Rift Valley Fever Virus Circulation in Livestock and Wildlife, and Population Dynamics of Potential Vectors, in Northern Kwazulu- Natal, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Rift Valley Fever Virus Circulation in Livestock and Wildlife, and Population Dynamics of Potential Vectors, in Northern Kwazulu- Natal, South Africa Rift Valley fever virus circulation in livestock and wildlife, and population dynamics of potential vectors, in northern KwaZulu- Natal, South Africa by CARIEN VAN DEN BERGH Submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy in the Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria Promoter: Prof EH Venter Co-promoter: Prof PN Thompson Co-promoter: Prof R Swanepoel August 2019 i DECLARATION I, Carien van den Bergh, student number 28215461 hereby declare that this dissertation, “Rift Valley fever virus circulation in livestock and wildlife, and population dynamics of potential vectors, in northern KwaZulu-Natal, South Africa.”, submitted in accordance with the requirements for the Doctor of Philosophy (Veterinary Science) degree at University of Pretoria, is my own original work and has not previously been submitted to any other institution of higher learning. All sources cited or quoted in this research paper are indicated and acknowledged with a comprehensive list of references. ............................................................. Carien van den Bergh August 2019 ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to the following people: My supervisors, Prof Estelle Venter, Prof Peter Thompson and Prof Bob Swanepoel for their guidance and support. Prof Peter Thompson, Ginette Thompson, Dannet Geldenhuys, Yusuf Ngoshe and Bruce Hay for accompanying me to Ndumo for sample collections. Prof Paulo Almeida and Dr Louwtjie Snyman, for their assistance with the mosquito identification. Ms Karen Ebersohn for assisting me with laboratory work. I would like to acknowledge the kindness and patience of the farmers and herders in the study area, as well as the generous assistance of the State Veterinarian and the Animal Health Technicians of the KwaZulu-Natal Department of Agriculture and Rural Development, Jozini District, and Ezemvelo KZN Wildlife. We thank Ezemvelo KZN Wildlife for supplying the weather data Centers for Disease Control and Prevention, Meat Industry Trust, Cape Wools South Africa and AgriSETA for the funds to do the project. Francois van Niekerk, my husband and my mother Ina Muller for their help and support. The results of this research have been published and reported at conferences: Van den Bergh C., Venter E.H.; Swanepoel R., Thompson P.N (2019). High seroconversion rate to Rift Valley fever virus in cattle and goats in far northern KwaZulu-Natal, South Africa, in the absence of reported outbreaks. PLOS Neglected Tropical Diseases 13(5): e0007296. https://doi.org/10.1371/journal.pntd.0007296 Poster for Faculty day Delegate at Southern African Society for Veterinary Epidemiology and Preventative Medicine Delegate at the 15th International Symposium of Veterinary Epidemiology and Economics iii ABBREVIATIONS AIC Akaike information criterion Ae. Aedes An. Anopheles BHK21 Baby hamster kidney 21 CHIKV Chikungunya virus CI Confidence interval CPE Cytopathic effects Cx. Culex ELISA Enzyme-linked immunosorbent assay FMD Foot and mouth disease IEP Inter-epidemic period IgG Immunoglobulin G IgM Immunoglobulin M KNP Kruger National Park KZN KwaZulu-Natal L Large M Medium MIR Maximum Infection Rate MP12 Rift Valley fever MP12 vaccine strain N Nucleocapsid NGR Ndumo Game reserve NSm Non-structural protein coded by the M-segment NSs Non-structural protein coded by the S-segment OBP Onderstepoort Biological Products OD Optical density OIE World Organisation for Animal Health OR Odds Ratio PBS Phosphate buffered saline PCR Polymerase chain reaction PP Positive percentage qRT-PCR Real-Time Quantitative reverse transcriptase PCR iv RdRp RNA dependant RNA polymerase RK13 Rabbit kidney 13 RNP Ribonucleocapsid rNP Recombinant nucleoprotein RT-PCR Reverse transcriptase polymerase chain reaction RVF Rift Valley fever RVFV Rift Valley fever virus S Small SA South Africa spp. Species SINV Sindbis virus SNT Serum neutralizing test TCID Tissue culture infective dose TEP Tembe Elephant Park v TABLE OF CONTENTS DECLARATION ii ACKNOWLEDGEMENTS iii LIST OF ABBREVIATIONS iv TABLE OF CONTENTS vi LIST OF TABLES x LIST OF FIGURES xi SUMMARY xiv CHAPTER 1: Literature Review…………………………………………………. 