated and RVF RT Reverse transcription disease was initially characterized following the sudden RVF Rift Valley fever deaths (over a 4-week period) of approximately 4,700 lambs and ewes on a single farm along the shores of Lake Naivasha in the Great Rift Valley of Kenya in 1931.1 Since on animals that were only later identified as infected 6,7 that time, RVF virus has caused numerous economically with RVF virus. The need for a 1-medicine approach devastating epizootics that were characterized by sweep- to the diagnosis, treatment, surveillance, and control of ing abortion storms and mortality ratios of approximately RVF virus infection cannot be overstated. The close co- 100% among neonatal animals and of 10% to 20% among ordination of veterinary and human medical efforts (es- adult ruminant livestock (especially sheep and cattle).2–4 pecially in countries in which the virus is not endemic Infections in humans are typically associated with self- and health-care personnel are therefore unfamiliar with limiting febrile illnesses. However, in 1% to 2% of affected RVF) is critical to combat this important threat to the individuals, RVF infections can progress to more severe health of humans and other animals. disease including fulminant hepatitis, encephalitis, retini- Because of the potential for severe consequences tis, blindness, or a hemorrhagic syndrome; among severe- during outbreaks, RVF virus is considered a major zoo- ly affected persons who are hospitalized, the case fatality notic threat. Rift Valley fever virus is classified as a Cat- 8 ratio is approximately 10% to 20%.5 egory A overlap Select Agent by the CDC and the USDA Rift Valley fever epizootics and epidemics can rap- and as a high-consequence pathogen with the potential idly overwhelm the capacities of the public health and for international spread (List A) by the World Organi- veterinary medical communities to provide rapid diag- zation for Animal Health (Office International des Épi- 9 nostic testing and adequate medical care for affected zooties). As such, RVF virus is considered a potential humans and other animals, which can number in the threat as a biological terrorism agent that could have tens if not hundreds of thousands. Veterinarians, other dramatic direct (morbidity and death) and indirect (in- health personnel, farmers, and abattoir workers also ternational trade restrictions) impact in countries that are at high risk of infection from direct contact with are currently free of the virus. Furthermore, numerous infected animals and patients; indeed, many historical species of potentially competent mosquito vectors are 10 outbreaks of RVF disease in Africa were initially detect- present throughout North America and Europe. This ed because of illnesses among veterinarians and their review will focus on the current understanding of RVF assistants after they performed necropsies on infected virus ecology; pathogenesis and clinical signs of RVF animals. In 2008, several veterinarians, staff, and vet- disease among livestock, humans, and wildlife; the use erinary students at a South African veterinary college and limitations of rapid diagnostic testing during out- were infected after handling and performing necropsies breaks; and recent advances in vaccine design and de- velopment, as well as potential veterinary medical and From the Department of Pathology, Microbiology, and Immunology, public health consequences following introduction of School of Veterinary Medicine, University of California, Davis, CA the virus into previously unaffected areas. 95616 (Bird, MacLachlan); and Special Pathogens Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Preven- tion, Atlanta, GA 30333 (Ksiazek, Nichol). Dr. Ksiazek’s present address Etiologic Agent and Biosafety is Galveston National Laboratory, Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555. Rift Valley fever virus (Family, Bunyaviridae; ge- Dr. Bird was supported by the dual-degree DVM/PhD Veterinary Scien- nus, Phlebovirus) is an enveloped spherical particle (80 tist Training Program, the Graduate Group of Comparative Pathology, to 100 nm in diameter) with a tripartite single-stranded and the Students Training in Advanced Research programs of the Uni- negative-sense RNA genome (approx 11.9 kilobases).11 versity of California, Davis, School of Veterinary Medicine. The Bunyaviridae include several important veterinary The findings and conclusions in this report are those of the authors and and human medical pathogens such as Nairobi sheep do not necessarily represent the views of the funding agencies or the Centers for Disease Control and Prevention. disease virus, Akabane virus, Crimean-Congo hemor- The authors thank Dr. Robert Swanepoel for technical assistance. rhagic fever virus, La Crosse virus, sandfly fever