Ministério Da Saúde Fundação Oswaldo Cruz Centro De Pesquisas René Rachou Programa De Pós-Graduação Em Ciências Da Saúde

Total Page:16

File Type:pdf, Size:1020Kb

Ministério Da Saúde Fundação Oswaldo Cruz Centro De Pesquisas René Rachou Programa De Pós-Graduação Em Ciências Da Saúde Ministério da Saúde Fundação Oswaldo Cruz Centro de Pesquisas René Rachou Programa de Pós-graduação em Ciências da Saúde ASPECTOS BIOLÓGICOS DA INFECÇÃO PELAS CEPAS wMel e wMelPop de Wolbachia SOBRE POPULAÇÕES NATURAIS DE Aedes aegypti DO RIO DE JANEIRO por HEVERTON LEANDRO CARNEIRO DUTRA Belo Horizonte Fevereiro/2014 DISSERTAÇÃO MBCM – CPqRR H. L. C. DUTRA 2014 Ministério da Saúde Fundação Oswaldo Cruz Centro de Pesquisas René Rachou Programa de Pós-graduação em Ciências da Saúde ASPECTOS BIOLÓGICOS DA INFECÇÃO PELAS CEPAS wMel e wMelPop de Wolbachia SOBRE POPULAÇÕES NATURAIS DE Aedes aegypti DO RIO DE JANEIRO por HEVERTON LEANDRO CARNEIRO DUTRA Dissertação apresentada com vistas à obtenção do Título de Mestre em Ciências na área de concentração de Biologia Celular e Molecular Orientação: Dr. Luciano Andrade Moreira Co-orientação: Dr. Rafael Maciel de Freitas Belo Horizonte Fevereiro/2014 II Catalogação-na-fonte Rede de Bibliotecas da FIOCRUZ Biblioteca do CPqRR Segemar Oliveira Magalhães CRB/6 1975 D978a Dutra, Heverton Leandro Carneiro. 2014 Aspectos biológicos da infecção pelas cepas wMel e wMelpop de Wolbachia sobre populações naturais de Aedes aegypti do Rio de Janeiro / Heverton Leandro Carneiro Dutra. – Belo Horizonte, 2014. XVIII, 98 f.: il.; 210 x 297mm. Bibliografia: f.: 104 - 116 Dissertação (Mestrado) – Dissertação para obtenção do título de Mestre em Ciências pelo Programa de Pós - Graduação em Ciências da Saúde do Centro de Pesquisas René Rachou. Área de concentração: Biologia Celular e Molecular. 1. Dengue/prevenção & controle 2. Aedes/crescimento & desenvolvimento 3. Controle de Vetores I. Título. II. Moreira, Luciano Andrade (Orientação). III. Freitas, Rafael Maciel de. (Co-orientação) CDD – 22. ed. – 616.918 52 III Ministério da Saúde Fundação Oswaldo Cruz Centro de Pesquisas René Rachou Programa de Pós-graduação em Ciências da Saúde ASPECTOS BIOLÓGICOS DA INFECÇÃO PELAS CEPAS wMel e wMelPop de Wolbachia SOBRE POPULAÇÕES NATURAIS DE Aedes aegypti DO RIO DE JANEIRO por HEVERTON LEANDRO CARNEIRO DUTRA Foi avaliada pela banca examinadora composta pelos seguintes membros: Prof. Dr. Luciano Andrade Moreira (Presidente) Prof. Dr. Denise Valle Prof. Dr. Nelder de Figueiredo Gontijo Suplente: Dr. José Manuel Latorre Estivalis Dissertação defendida e aprovada em: 25/02/2014 IV “Em algum lugar alguma coisa incrível está esperando ser descoberta.” Carl Sagan V DEDICATÓRIAS Dedicado a minha família, em especial a minha mãe Maria das Graças pelo apoio incondicional. Aos professores que passaram pela minha vida e deixaram um pouco de seu conhecimento ao longo desta jornada. VI AGRADECIMENTOS A minha mãe Maria das Graças pelo apoio em todos os momentos de minha vida. Um exemplo de caráter, dedicação e amor no qual procuro me espelhar dia após dia. Te amo dona Maria! A minha irmã Marcela pela compreensão e momentos de companheirismo. Aos amigos e amigas de Mariana/Ouro Preto os quais a distância física provou-se pequena quando a amizade sincera é maior. Às amizades virtuais que provam que não é porque não se tem o contato físico diário que a amizade não é sincera. Ao meu orientador Dr. Luciano Andrade Moreira pelo exemplo não só de pesquisador, mas de pessoa, de caráter. Muito obrigado por ter acreditado em mim e me aceitado como aluno. Agradeço por todo conhecimento aprendido ao longo desta jornada assim como a atenção a mim dedicada a cada vez que eu batia em sua porta pedindo ajuda ou mandava um email nos finais de semana, sendo prontamente respondido. Obrigado por ser este pesquisador incrível! Ao meu co-orientador Dr. Rafael Maciel de Freitas que mesmo distante, me ajudou sempre da melhor forma possível com conselhos valiosos, dicas importantes e momentos de muita risada. Valeu por abrir as portas de seu laboratório e fazer de tudo para que eu me sentisse bem recepcionado. A todos os membros do Laboratório de Malária do Centro de Pesquisas René Rachou pela convivência diária, tanto nos momentos de descontração como nos momentos difíceis, em especial a Alice Sabatino por sempre me acudir de imediato nos momentos de desespero e ao Geraldo, o famoso “Gegê” por providenciar o nosso material de cada dia. A toda a família