1 1.1 INTRODUCTION……………….………….……………………………………. 1 1.2 THE AETIOLOGICAL AGENT………………………………………………… 2 1.2.1 Structure……………………..……………….………………………………. 2 1.2.2 Pathogenesis………………………..………………………………………… 4 1.2.3 Clinical signs……………….…………….……………………………………. 5 1.2.4 Immune response…………………………..………………………………… 6 1.2.5 Control…………………………………………………………………………. 7 1.2.6 Diagnosis……………….……………………………………………………… 8 1.3 EPIDEMIOLOGY…………….………………………………………………….. 10 1.3.1 Hosts……………………………………………………………………………. 10 1.3.2 Vectors…………………………….……………………………………………. 11 1.3.3 Transmission………………………...………………………………………… 16 1.3.4 Occurrences……………………………………………………………………. 17 1.3.5 Inter-epidemic period………………………………………………………….. 19 1.3.6 Rift Valley fever in South Africa…………...…………………………………. 21 1.4 STUDY AREA …………………………………………………………………… 24 1.5 THESIS OUTLINE.………………………………………………… …………… 27 REFERENCES………………………..……………………………………………… 28 vi CHAPTER 2: High seroconversion rate to RVFV in cattle and goats in the far northern KwaZulu-Natal, in the absence of reported outbreaks……………………………………………………………………………... 38 2.1 INTRODUCTION…………………………………………….…..………………. 39 2.2 MATERIALS AND METHODS……………….………………………..……….. 42 2.2.1 Study area……..……………………….………………………………………. 42 2.2.2 Study design and sampling…………………………………………………… 45 2.2.3 Serology…………………...……………………………………………………. 46 2.2.4 Statistical analysis……...……………………………………………………… 47 2.3 RESULTS…..…………………………………………………………………….. 49 2.3.1 Seroprevalence…….………………………………………………………….. 49 2.3.2 Seroconversion rate…………………………………………………………… 52 2.4 DISCUSSION…………………………………………………………………….. 58 2.5 CONCLUSION…………………………………………………………………… 62 REFERENCES…..…………………………………………………………………… 63 CHAPTER 3: Neutralizing antibodies against Rift Valley fever virus in wild antelope in far northern KwaZulu-Natal, South Africa, indicate recent viral circulation……………………………………………………………. 67 3.1 INTRODUCTION…………………………………………………………………. 68 3.2 MATERIALS AND METHODS………………………………………………….. 71 3.2.1 Ethical approval………………………………………………..………………. 71 3.2.2 Study area………………………………………………………………………. 71 3.2.3 Sampling and laboratory testing……………………………………………… 72 3.2.4 Statistical analysis……………………………...……………………………… 73 3.3 RESULTS……………………………..………………………………………….. 73 3.4 DISCUSSION…………………………………………………………………….. 77 3.5 CONSCLUSION…………………………………………………………………. 80 REFERENCES………………………………………………………………….……. 81 vii CHAPTER 4: Population dynamics of Rift Valley fever virus vectors in circulation in northern KwaZulu-Natal, South Africa, 2017– 2018………………………………………………………………………………….. 84 4.1 INTRODUCTION…….…………………………………………………………. 84 4.2 MATERIALS AND METHODS…………………………….………………….. 87 4.2.1 Study area…………………………………………………………………….. 87 4.2.2 Collection sites……………………………….………………………………. 87 4.2.3 Collection method……………………………………………………………. 90 4.2.4 Viral screening. ………………………………………………………………. 91 4.2.5 Statistical analysis………………………………………………………..….. 91 4.3 Results……………………………………………………...…………………… 92 4.4 DISCUSSION…………………………………………………………………… 100 REFERENCES……………………...……………….……………………………… 105 CHAPTER 5: Detection of Rift Valley fever, Chikungunya and Sindbis viruses in Aedes (Aedimorphus) durbanensis from northern KwaZulu- Natal, South Africa……………………………………….………………….…… 108 5.1 INTRODUCTION……………..…………………………………………….…. 108 5.2 MATERIALS AND METHODS…………………………………………….…. 112 5.2.1 Mosquito trapping and processing…………………………………….….. 112 5.2.2 Real-time reverse transcriptase polymerase chain reaction……….….. 113 5.2.3 Phylogenetic analysis………………………………………………….…… 114 5.3 RESULTS…………………………………………………………………….… 120 5.4 DISCUSSION………………………………………………………………….. 125 REFERENCES………………………………………………………………….…. 129 CHAPTER 6: GENERAL CONCLUSION ………………………………………. 135 REFERENCES……………………………………………………………………… 141 viii Annexure AEC Approval confirmation letter……………………………………………………………………………….………….143 Section 20………………………………………………………………….………………………………………………………….144 ix List of Tables Table 1.1 Mosquito species from which RVFV has been isolated previously. 13 Table 2.1 Rift Valley fever seroprevalence in cattle at diptanks in far northern KwaZulu-Natal, June 2016. 50 Table 2.2 Rift Valley fever seroprevalence in goats in far northern KwaZulu- Natal, February-April 2017. 