Sicilian Address correspondence to Dr. Bird. virus, and the hantaviruses. JAVMA, Vol 234, No. 7, April 1, 2009 Vet Med Today: Zoonosis Update 883 Rift Valley fever virus is a notorious cause of acci- including movements of infected camels along trade dental infection among laboratory workers and veterinar- routes with Sudan, windblown infected mosquitoes, or ians. Direct contact with infected animals, especially dur- infected passengers on commercial airlines.24 Since the ing necropsy and obstetric procedures, is associated with 1977–1979 outbreak, RVF virus activity has occurred a high risk of infection; in any circumstances involving sporadically in Egypt, with deaths among livestock and such contact, strict adherence to universal blood-borne low numbers of human infections.25–27 pathogen precautions and to good biosafety practices is re- In 2000, the presence of RVF virus outside of Africa quired.12–15 Rift Valley fever virus particles in serum retain was reported for the first time. In the western provinces infectivity when stored at 4°C for several weeks, which is of Saudi Arabia and Yemen, an outbreak of severe human an important consideration in the safe handling of diag- and livestock disease associated with RVF virus occurred; nostic specimens.16 The virus is readily inactivated by use there were an estimated 2,000 human infections and at of strong detergents or 10% solutions of sodium hypochlo- least 245 deaths, and thousands of goats and sheep also rite (bleach) and via formalin fixation.16,17 Because of the died.19,28 This outbreak was preceded by exceptionally ease of horizontal transmission, laboratory-based investi- heavy rainfall, which resulted in large increases in the gations must be performed in BSL 3–enhanced (ie, BSL-3+ mosquito population and subsequent transmission of the or BSL-3 Agriculture) facilities in the United States.18 virus.29,30 Genetic analyses of RVF virus isolates collected during the Saudi Arabia–Yemen outbreak revealed high Epidemiology and Ecology similarity to viruses present during a 1997–1998 Kenyan outbreak, which suggested that the virus was introduced Impact of major epizootics and epidemics—Rift into Saudi Arabia and Yemen from eastern Africa.31,32 Valley fever virus infection of humans and other ani- However, as for the 1977–1979 Egyptian outbreak, the mals has been identified in approximately 30 countries, precise route of introduction is enigmatic because no and major epizootics and epidemics occur periodically epizootics in eastern Africa were reported at that time. It throughout the known geographic range of the virus is possible that viremic animals were imported into Saudi (Figure 1). The disease was initially thought to be re- Arabia or Yemen during the preceding 1997–1998 east stricted to the eastern Rift Valley region of Africa. How- African epizootic and that RVF virus circulated at levels ever, in 1951, a severe epizootic in South Africa occurred below the detection threshold until climactic conditions during which an estimated 100,000 sheep died and 500,000 ewes aborted their fetuses.19 The cause of the epizootic was not recognized as RVF virus until severe disease occurred in a veterinar- ian and several assistants following the necropsy of a dead bull.15 This outbreak initiated what has since become a repeat- ing pattern in which the recognition of RVF virus infection among humans often precedes the detection of animal disease because of the difficulties of veterinary surveillance in resource-poor settings. Traditionally, RVF virus has been restricted to sub-Saharan Africa but was detected north of the Sahara desert in 1977, where it was the cause of a mas- sive epidemic-epizootic along the Nile river and delta in Egypt.20–22 This out- break, in an apparently RVF-free area, remains the largest on record, with an estimated 200,000 human infections and at least 594 deaths among hospitalized patients.22 Losses among livestock were extensive; the costs were more than US $115 million at that time.21,23 During that outbreak, the full spectrum of hu- man RVF disease became apparent and ranged from subclinical infection to se- vere cases of hepatic necrosis with fatal hemorrhagic complications, delayed on- set encephalitis and permanent neuro- logic deficits, or severe retinitis with per- manent blindness.22 The route by which RVF virus was introduced into Egypt Figure 1—Geographic distribution of RVF virus. Countries in which epizootics or epidem- ics are known to have occurred are indicated in red with the date of each outbreak. Coun- will likely never be known, but several tries with evidence of low-level enzootic activity (antibody prevalence or occasional RVF potential scenarios have been proposed, virus isolation) are indicated in pink. To convert kilometers to miles, multiply by 0.625.