do Insetário do Laboratório de Malária por estar comigo em todos os momentos, ajudando nos experimentos, dando dicas, pedindo conselhos, tudo sempre com um sorriso no rosto. Em especial a Dra. Caroline de Oliveira por ter me acolhido quando entrei no laboratório, ao Dr. Luke Baton pelos valiosíssimos conselhos e conversas horas a fio discutindo nada além de pura ciência! Agradeço também a Jéssica Barreto pela grande ajuda na reta final do meu projeto. Vocês são demais! A toda a equipe do Laboratório de Transmissores de Hematozoários na FIOCRUZ- RJ no qual desde o primeiro dia já fui acolhido como parte da família por todos os membros. VII Agradeço em especial a Vanessa Lopes pela fundamental ajuda nos meus experimentos e claro, pelos constantes momentos de descontração. Ao Dr. Carlos Jorge Logullo de Oliveira do Laboratório de Química e Função de Proteínas e Peptídeos da Universidade Estadual do Norte Fluminense por ter aberto as portas de seu laboratório e de sua casa para que eu realizasse meus experimentos da melhor forma possível. Em especial a Ma. Mariana Fernandes por toda a ajuda durante a minha estadia. A Dra. Zélia Maria Profeta da Luz, atual diretora do CPqRR – FIOCRUZ por nos fornecer meios de ampliar a estrutura física do Insetário, permitindo assim um maior conforto e capacidade de trabalho. A Bruna, minha namorada, uma das minhas grandes conquistas deste mestrado. Obrigado pelo carinho, compreensão, apoio e momentos de alegria! VIII AGRADECIMENTOS ÀS INSTITUIÇÕES FINANCIADORAS À Rede PRONEX Dengue, ao Ministério da Ciência, Tecnologia (CNPq) e a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelos recursos financeiros que permitiram o desenvolvimento deste projeto. À Fundação Oswaldo Cruz, ao Centro de Pesquisas René Rachou e ao Programa de Pós- graduação em Ciências da Saúde pela oportunidade ofertada, além de excelente infraestrutura no que diz respeito a reagentes e equipamentos necessários para trabalho. Ao Ministério da Saúde (Secretaria de Vigilância em Saúde – SVS e Departamento de Ciência e Tecnologia da Secretaria de Ciência, Tecnologia e Insumos Estratégicos – DECIT/SCTIE). IX SUMÁRIO LISTA DE FIGURAS........................................................................................... XIII LISTA DE TABELAS.......................................................................................... XV LISTA DE ABREVIATURAS E SÍMBOLOS................................................... XVI RESUMO............................................................................................................... XVII ABSTRACT........................................................................................................... XVIII 1 INTRODUÇÃO.................................................................................................. 19 1.1 Dengue no mundo: situação e histórico atual............................................... 19 1.2 Dengue no Brasil: situação e histórico atual................................................. 22 1.3 O Aedes aegypti (Linnaeus, 1762) e Aedes albopictus (Skuse, 1894)........... 23 1.4 O controle da dengue..................................................................................... 27 1.4.1 Controle mecânico do vetor................................................................. 28 1.4.2 Controle de vetores via inseticidas de origem química........................ 28 1.4.3 Resistência a inseticidas químicos em A. aegypti................................ 29 1.4.4 Formas alternativas de controle do vetor............................................ 30 1.4.4.1 A técnica de insetos estéreis (SIT)........................................... 30 1.4.4.2 Liberação de insetos carregando um gene letal Dominante (RIDL)............................................................................... 31 1.4.4.3 RNAi........................................................................................ 32 1.4.4.4 Homing Endonuclease Genes (HEGS).................................... 32 1.5 Wolbachia: um breve histórico........................................................................ 33 1.6 Distribuição e filogenia de Wolbachia............................................................ 34 1.7 Wolbachia e os efeitos causados no hospedeiro............................................. 35 1.8 Wolbachia e o seu uso no controle da dengue................................................ 38 1.9 O programa “eliminar a dengue”.................................................................... 