51 Table 2.3 Incidence rate of seroconversion* to Rift Valley fever virus in cattle and goats in far northern KwaZulu-Natal between June 2016 and June 53 2018, expressed as numbers of seroconversions per animal-year Table 2.4 Factors associated with incidence rate of seroconversion to Rift Valley fever virus in cattle and goats in far northern KwaZulu-Natal between 57 June 2016 and June 2018. Table 3.1 Seroprevalence of Rift Valley fever virus in wild antelope in far northern KwaZulu-Natal: descriptive statistics and univariate 75 associations. Table 3.2 Factors associated with seropositivity to Rift Valley fever virus in wild antelope in far northern KwaZulu-Natal: multivariable logistic 76 regression model. Table 4.1 Mosquito species and the total numbers of mosquitoes collected over the three areas in the study period. 93 Table 4.2 Associations of total rainfall, and average minimum and maximum temperatures 30 days prior to collection on the Aedes and Culex genera and the total number of mosquitoes collected per trap-night at 99 three sites in northern KwaZulu-Natal, using a negative binomial regression model. Table 5.1 Chikungunya virus, complete genome sequences with accession
Recommended publications
  • Zika Virus Outside Africa Edward B
    Zika Virus Outside Africa Edward B. Hayes Zika virus (ZIKV) is a flavivirus related to yellow fever, est (4). Serologic studies indicated that humans could also dengue, West Nile, and Japanese encephalitis viruses. In be infected (5). Transmission of ZIKV by artificially fed 2007 ZIKV caused an outbreak of relatively mild disease Ae. aegypti mosquitoes to mice and a monkey in a labora- characterized by rash, arthralgia, and conjunctivitis on Yap tory was reported in 1956 (6). Island in the southwestern Pacific Ocean. This was the first ZIKV was isolated from humans in Nigeria during time that ZIKV was detected outside of Africa and Asia. The studies conducted in 1968 and during 1971–1975; in 1 history, transmission dynamics, virology, and clinical mani- festations of ZIKV disease are discussed, along with the study, 40% of the persons tested had neutralizing antibody possibility for diagnostic confusion between ZIKV illness to ZIKV (7–9). Human isolates were obtained from febrile and dengue. The emergence of ZIKV outside of its previ- children 10 months, 2 years (2 cases), and 3 years of age, ously known geographic range should prompt awareness of all without other clinical details described, and from a 10 the potential for ZIKV to spread to other Pacific islands and year-old boy with fever, headache, and body pains (7,8). the Americas. From 1951 through 1981, serologic evidence of human ZIKV infection was reported from other African coun- tries such as Uganda, Tanzania, Egypt, Central African n April 2007, an outbreak of illness characterized by rash, Republic, Sierra Leone (10), and Gabon, and in parts of arthralgia, and conjunctivitis was reported on Yap Island I Asia including India, Malaysia, the Philippines, Thailand, in the Federated States of Micronesia.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Laboratory Colonization of Aedes Lineatopennis
    LABORATORY COLONIZATION OF AEDES LINEATOPENNIS Atchariya Jitpakdi1, Anuluck Junkum1, Benjawan Pitasawat1, Narumon Komalamisra2, Eumporn Rattanachanpichai1, Udom Chaithong1, Pongsri Tippawangkosol1, Kom Sukontason1, Natee Puangmalee1 and Wej Choochote1 1Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai; 2Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Abstract. Aedes lineatopennis, a species member of the subgenus Neomelaniconion, could be colonized for more than 10 successive generations from 30 egg batches [totally 2,075 (34-98) eggs] of wild-caught females. The oviposited eggs needed to be incubated in a moisture chamber for at least 7 days to complete embryonation and, following immersion in 0.25-2% hay-fermented water, 61-66% of them hatched after hatching stimulation. Larvae were easily reared in 0.25-1% hay-fermented water, with suspended powder of equal weight of wheat germ, dry yeast, and oatmeal provided as food. Larval development was complete after 4-6 days. The pupal stage lasted 3-4 days when nearly all pupae reached the adult stage (87-91%). The adults had to mate artificially, and 5-day-old males proved to be the best age for induced copulation. Three to five-day-old females, which were kept in a paper cup, were fed easily on blood from an anesthetized golden hamster that was placed on the top- screen. The average number of eggs per gravid female was 63.56 ± 22.93 (22-110). Unfed females and males, which were kept in a paper cup and fed on 5% multivitamin syrup solution, lived up to 43.17 ± 12.63 (9-69) and 15.90 ± 7.24 (2-39) days, respectively, in insectarium conditions of 27 ± 2˚C and 70-80% relative humidity.