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Laboratory Colonization of Aedes Lineatopennis
    LABORATORY COLONIZATION OF AEDES LINEATOPENNIS Atchariya Jitpakdi1, Anuluck Junkum1, Benjawan Pitasawat1, Narumon Komalamisra2, Eumporn Rattanachanpichai1, Udom Chaithong1, Pongsri Tippawangkosol1, Kom Sukontason1, Natee Puangmalee1 and Wej Choochote1 1Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai; 2Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Abstract. Aedes lineatopennis, a species member of the subgenus Neomelaniconion, could be colonized for more than 10 successive generations from 30 egg batches [totally 2,075 (34-98) eggs] of wild-caught females. The oviposited eggs needed to be incubated in a moisture chamber for at least 7 days to complete embryonation and, following immersion in 0.25-2% hay-fermented water, 61-66% of them hatched after hatching stimulation. Larvae were easily reared in 0.25-1% hay-fermented water, with suspended powder of equal weight of wheat germ, dry yeast, and oatmeal provided as food. Larval development was complete after 4-6 days. The pupal stage lasted 3-4 days when nearly all pupae reached the adult stage (87-91%). The adults had to mate artificially, and 5-day-old males proved to be the best age for induced copulation. Three to five-day-old females, which were kept in a paper cup, were fed easily on blood from an anesthetized golden hamster that was placed on the top- screen. The average number of eggs per gravid female was 63.56 ± 22.93 (22-110). Unfed females and males, which were kept in a paper cup and fed on 5% multivitamin syrup solution, lived up to 43.17 ± 12.63 (9-69) and 15.90 ± 7.24 (2-39) days, respectively, in insectarium conditions of 27 ± 2˚C and 70-80% relative humidity.
    [Show full text]
  • Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1
    Vol. XVII, No. 3, August, 1961 403 Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1 C. R. Joyce PUBLIC HEALTH SERVICE QUARANTINE STATION U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE HONOLULU, HAWAII Public health workers frequently become concerned over the possibility of the introduction of exotic anophelines or other mosquito disease vectors into Hawaii. It is well known that many species of insects have been dispersed by various means of transportation and have become established along world trade routes. Hawaii is very fortunate in having so few species of disease-carrying or pest mosquitoes. Actually only three species are found here, exclusive of the two purposely introduced Toxorhynchites. Mosquitoes still get aboard aircraft and surface vessels, however, and some have been transported to new areas where they have become established (Hughes and Porter, 1956). Mosquitoes were unknown in Hawaii until early in the 19th century (Hardy, I960). The night biting mosquito, Culex quinquefasciatus Say, is believed to have arrived by sailing vessels between 1826 and 1830, breeding in water casks aboard the vessels. Van Dine (1904) indicated that mosquitoes were introduced into the port of Lahaina, Maui, in 1826 by the "Wellington." The early sailing vessels are known to have been commonly plagued with mosquitoes breeding in their water supply, in wooden tanks, barrels, lifeboats, and other fresh water con tainers aboard the vessels, The two day biting mosquitoes, Aedes ae^pti (Linnaeus) and Aedes albopictus (Skuse) arrived somewhat later, presumably on sailing vessels. Aedes aegypti probably came from the east and Aedes albopictus came from the western Pacific.