41 2 JUSTIFICATIVA................................................................................................. 42 3 OBJETIVOS......................................................................................................... 44 3.1 Objetivo geral.................................................................................................. 44 3.2 Objetivos específicos....................................................................................... 44 X 4 MÉTODOS............................................................................................................ 45 4.1 Manutenção de colônias de mosquitos............................................................ 45 4.2 Retrocruzamento wMelPop e wMel................................................................ 45 4.3 Monitoramento da infecção por Wolbachia..................................................
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Laboratory Colonization of Aedes Lineatopennis
    LABORATORY COLONIZATION OF AEDES LINEATOPENNIS Atchariya Jitpakdi1, Anuluck Junkum1, Benjawan Pitasawat1, Narumon Komalamisra2, Eumporn Rattanachanpichai1, Udom Chaithong1, Pongsri Tippawangkosol1, Kom Sukontason1, Natee Puangmalee1 and Wej Choochote1 1Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai; 2Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Abstract. Aedes lineatopennis, a species member of the subgenus Neomelaniconion, could be colonized for more than 10 successive generations from 30 egg batches [totally 2,075 (34-98) eggs] of wild-caught females. The oviposited eggs needed to be incubated in a moisture chamber for at least 7 days to complete embryonation and, following immersion in 0.25-2% hay-fermented water, 61-66% of them hatched after hatching stimulation. Larvae were easily reared in 0.25-1% hay-fermented water, with suspended powder of equal weight of wheat germ, dry yeast, and oatmeal provided as food. Larval development was complete after 4-6 days. The pupal stage lasted 3-4 days when nearly all pupae reached the adult stage (87-91%). The adults had to mate artificially, and 5-day-old males proved to be the best age for induced copulation. Three to five-day-old females, which were kept in a paper cup, were fed easily on blood from an anesthetized golden hamster that was placed on the top- screen. The average number of eggs per gravid female was 63.56 ± 22.93 (22-110). Unfed females and males, which were kept in a paper cup and fed on 5% multivitamin syrup solution, lived up to 43.17 ± 12.63 (9-69) and 15.90 ± 7.24 (2-39) days, respectively, in insectarium conditions of 27 ± 2˚C and 70-80% relative humidity.
    [Show full text]
  • Zoonosis Update
    Zoonosis Update Rift Valley fever virus Brian H. Bird, ScM, PhD; Thomas G. Ksiazek, DVM, PhD; Stuart T. Nichol, PhD; N. James MacLachlan, BVSc, PhD, DACVP ift Valley fever virus is a mosquito-borne pathogen ABBREVIATIONS Rof livestock and humans that historically has been responsible for widespread and devastating outbreaks of BSL Biosafety level severe disease throughout Africa and, more recently, the MP-12 Modified passage-12x PFU Plaque-forming unit Arabian Peninsula. The virus was first isolated and RVF RT Reverse transcription disease was initially characterized following the sudden RVF Rift Valley fever deaths (over a 4-week period) of approximately 4,700 lambs and ewes on a single farm along the shores of Lake Naivasha in the Great Rift Valley of Kenya in 1931.1 Since on animals that were only later identified as infected 6,7 that time, RVF virus has caused numerous economically with RVF virus. The need for a 1-medicine approach devastating epizootics that were characterized by sweep- to the diagnosis, treatment, surveillance, and control of ing abortion storms and mortality ratios of approximately RVF virus infection cannot be overstated. The close co- 100% among neonatal animals and of 10% to 20% among ordination of veterinary and human medical efforts (es- adult ruminant livestock (especially sheep and cattle).2–4 pecially in countries in which the virus is not endemic Infections in humans are typically associated with self- and health-care personnel are therefore unfamiliar with limiting febrile illnesses. However, in 1% to 2% of affected RVF) is critical to combat this important threat to the individuals, RVF infections can progress to more severe health of humans and other animals.