    [Show full text]
  • Chikungunya Virus, Epidemiology, Clinics and Phylogenesis: a Review
    Asian Pacific Journal of Tropical Medicine (2014)925-932 925 Contents lists available at ScienceDirect IF: 0.926 Asian Pacific Journal of Tropical Medicine journal homepage:www.elsevier.com/locate/apjtm Document heading doi:10.1016/S1995-7645(14)60164-4 Chikungunya virus, epidemiology, clinics and phylogenesis: A review Alessandra Lo Presti1, Alessia Lai2, Eleonora Cella1, Gianguglielmo Zehender2, Massimo Ciccozzi1,3* 1Department of Infectious Parasitic and Immunomediated Diseases, Epidemiology Unit, Reference Centre on Phylogeny, Molecular Epidemiology and Microbial Evolution (FEMEM), Istituto Superiore di Sanita`, Rome, Italy 2Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy 3University Campus-Biomedico, Rome, Italy ARTICLE INFO ABSTRACT Article history: Chikungunya virus is a mosquito-transmitted alphavirus that causes chikungunya fever, a febrile Received 14 April 2014 illness associated with severe arthralgia and rash. Chikungunya virus is transmitted by culicine Received in revised form 15 July 2014 mosquitoes; Chikungunya virus replicates in the skin, disseminates to liver, muscle, joints, Accepted 15 October 2014 lymphoid tissue and brain, presumably through the blood. Phylogenetic studies showed that the Available online 20 December 2014 Indian Ocean and the Indian subcontinent epidemics were caused by two different introductions of distinct strains of East/Central/South African genotype of CHIKV. The paraphyletic grouping Keywords: of African CHIK viruses supports the historical
    [Show full text]
  • William Hepburn Russell Lumsden Scotland Has a Proud History of Nurturing Distinguished Contributors to Our Understanding of Disease in the Tropics
    William Hepburn Russell Lumsden Scotland has a proud history of nurturing distinguished contributors to our understanding of disease in the tropics. Among these must be numbered Russell Lumsden, medical entomologist, virologist and parasitologist, but above all a man with boundless enthusiasm for the entire natural world. Russell became a keen naturalist while still at school. Born in Forfar on 27 March, 1914, he moved with his family to Darlington in 1919 when his father became Schools’ Medical Officer for Durham County. He was educated at the Queen Elizabeth Grammar School there, but in 1931 he was awarded a Carnegie Scholarship to read Zoology at Glasgow University under Sir John Graham Kerr. Russell took part in successive student expeditions to Canna in the Inner Hebrides and wrote detailed reports on the entomology of these and on various projects in marine biology. His dedication to natural history is splendidly illustrated by a paper in The Entomologist’s Monthly Magazine, recounting how, while sunning himself on a jetty at Lake Windermere after swimming, he found an old nail and kept a tally of the different prey of pond skaters by making scratches on the woodwork. After graduation with First Class Honours, Russell went on to qualify in medicine at Glasgow and wrote articles for Surgo, the Glasgow University Medical Journal, acting as its editor in 1938. His companion in all his student activities was Alexander J Haddow, (later FRSE, FRS): both were later to become world authorities on mosquito- borne disease. After receiving his medical degree in 1938, Russell was awarded a Medical Research Council Fellowship for work at the Liverpool School of Tropical Medicine.