    [Show full text]
  • Mencn. 1985 J. Ar"R. Mosq. Conrhol Assoc. a BLOOD MEAL ANALYSIS of ENGORGED MOSQUITOES FOUND in RIFT VALLEY FEVER EPIZOOTIC
    Mencn. 1985 J. Ar"r.Mosq. CoNrhol Assoc. 93 Beck, S. D. 1980. Insect photopefiodism, 2nd ed. ural history of RVF. In this study we exatnined AcademicPress, New York. 387 pp. 739 blood-fed mosquitoes trapped during and Gallaway,W. J. and R. A. Brust. 1982.The occur- following a period of particularly heavy rainfall rence of Aedes hend,ersoniCockerell and Aedes (October-December1982), which did not gen- triseriatus(Say) in Manitoba. MosQ. Syst. 14:262- eratean epizooticof RVF. However,during this 264. Holzapfel,C. M. and W. E. Bradshaw.lg8l. Geogra- period the virus was isolated from mosquitoes phy of larval dormdnci ln the tree-hole mosquito, at the trapping sites,and from orle dead calf on Aed,estriseriatus (Say). Can. J. Zool.59:l0l,l-1021. a nearby farm; there were also 4 seroconver. Sims,S. R. 1982.Larval diapauseiir the easterntree- sionsin a group of 80 yearling cattle testedai hole mosquito, Aed.estriseriatui; Latitudinal varia- one of the trapping sites(Davies, unpublished tion in induction and intensity.Ann. Entorhol.Soc. data). The emergenceof mosquito speciesap- Am. 75:195-200. peared to be similar to that occurring during Wood, D. M., P. T. Dang and R. A. Ellis. 1979.The the early stagesof RVF epizootics(Linthicum et insectsand arachnids Part of Canada. 6. The mos- al. 1983,1984a). quitoesof Canada(Diptera: Culicidae).Agric. Can. Publ. 1686.390 pp. Mosquitoeswere trapped with Solid State Zavortink, T. J. 1972. Mosquito studies (Diptera: Army Miniature light traps (John W. Hock, Co., Culicidae)XXUII. The New World speciesfor- Gainesville,FL) at known RVF epizootic sitesin merly placedin Aedrs(Finlaya).
    [Show full text]
  • Rift Valley Fever Virus Circulation in Livestock and Wildlife, and Population Dynamics of Potential Vectors, in Northern Kwazulu- Natal, South Africa
    Rift Valley fever virus circulation in livestock and wildlife, and population dynamics of potential vectors, in northern KwaZulu- Natal, South Africa by CARIEN VAN DEN BERGH Submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy in the Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria Promoter: Prof EH Venter Co-promoter: Prof PN Thompson Co-promoter: Prof R Swanepoel August 2019 i DECLARATION I, Carien van den Bergh, student number 28215461 hereby declare that this dissertation, “Rift Valley fever virus circulation in livestock and wildlife, and population dynamics of potential vectors, in northern KwaZulu-Natal, South Africa.”, submitted in accordance with the requirements for the Doctor of Philosophy (Veterinary Science) degree at University of Pretoria, is my own original work and has not previously been submitted to any other institution of higher learning. All sources cited or quoted in this research paper are indicated and acknowledged with a comprehensive list of references. ............................................................. Carien van den Bergh August 2019 ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to the following people: My supervisors, Prof Estelle Venter, Prof Peter Thompson and Prof Bob Swanepoel for their guidance and support. Prof Peter Thompson, Ginette Thompson, Dannet Geldenhuys, Yusuf Ngoshe and Bruce Hay for accompanying me to Ndumo for sample collections. Prof Paulo Almeida and Dr Louwtjie Snyman, for their assistance with the mosquito identification. Ms Karen Ebersohn for assisting me with laboratory work. I would like to acknowledge the kindness and patience of the farmers and herders in the study area, as well as the generous assistance of the State Veterinarian and the Animal Health Technicians of the KwaZulu-Natal Department of Agriculture and Rural Development, Jozini District, and Ezemvelo KZN Wildlife.