    [Show full text]
  • Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1
    Vol. XVII, No. 3, August, 1961 403 Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1 C. R. Joyce PUBLIC HEALTH SERVICE QUARANTINE STATION U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE HONOLULU, HAWAII Public health workers frequently become concerned over the possibility of the introduction of exotic anophelines or other mosquito disease vectors into Hawaii. It is well known that many species of insects have been dispersed by various means of transportation and have become established along world trade routes. Hawaii is very fortunate in having so few species of disease-carrying or pest mosquitoes. Actually only three species are found here, exclusive of the two purposely introduced Toxorhynchites. Mosquitoes still get aboard aircraft and surface vessels, however, and some have been transported to new areas where they have become established (Hughes and Porter, 1956). Mosquitoes were unknown in Hawaii until early in the 19th century (Hardy, I960). The night biting mosquito, Culex quinquefasciatus Say, is believed to have arrived by sailing vessels between 1826 and 1830, breeding in water casks aboard the vessels. Van Dine (1904) indicated that mosquitoes were introduced into the port of Lahaina, Maui, in 1826 by the "Wellington." The early sailing vessels are known to have been commonly plagued with mosquitoes breeding in their water supply, in wooden tanks, barrels, lifeboats, and other fresh water con tainers aboard the vessels, The two day biting mosquitoes, Aedes ae^pti (Linnaeus) and Aedes albopictus (Skuse) arrived somewhat later, presumably on sailing vessels. Aedes aegypti probably came from the east and Aedes albopictus came from the western Pacific.
    [Show full text]
  • Fontenille Powell 2020 Becomin
    From Anonymous to Public Enemy: How Does a Mosquito Become a Feared Arbovirus Vector? Didier Fontenille, Jeffrey Powell To cite this version: Didier Fontenille, Jeffrey Powell. From Anonymous to Public Enemy: How Does a Mosquito Become a Feared Arbovirus Vector?. Pathogens, MDPI, 2020, 9, 10.3390/pathogens9040265. hal-03054003 HAL Id: hal-03054003 https://hal.archives-ouvertes.fr/hal-03054003 Submitted on 11 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. pathogens Opinion From Anonymous to Public Enemy: How Does a Mosquito Become a Feared Arbovirus Vector? Didier Fontenille 1,* and Jeffrey R. Powell 2 1 MIVEGEC unit, Université de Montpellier, Institut de Recherche pour le Développement (IRD), CNRS, BP 64501, 34394 Montpellier, France 2 Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511-8934, USA; jeff[email protected] * Correspondence: [email protected] Received: 6 March 2020; Accepted: 2 April 2020; Published: 5 April 2020 Abstract: The past few decades have seen the emergence of several worldwide arbovirus epidemics (chikungunya, Zika), the expansion or recrudescence of historical arboviruses (dengue, yellow fever), and the modification of the distribution area of major vector mosquitoes such as Aedes aegypti and Ae.