    [Show full text]
  • Zoonosis Update
    Zoonosis Update Rift Valley fever virus Brian H. Bird, ScM, PhD; Thomas G. Ksiazek, DVM, PhD; Stuart T. Nichol, PhD; N. James MacLachlan, BVSc, PhD, DACVP ift Valley fever virus is a mosquito-borne pathogen ABBREVIATIONS Rof livestock and humans that historically has been responsible for widespread and devastating outbreaks of BSL Biosafety level severe disease throughout Africa and, more recently, the MP-12 Modified passage-12x PFU Plaque-forming unit Arabian Peninsula. The virus was first isolated and RVF RT Reverse transcription disease was initially characterized following the sudden RVF Rift Valley fever deaths (over a 4-week period) of approximately 4,700 lambs and ewes on a single farm along the shores of Lake Naivasha in the Great Rift Valley of Kenya in 1931.1 Since on animals that were only later identified as infected 6,7 that time, RVF virus has caused numerous economically with RVF virus. The need for a 1-medicine approach devastating epizootics that were characterized by sweep- to the diagnosis, treatment, surveillance, and control of ing abortion storms and mortality ratios of approximately RVF virus infection cannot be overstated. The close co- 100% among neonatal animals and of 10% to 20% among ordination of veterinary and human medical efforts (es- adult ruminant livestock (especially sheep and cattle).2–4 pecially in countries in which the virus is not endemic Infections in humans are typically associated with self- and health-care personnel are therefore unfamiliar with limiting febrile illnesses. However, in 1% to 2% of affected RVF) is critical to combat this important threat to the individuals, RVF infections can progress to more severe health of humans and other animals.
    [Show full text]
  • Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1
    Vol. XVII, No. 3, August, 1961 403 Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1 C. R. Joyce PUBLIC HEALTH SERVICE QUARANTINE STATION U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE HONOLULU, HAWAII Public health workers frequently become concerned over the possibility of the introduction of exotic anophelines or other mosquito disease vectors into Hawaii. It is well known that many species of insects have been dispersed by various means of transportation and have become established along world trade routes. Hawaii is very fortunate in having so few species of disease-carrying or pest mosquitoes. Actually only three species are found here, exclusive of the two purposely introduced Toxorhynchites. Mosquitoes still get aboard aircraft and surface vessels, however, and some have been transported to new areas where they have become established (Hughes and Porter, 1956). Mosquitoes were unknown in Hawaii until early in the 19th century (Hardy, I960). The night biting mosquito, Culex quinquefasciatus Say, is believed to have arrived by sailing vessels between 1826 and 1830, breeding in water casks aboard the vessels. Van Dine (1904) indicated that mosquitoes were introduced into the port of Lahaina, Maui, in 1826 by the "Wellington." The early sailing vessels are known to have been commonly plagued with mosquitoes breeding in their water supply, in wooden tanks, barrels, lifeboats, and other fresh water con tainers aboard the vessels, The two day biting mosquitoes, Aedes ae^pti (Linnaeus) and Aedes albopictus (Skuse) arrived somewhat later, presumably on sailing vessels. Aedes aegypti probably came from the east and Aedes albopictus came from the western Pacific.
    [Show full text]
  • Natural Infection of Aedes Aegypti, Ae. Albopictus and Culex Spp. with Zika Virus in Medellin, Colombia Infección Natural De Aedes Aegypti, Ae
    Investigación original Natural infection of Aedes aegypti, Ae. albopictus and Culex spp. with Zika virus in Medellin, Colombia Infección natural de Aedes aegypti, Ae. albopictus y Culex spp. con virus Zika en Medellín, Colombia Juliana Pérez-Pérez1 CvLAC, Raúl Alberto Rojo-Ospina2, Enrique Henao3, Paola García-Huertas4 CvLAC, Omar Triana-Chavez5 CvLAC, Guillermo Rúa-Uribe6 CvLAC Abstract Fecha correspondencia: Introduction: The Zika virus has generated serious epidemics in the different Recibido: marzo 28 de 2018. countries where it has been reported and Colombia has not been the exception. Revisado: junio 28 de 2019. Although in these epidemics Aedes aegypti traditionally has been the primary Aceptado: julio 5 de 2019. vector, other species could also be involved in the transmission. Methods: Mosquitoes were captured with entomological aspirators on a monthly ba- Forma de citar: sis between March and September of 2017, in four houses around each of Pérez-Pérez J, Rojo-Ospina the 250 entomological surveillance traps installed by the Secretaria de Sa- RA, Henao E, García-Huertas lud de Medellin (Colombia). Additionally, 70 Educational Institutions and 30 P, Triana-Chavez O, Rúa-Uribe Health Centers were visited each month. Results: 2 504 mosquitoes were G. Natural infection of Aedes captured and grouped into 1045 pools to be analyzed by RT-PCR for the aegypti, Ae. albopictus and Culex detection of Zika virus. Twenty-six pools of Aedes aegypti, two pools of Ae. spp. with Zika virus in Medellin, albopictus and one for Culex quinquefasciatus were positive for Zika virus. Colombia. Rev CES Med 2019. Conclusion: The presence of this virus in the three species and the abundance 33(3): 175-181.