    [Show full text]
  • Identification of the Source of Blood Meals in Mosquitoes Collected From
    Gyawali et al. Parasites Vectors (2019) 12:198 https://doi.org/10.1186/s13071-019-3455-2 Parasites & Vectors RESEARCH Open Access Identifcation of the source of blood meals in mosquitoes collected from north-eastern Australia Narayan Gyawali1,2,3*, Andrew W. Taylor‑Robinson4, Richard S. Bradbury1, David W. Huggins5, Leon E. Hugo3, Kym Lowry2 and John G. Aaskov2 Abstract Background: More than 70 arboviruses have been identifed in Australia and the transmission cycles of most are poorly understood. While there is an extensive list of arthropods from which these viruses have been recovered, far less is known about the non‑human hosts that may be involved in the transmission cycles of these viruses and the relative roles of diferent mosquito species in cycles of transmission involving diferent hosts. Some of the highest rates of human infection with zoonotic arboviruses, such as Ross River (RRV) and Barmah Forest (BFV) viruses, occur in coastal regions of north‑eastern Australia. Methods: Engorged mosquitoes collected as a part of routine surveillance using CO 2‑baited light traps in the Rock‑ hampton Region and the adjoining Shire of Livingstone in central Queensland, north‑eastern Australia, were ana‑ lysed for the source of their blood meal. A 457 or 623 nucleotide region of the cytochrome b gene in the blood was amplifed by PCR and the amplicons sequenced. The origin of the blood was identifed by comparing the sequences obtained with those in GenBank®. Results: The most common hosts for the mosquitoes sampled were domestic cattle (26/54) and wild birds (14/54). Humans (2/54) were an infrequent host for this range of mosquitoes that are known to transmit arboviruses causing human disease, and in an area where infections with human pathogens like RRV and BFV are commonly recorded.
    [Show full text]
  • A REVIEW on the ECOLOGICAL DETERMINANTS of AEDES AEGYPTI (DIPTERA: CULICIDAE) VECTORIAL CAPACITY Rafael Maciel-De-Freitas1
    Oecologia Australis 14(3): 726-736, Setembro 2010 doi:10.4257/oeco.2010.1403.08 A REVIEW ON THE ECOLOGICAL DETERMINANTS OF AEDES AEGYPTI (DIPTERA: CULICIDAE) VECTORIAL CAPACITY Rafael Maciel-de-Freitas1 1Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Transmissores de Hematozoários, Pavilhão Carlos Chagas, sala 414, 4° andar, Rio de Janeiro, RJ, Brasil. CEP: 21040-360 E-mail: [email protected] ABSTRACT Dengue is a re-emerging infectious disease that infects more than 50 million people annually. Since there are no antiviral drugs or vaccine to disrupt transmission, the most recommended tool for reducing dengue epidemics intensity is focused on intensify control efforts on its vector, the yellow fever mosquito Aedes aegypti. In order to better understand vector biology and its impact on disease transmission, a known concept in entomology and epidemiology is vectorial capacity, which refers to the ability of a mosquito to transmit a given pathogen. The variation of several aspects of mosquito biology, such as its survival, vectorial competence and biting rates can change the intensity of dengue transmission. In this review, the parameters used for composing the vectorial capacity formulae were detailed one by one, with a critical point of view of their estimation and usefulness to medical entomology. Keywords: Dengue; yellow fever; disease transmission; dispersal. RESUMO UMA REVISÃO DOS DETERMINANTES ECOLÓGICOS NA CAPACIDADE VETORIAL DE AEDES AEGYPTI (DIPTERA: CULICIDAE). A dengue é uma doença infecciosa re-emergente que afeta mais de 50 milhões de pessoas anualmente. Uma vez que não existem drogas antivirais ou vacinas para interromper a transmissão, a ferramenta mais recomendada para reduzir a intensidade de epidemias de dengue é a intensificação de esforços de controle do seu vetor, o mosquito Aedes aegypti, também vetor da febre amarela urbana.