    [Show full text]
  • Wolbachia Infection in Wild Mosquitoes (Diptera: Culicidae
    Ding et al. Parasites Vectors (2020) 13:612 https://doi.org/10.1186/s13071-020-04466-8 Parasites & Vectors RESEARCH Open Access Wolbachia infection in wild mosquitoes (Diptera: Culicidae): implications for transmission modes and host-endosymbiont associations in Singapore Huicong Ding†, Huiqing Yeo† and Nalini Puniamoorthy* Abstract Background: Wolbachia are intracellular bacterial endosymbionts found in most insect lineages. In mosquitoes, the infuence of these endosymbionts on host reproduction and arboviral transmission has spurred numerous stud- ies aimed at using Wolbachia infection as a vector control technique. However, there are several knowledge gaps in the literature and little is known about natural Wolbachia infection across species, their transmission modes, or associations between various Wolbachia lineages and their hosts. This study aims to address these gaps by exploring mosquito-Wolbachia associations and their evolutionary implications. Methods: We conducted tissue-specifc polymerase chain reaction screening for Wolbachia infection in the leg, gut and reproductive tissues of wild mosquitoes from Singapore using the Wolbachia surface protein gene (wsp) molecu- lar marker. Mosquito-Wolbachia associations were explored using three methods—tanglegram, distance-based, and event-based methods—and by inferred instances of vertical transmission and host shifts. Results: Adult mosquitoes (271 specimens) representing 14 genera and 40 species were screened for Wolbachia. Overall, 21 species (51.2%) were found positive for Wolbachia, including fve in the genus Aedes and fve in the genus Culex. To our knowledge, Wolbachia infections have not been previously reported in seven of these 21 species: Aedes nr. fumidus, Aedes annandalei, Uranotaenia obscura, Uranotaenia trilineata, Verrallina butleri, Verrallina sp. and Zeugno- myia gracilis.
    [Show full text]
  • The United States Army Medical Department
    THE UNITED STATES ARMY MEDICAL DEPARTMENT OURNAL THE MULTIDISCIPLINARY ASPECTS OF PUBLIC HEALTH January-June 2018 FirstJ Record of Aedes (Stegomyia) malayensis Colless (Diptera: Culicidae) in the Lao People’s Democratic Republic, Based on Morphological Diagnosis and Molecular Analysis 1 Maysa T. Motoki, PhD; Elliott F. Miot, MS; Leopoldo M. Rueda, PhD; et al Mosquito Surveillance Conducted by US Military Personnel in the Aftermath of the Nuclear Explosion at Nagasaki, Japan, 1945 8 David B. Pecor, BS; Desmond H. Foley, PhD; Alexander Potter Georgia’s Collaborative Approach to Expanding Mosquito Surveillance in Response to Zika Virus: Year Two 14 Thuy-Vi Nguyen, PhD, MPH; Rosmarie Kelly, PhD, MPH; et al An Excel Spreadsheet Tool for Exploring the Seasonality of Aedes Vector Hazard for User-Specified Administrative Regions of Brazil 22 Desmond H. Foley, PhD; David B. Pecor, BS Surveillance for Scrub Typhus, Rickettsial Diseases, and Leptospirosis in US and Multinational Military Training Exercise Cobra Gold Sites in Thailand 29 Piyada Linsuwanon, PhD; Panadda Krairojananan, PhD; COL Wuttikon Rodkvamtook, PhD, RTA; et al Risk Assessment Mapping for Zoonoses, Bioagent Pathogens, and Vectors at Edgewood Area, Aberdeen Proving Ground, Maryland 40 Thomas M. Kollars, Jr, PhD; Jason W. Kollars Optimizing Mission-Specific Medical Threat Readiness and Preventive Medicine for Service Members 49 COL Caroline A. Toffoli, VC, USAR Public Health Response to Imported Mumps Cases–Fort Campbell, Kentucky, 2018 55 LTC John W. Downs, MC, USA Developing Medical Surveillance Examination Guidance for New Occupational Hazards: The IMX-101 Experience 60 W. Scott Monks, MPAS, PA-C Missed Opportunities in Human Papillomavirus Vaccination Uptake Among US Air Force Recruits, 2009-2015 67 COL Paul O.