    [Show full text]
  • Possible Non-Sylvatic Transmission of Yellow Fever Between Non-Human Primates in São Paulo City, Brazil, 2017–2018
    www.nature.com/scientificreports OPEN Possible non‑sylvatic transmission of yellow fever between non‑human primates in São Paulo city, Brazil, 2017–2018 Mariana Sequetin Cunha1*, Rosa Maria Tubaki2, Regiane Maria Tironi de Menezes2, Mariza Pereira3, Giovana Santos Caleiro1,4, Esmenia Coelho3, Leila del Castillo Saad5, Natalia Coelho Couto de Azevedo Fernandes6, Juliana Mariotti Guerra6, Juliana Silva Nogueira1, Juliana Laurito Summa7, Amanda Aparecida Cardoso Coimbra7, Ticiana Zwarg7, Steven S. Witkin4,8, Luís Filipe Mucci3, Maria do Carmo Sampaio Tavares Timenetsky9, Ester Cerdeira Sabino4 & Juliana Telles de Deus3 Yellow Fever (YF) is a severe disease caused by Yellow Fever Virus (YFV), endemic in some parts of Africa and America. In Brazil, YFV is maintained by a sylvatic transmission cycle involving non‑human primates (NHP) and forest canopy‑dwelling mosquitoes, mainly Haemagogus‑spp and Sabethes-spp. Beginning in 2016, Brazil faced one of the largest Yellow Fever (YF) outbreaks in recent decades, mainly in the southeastern region. In São Paulo city, YFV was detected in October 2017 in Aloutta monkeys in an Atlantic Forest area. From 542 NHP, a total of 162 NHP were YFV positive by RT-qPCR and/or immunohistochemistry, being 22 Callithrix-spp. most from urban areas. Entomological collections executed did not detect the presence of strictly sylvatic mosquitoes. Three mosquito pools were positive for YFV, 2 Haemagogus leucocelaenus, and 1 Aedes scapularis. In summary, YFV in the São Paulo urban area was detected mainly in resident marmosets, and synanthropic mosquitoes were likely involved in viral transmission. Yellow Fever virus (YFV) is an arbovirus member of the Flavivirus genus, family Flaviviridae and the causative agent of yellow fever (YF)1.
    [Show full text]
  • Mencn. 1985 J. Ar"R. Mosq. Conrhol Assoc. a BLOOD MEAL ANALYSIS of ENGORGED MOSQUITOES FOUND in RIFT VALLEY FEVER EPIZOOTIC
    Mencn. 1985 J. Ar"r.Mosq. CoNrhol Assoc. 93 Beck, S. D. 1980. Insect photopefiodism, 2nd ed. ural history of RVF. In this study we exatnined AcademicPress, New York. 387 pp. 739 blood-fed mosquitoes trapped during and Gallaway,W. J. and R. A. Brust. 1982.The occur- following a period of particularly heavy rainfall rence of Aedes hend,ersoniCockerell and Aedes (October-December1982), which did not gen- triseriatus(Say) in Manitoba. MosQ. Syst. 14:262- eratean epizooticof RVF. However,during this 264. Holzapfel,C. M. and W. E. Bradshaw.lg8l. Geogra- period the virus was isolated from mosquitoes phy of larval dormdnci ln the tree-hole mosquito, at the trapping sites,and from orle dead calf on Aed,estriseriatus (Say). Can. J. Zool.59:l0l,l-1021. a nearby farm; there were also 4 seroconver. Sims,S. R. 1982.Larval diapauseiir the easterntree- sionsin a group of 80 yearling cattle testedai hole mosquito, Aed.estriseriatui; Latitudinal varia- one of the trapping sites(Davies, unpublished tion in induction and intensity.Ann. Entorhol.Soc. data). The emergenceof mosquito speciesap- Am. 75:195-200. peared to be similar to that occurring during Wood, D. M., P. T. Dang and R. A. Ellis. 1979.The the early stagesof RVF epizootics(Linthicum et insectsand arachnids Part of Canada. 6. The mos- al. 1983,1984a). quitoesof Canada(Diptera: Culicidae).Agric. Can. Publ. 1686.390 pp. Mosquitoeswere trapped with Solid State Zavortink, T. J. 1972. Mosquito studies (Diptera: Army Miniature light traps (John W. Hock, Co., Culicidae)XXUII. The New World speciesfor- Gainesville,FL) at known RVF epizootic sitesin merly placedin Aedrs(Finlaya).