    [Show full text]
  • Diptera: Culicidae
    cothxJtions of the American EntcxndogicaI Institute Volume 13, Number 1, 1976 MAY2 1 1976 THE SUBGENERA INDUSIUS AND EDWARDSAEDES 0~ THE GENUS AEDES (DIPTERA: CULICIDAE). bY John F. Reinert ii CONTENTS ABSTRACT. ............................... 1 INTRODUCTION. ............................ 1 SUBGENUS INDVSIUS .......................... 2 pulverulentus Edwards ...................... 4 SUBGENUS EDWARDSAEDES ...................... 9 imprimens (Walker). ....................... 12 ACKNOWLEDGMENTS. ......................... 21 LITERATURE CITED .......................... 21 LIST- OF FIGURES. ........................... 28 LIST OF FIGURE ABBREVIATIONS. .................. 28 FIGURES ................................ 29 APPENDICES .............................. 40 TABLE 1. Record of the branching of the setae on the pupae of A edes (Edwardsaedes) imprimens . 40 TABLE 2. Record of the branching of the setae on the larvae of A edes (Edwardsuedes) imprimens . 42 INDEX.................................. 45 MEDICALENTOMOLOGYSTUDIES-IV. THE SUBGENERA INDUSIUSAND EDWARDSAEDES OF THE GENUS AEDES (DIPTERA: C~LICIDAE)~. BY John F. Reinert2 ABSTRACT The subgenera Indusius Edwards and Edwardsaedes Belkin are redescribed and compared to other subgenera of the genus Aedes Meigen. Species assigned to the subgenera are fully illustrated and described, An analysis of the varia- tion in setal branching in larvae and pupae of ijnprimens (Walker) is presented. Aedes suknaensis (Theobald) is returned to synonymy with irnprimens. INTRODUCTION The monotypic subgenus Indusius
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Impact of Irrigation Expansion on the Inter-Epidemic and Between-Season Transmission of Rift Valley Fever in Bura Sub-County, Tana River County, Kenya
    Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin und dem International Livestock Research Institute Impact of irrigation expansion on the inter-epidemic and between-season transmission of Rift Valley fever in Bura Sub-County, Tana River County, Kenya Inaugural-Dissertation zur Erlangung des Grades eines PhD in Biomedical Sciences an der Freien Universität Berlin vorgelegt von Deborah R. Nyakwea Mbotha aus Nairobi, Kenia Master of Science in Veterinary Epidemiology Bachelor of Veterinary Medicine Berlin 2020 Journal-Nr.:4201 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Prof. Dr. Peter-Henning Clausen Zweiter Gutachter: Prof. Dr. Johanna Lindahl Dritter Gutachter: Univ.-Prof. Dr. Ard Nijhof Deskriptoren: rift valley fever, rift valley fever virus, phlebovirus, emerging infectious diseases, irrigation, land use planning, culicidae, species diversity, polymerase chain reaction, kenya Tag der Promotion: 14.08.2020 Dedicated to my beloved little girl, Keanna Nwoke (Kikki) Table of contents Table of Contents List of abbreviations ................................................................................................................ iii Preface ...................................................................................................................................... iv 1.0 CHAPTER 1: Introduction .................................................................................................