    [Show full text]
  • Mencn. 1985 J. Ar"R. Mosq. Conrhol Assoc. a BLOOD MEAL ANALYSIS of ENGORGED MOSQUITOES FOUND in RIFT VALLEY FEVER EPIZOOTIC
    Mencn. 1985 J. Ar"r.Mosq. CoNrhol Assoc. 93 Beck, S. D. 1980. Insect photopefiodism, 2nd ed. ural history of RVF. In this study we exatnined AcademicPress, New York. 387 pp. 739 blood-fed mosquitoes trapped during and Gallaway,W. J. and R. A. Brust. 1982.The occur- following a period of particularly heavy rainfall rence of Aedes hend,ersoniCockerell and Aedes (October-December1982), which did not gen- triseriatus(Say) in Manitoba. MosQ. Syst. 14:262- eratean epizooticof RVF. However,during this 264. Holzapfel,C. M. and W. E. Bradshaw.lg8l. Geogra- period the virus was isolated from mosquitoes phy of larval dormdnci ln the tree-hole mosquito, at the trapping sites,and from orle dead calf on Aed,estriseriatus (Say). Can. J. Zool.59:l0l,l-1021. a nearby farm; there were also 4 seroconver. Sims,S. R. 1982.Larval diapauseiir the easterntree- sionsin a group of 80 yearling cattle testedai hole mosquito, Aed.estriseriatui; Latitudinal varia- one of the trapping sites(Davies, unpublished tion in induction and intensity.Ann. Entorhol.Soc. data). The emergenceof mosquito speciesap- Am. 75:195-200. peared to be similar to that occurring during Wood, D. M., P. T. Dang and R. A. Ellis. 1979.The the early stagesof RVF epizootics(Linthicum et insectsand arachnids Part of Canada. 6. The mos- al. 1983,1984a). quitoesof Canada(Diptera: Culicidae).Agric. Can. Publ. 1686.390 pp. Mosquitoeswere trapped with Solid State Zavortink, T. J. 1972. Mosquito studies (Diptera: Army Miniature light traps (John W. Hock, Co., Culicidae)XXUII. The New World speciesfor- Gainesville,FL) at known RVF epizootic sitesin merly placedin Aedrs(Finlaya).
    [Show full text]
  • High Diversity of Mosquito Vectors in Cambodian Primary Schools And
    High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission Sebastien Boyer, Sebastien Marcombe, Sony Yean, Didier Fontenille To cite this version: Sebastien Boyer, Sebastien Marcombe, Sony Yean, Didier Fontenille. High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission. PLoS ONE, Public Library of Science, 2020, 15 (6), pp.e0233669. 10.1371/journal.pone.0233669. hal-03053997 HAL Id: hal-03053997 https://hal.archives-ouvertes.fr/hal-03053997 Submitted on 11 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PLOS ONE RESEARCH ARTICLE High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission 1 2 1 1 Sebastien BoyerID *, Sebastien Marcombe , Sony Yean , Didier Fontenille 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Boulevard Monivong, Phnom Penh, Cambodia, 2 Medical Entomology Unit, Ministry of Health, Institut Pasteur du Laos, Vientiane, Lao PDR * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Only few data exist in Cambodia on mosquito diversity and their potential role as vectors. Many arboviruses, such as dengue and Japanese encephalitis, are endemic and mostly affect children in the country.
    [Show full text]
  • Risk of Yellow Fever Virus Transmission in the Asia-Pacific Region
    ARTICLE https://doi.org/10.1038/s41467-020-19625-9 OPEN Risk of yellow fever virus transmission in the Asia-Pacific region Lucy de Guilhem de Lataillade1, Marie Vazeille1, Thomas Obadia2,3, Yoann Madec 4, Laurence Mousson1, ✉ ✉ Basile Kamgang 5, Chun-Hong Chen 6, Anna-Bella Failloux 1 & Pei-Shi Yen 1 Historically endemic to Sub-Saharan Africa and South America, yellow fever is absent from the Asia-Pacific region. Yellow fever virus (YFV) is mainly transmitted by the anthropophilic 1234567890():,; Aedes mosquitoes whose distribution encompasses a large belt of tropical and sub tropical regions. Increasing exchanges between Africa and Asia have caused imported YFV incidents in non-endemic areas, which are threatening Asia with a new viral emergence. Here, using experimental infections of field-collected mosquitoes, we show that Asian-Pacific Aedes mosquitoes are competent vectors for YFV. We observe that Aedes aegypti populations from Singapore, Taiwan, Thailand, and New Caledonia are capable of transmitting YFV 14 days after oral infections, with a number of viral particles excreted from saliva reaching up to 23,000 viral particles. These findings represent the most comprehensive assessment of vector competence and show that Ae. aegypti mosquitoes from the Asia-Pacific region are highly competent to YFV, corroborating that vector populations are seemingly not a brake to the emergence of yellow fever in the region. 1 Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France. 2 Bioinformatics and Biostatistics Hub, Institut Pasteur, USR 3756, CNRS, Paris, France. 3 Malaria Unit: Parasites and Hosts, Institut Pasteur, Paris, France. 4 Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France.