    [Show full text]
  • (Diptera: Culicidae). Cah
    14 October 1986 PROC. ENTOMOL. SOC. WASH. 88(4), 1986, pp. 764-776 AEDES (STEGOMYIA) CORNETI, A NEW SPECIES OF THE AFRICANUS SUBGROUP (DIPTERA: CULICIDAE) ’ YIAU-MIN HUANG Systematics of Aedes Mosquitoes Project, Department of Entomology, Smith- sonian Institution, Washington, D.C. 20560. Abstract.-Adults of both sexes and the larva and pupa of Aedes (Stegomyia) cornetin. sp. from Sierra Leone are described and illustrated. Diagnostic characters for separating the adults of Ae. corneti from closely allied species are given. The distribution of Ae. corneti is based on examined specimens. A new species of Aedes(Stegomyia) belonging to the africanus subgroup of the aegypti group was recently collected while conducting field work in Sierra Leone in 1984. This new species, which is extremely similar in overall habitus to adults ofAedes(Stegomyia) africanus(Theobald), 190 1, was found also among specimens misidentified as Ae. africanus from the Services Scientifiques Centraux, Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM), Institut Pasteur, Paris (PIP) and the British Museum (Natural History) collections. In view of the medical importance of several species in the africanus subgroup and the similarity of this new species with Ae. africanus(Theobald), it is desirable to describe the new species here to make its name available and to avoid future confusion between it and Ae. africanus. Because nothing is known about its biting habits and its potential as vector of human pathogens, it is hoped that this paper will stimulate investigations on these subjects. MATERIALS AND METHODS This study is based on specimens collected by the Systematics of Aedes Mos- quitoes Project (SAMP), Department of Entomology, National Museum of Nat- ural History, Smithsonian Institution (USNM), and on specimens borrowed from institutions mentioned in the acknowledgments section.
    [Show full text]
  • Chikungunya Virus Emergence Is Constrained in Asia by Lineage-Specific Adaptive Landscapes
    Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes Konstantin A. Tsetsarkin, Rubing Chen, Grace Leal, Naomi Forrester, Stephen Higgs, Jing Huang, and Scott C. Weaver1 Institute for Human Infections and Immunity, Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 Edited by Peter Palese, Mount Sinai School of Medicine, New York, NY, and approved March 31, 2011 (received for review December 9, 2010) Adaptation of RNA viruses to a new host or vector species often earlier resulted in an endemic Asian lineage of CHIKV that still results in emergence of new viral lineages. However, lineage- persists there (Fig. S1). specific restrictions on the adaptive processes remain largely un- Since 2004, CHIKV has exploded onto the global scene as a explored. Recently, a Chikungunya virus (CHIKV) lineage of African major emerging pathogen in a series of devastating outbreaks origin emerged to cause major epidemics of severe, persistent, that have infected up to 6.5 million people (11) and have been debilitating arthralgia in Africa and Asia. Surprisingly, this new associated with several thousand human deaths worldwide (12– lineage is actively replacing endemic strains in Southeast Asia that 14). Phylogenetic studies demonstrated that these outbreaks were have been circulating there for 60 y. This replacement process is associated with at least three independent CHIKV lineages that associated with adaptation of the invasive CHIKV strains to an emerged almost simultaneously in different parts of the world (15– atypical vector, the Aedes albopictus mosquito that is ubiquitously 20). The major CHIK outbreaks were caused by virus strains of distributed in the region.
    [Show full text]