    [Show full text]
  • Predicting Abundances of Aedes Mcintoshi, a Primary Rift Valley Fever Virus Mosquito Vector
    RESEARCH ARTICLE Predicting Abundances of Aedes mcintoshi, a primary Rift Valley fever virus mosquito vector 1,2 3,4,5 6,7 Lindsay P. CampbellID *, Daniel C. Reuman , Joel Lutomiah , A. Townsend Peterson3,8, Kenneth J. Linthicum9, Seth C. Britch9, Assaf Anyamba10,11, Rosemary Sang6,7 1 Florida Medical Entomology Laboratory, IFAS, University of Florida, Vero Beach, Florida, United States of America, 2 Department of Entomology and Nematology, IFAS, University of Florida, Gainesville, Florida, United States of America, 3 Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America, 4 Kansas Biological Survey, University of Kansas, Lawrence, a1111111111 Kansas, United States of America, 5 Laboratory of Populations, Rockefeller University, New York, New York, a1111111111 United States of America, 6 Kenya Medical Research Institute, Nairobi, Kenya, 7 United States Army a1111111111 Medical Research Directorate ± Africa, Nairobi, Kenya, 8 Biodiversity Institute, University of Kansas, a1111111111 Lawrence, Kansas, United States of America, 9 United States Department of Agriculture, Agricultural a1111111111 Research Service Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, Florida, United States of America, 10 Universities Space Research Association, Columbia, Maryland, United States of America, 11 NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, Maryland, United States of America * [email protected] OPEN ACCESS Citation: Campbell LP, Reuman DC, Lutomiah J, Peterson AT, Linthicum KJ, Britch SC, et al. (2019) Abstract Predicting Abundances of Aedes mcintoshi, a primary Rift Valley fever virus mosquito vector. Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic arbovirus with important live- PLoS ONE 14(12): e0226617. https://doi.org/ stock and human health, and economic consequences across Africa and the Arabian 10.1371/journal.pone.0226617 Peninsula.
    [Show full text]
  • Fara Nantenaina RAHARIMALALA
    N° d’Ordre : 215 ‐ 2011 Année : 2011 THESE EN COTUTELLE ENTRE L’UNIVERSITE DE LYON (FRANCE) ET L’UNIVERSITE D’ANTANANARIVO (MADAGASCAR) Délivrée par L’UNIVERSITE CLAUDE BERNARD LYON I ET L’UNIVERSITE D’ANTANANARIVO ECOLES DOCTORALES DIPLOME DE DOCTORAT (Arrêté du 6 janvier 2005 relatif à la cotutelle internationale de thèse.) (Arrêté du 7 août 2006 relatif à la formation doctorale) Présentée et soutenue publiquement le 8 novembre 2011 Par Fara Nantenaina RAHARIMALALA ROLE DES MOUSTIQUES CULICIDAE, DE LEURS COMMUNAUTES MICROBIENNES, ET DES RESERVOIRS VERTEBRES, DANS LA TRANSMISSION D’ARBOVIRUS A MADAGASCAR Directeur de Thèse : Monsieur Patrick MAVINGUI Co‐Directeur de Thèse : Madame Bakoly Olga RALISOA JURY : PRESIDENT : Monsieur Victor JEANNODA, Professeur, Université d’Antananarivo RAPPORTEUR : Madame Anna‐Bella FAILLOUX, Directrice de recherche, Institut Pasteur, Paris RAPPORTEUR : Monsieur A. RASAMINDRAKOTROKA, Professeur Titulaire, Université d’Antananarivo RAPPORTEUR : Monsieur Henri Jonah RATSIMBAZAFY, Professeur HDR, Université d’Antananarivo EXAMINATEUR : Monsieur Marc LEMAIRE, Professeur, Université de Lyon 1 EXAMINATEUR : Madame Bakoly Olga RALISOA, Professeur Titulaire, Université d’Antananarivo EXAMINATEUR : Monsieur Patrick MAVINGUI, Directeur de Recherche, CNRS, Lyon 1 UNIVERSITE CLAUDE BERNARD ‐ LYON 1 Président de l’Université M. A. Bonmartin Vice‐président du Conseil d’Administration M. le Professeur G. Annat Vice‐président du Conseil des Etudes et de la Vie Universitaire M. le Professeur D. Simon Vice‐président du Conseil Scientifique M. le Professeur J‐F. Mornex Secrétaire Général M. G. Gay COMPOSANTES SANTE Faculté de Médecine Lyon Est – Claude Bernard Directeur : M. le Professeur J. Etienne Faculté de Médecine et de Maïeutique Lyon Sud – Charles Mérieux Directeur : M. le Professeur F‐N.
    [Show full text]