    [Show full text]
  • Situation of Dengue Fever, Chikungunya, Zika and Integrated Sentinel Surveillance of the Diseases in Vietnam
    SITUATION OF DENGUE FEVER, CHIKUNGUNYA, ZIKA AND INTEGRATED SENTINEL SURVEILLANCE OF THE DISEASES IN VIETNAM Luong Minh Tan Vietnam 53rd Master of Public Health/ International Course in Health Development 19 September 2016 - 8 September 2017 KIT (ROYAL TROPICAL INSTITUTE) Health Education/ Vrije Universiteit Amsterdam SITUATION OF DENGUE FEVER, CHIKUNGUNYA, ZIKA AND INTEGRATED SENTINEL SURVEILLANCE OF THE DISEASES IN VIETNAM Luong Minh Tan Vietnam Declaration: Where other people’s work has been used (either from a printed source, internet or any other source) this has been carefully acknowledged and referenced in accordance with departmental requirements. The thesis “Situation of dengue fever, chikungunya, zika and integrated sentinel surveillance of the diseases in Vietnam” is my own work. Signature:................................................... 53rd Master of Public Health/ International Course in Health Development (MPH/ICHD) 19 September 2016 - 8 September 2017 KIT (Royal Tropical Institute)/ Vrije Universiteit Amsterdam Amsterdam, The Netherlands September 2017 Organised by: KIT (Royal Tropical Institute) Health Unit Amsterdam, The Netherlands In co-operation with: Vrije Universiteit Amsterdam/ Free University of Amsterdam (VU) Amsterdam, The Netherlands i Acknowledgment The thesis becomes a reality with the kind supports of helps of several individuals and organizations. I would like to express my sincere thanks to all of them. At the first place, I want to thank The Royal Tropical Institute (KIT) and Hanoi University of Public Health for organizing the Master Of Public Health course where I have experienced the cultural exchange and develop professional understanding of public health and its application in my work. I would like to express my special thanks and gratitude to my thesis supervisor and backstopper, Assoc.
    [Show full text]
  • Increased Female Mortality As a Barrier To
    JUNE 1987 Hygntolzmton Bennren tr.l :{gpps scvtELLARrs Corupr.px INCREASEDFEMALE MORTALITY AS A BARRIER TO HYBRIDIZATION BETWEEN MEMBERS OF THE AEDES SCUTELLARIS COMPLEX OF MOSQUTTOES R. E. DUHRKOPF Department of Bialagy, Ba.ylor Uniuersity, Waro, TX 76798 ABSTRACT. Interspecific crosses between the mosquitoeg Aedes polyncsiensis and Aedes mdnyensis have shown a unidirectiona_l pattern of compatibility. Aedes plynesicnsis females inseminated by Ae. nwlayercb males fail to produce viable offspring while the reciprocal cross is viable. In both crosses, rates of insemination are comparable to control rates. The Ae. polynesbnsis females fail to lay eggs.One apparent reason for thig is that the Ae. plynesiensis females have a high rate of mortality aftcr inseminatioiAy Le. malayensis males. Such mortality is an effective barrier to hybridization in that-croes, and is a new cliss of isolating mechanism. INTRODUCTION unidirectional pattern of compatibility (Yen and Barr 1973, Wright and Barr 1980, Wright anc The Aedes scutellaris complex of mosquitoes Wang 1980,Trpis et al. 1981b). is comprised ofabout 30 speciesdistributed from During attempts at these crosses it was ob- Andaman the Islands in the west to the Mar- served that the Aedespolynesi.ensis females in- quesas and Tuamoto Archipelago in the east, seminated by Ae. m.ahyenslsmales apparently and reaching as far north as Okinawa. Several had a higher rate of mortality than colony fe- members have been implicated as important males. This was true in a variety of attempts vectors of filariasis in the South Paciftc. Aedes involving several different laboratory strains. polyncsiensis Marks has been shown to be highly Even in attempted crossesof very large numbers susceptible to both Brueia Whnnqi and,Bngia (>500 females) mortality was so great that few, malayi (Duhrkopf and Trpis 1980).It is distrib- if any, eggswere laid.
    [Show full text]