Changes in Arsenic Levels in the Precambrian Oceans in Relation to the Upcome of Free Oxygen

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Arsenic Levels in the Precambrian Oceans in Relation to the Upcome of Free Oxygen Examensarbete vid Institutionen för geovetenskaper ISSN 1650-6553 Nr 269 Changes in Arsenic Levels in the Precambrian Oceans in Relation to the Upcome of Free Oxygen Emma H.M. Arvestål Supervisor: Ernest Chi Fru 2 Abstract Life on Earth could have existed already 3.8 Ga ago, and yet, more complex, multicellular life did not evolve until over three billion years later, about 700 Ma ago. Many have searched for the reason behind this apparent delay in evolution, and the dominating theories put the blame on the hostile Precambrian environment with low oxygen levels and sulphide-rich oceans. There are, however, doubts whether this would be the full explanation, and this thesis therefore focuses on a new hypothesis; the levels of the redox sensitive element arsenic increased in the oceans as a consequence of the change in weathering patterns that followed the upcome of free oxygen in the atmosphere at about 2.4 billion years ago. Given its toxicity, this could have had negative effects upon the life of the time. To test the hypothesis, 66 samples from drill cores coming from South Africa and Gabon with ages between 2.7 and 2.05 Ga were analysed for their elemental composition, and their arsenic content were compared with carbon isotope data from the same samples. These confirmed that a rise in arsenic concentration following the upcome of free oxygen in the atmosphere and the onset of oxidative weathering of continental sulphides. Arsenic, which is commonly found in sulphide minerals, was weathered together with the sulphide and delivered into the oceans, where it in the Palaeoproterozoic increased to over 600% compared to the older Archaean levels, at least locally. Iron had the strongest control over the arsenic levels in the anoxic (ferruginous and sulphidic) oceans, probably due to its ability to remove arsenic through adsorption. During oxygenated conditions, sulphur instead had the strongest influence upon arsenic, likely because of the lack of dissolved iron. The highest arsenic levels were found in samples recognised as coming from oxygenated conditions, although this might be due to the oxygenation state of arsenic affecting its solubility. Arsenic is toxic already at low doses, especially if the necessary arsenic detoxification systems had not yet evolved. However, the lack of correlation between arsenic and changes in δ13C indicated that the increase of arsenic did not affect the primary production between 2.7 and 2.05 Ga. Thus, whether arsenic could have affected the evolution of life during the Mesoproterozoic remains to be shown. 3 4 Sammanfattning Redan för 3,8 miljarder år sedan kan det första primitiva livet på jorden ha uppstått. Det tog dock ytterligare tre miljarder år för mer komplext flercelligt liv att utvecklas. Denna fördröjning har enligt den kanske mest vedertagna teorin berott på de låga syrenivåerna under större delen av jordens historia, särskilt då miljön samtidigt var mycket ogästvänlig med svavelhaltiga och näringsfattiga vatten. Teorin har dock kommit att ifrågasättas eftersom det visat sig att djur kan leva i miljöer med betydligt lägre syrehalt än vad som tidigare varit känt. I denna studie testades därför en ny hypotes, nämligen att uppkomsten av fritt syre i atmosfären för 2,4 miljarder år sedan ledde till att koncentrationerna av det redoxkänsliga grundämnet arsenik ökade i haven som en följd av de förändrade vittringsprocesserna. Arsenik är mycket giftigt redan i låga mängder, och en ökning av ämnet kan därför ha lett till att livet kom att påverkas negativt. Hypotesen testades genom att analysera det kemiska innehållet i 66 prover från Sydafrika och Gabon med åldrar mellan 2,7 och 2,05 miljarder år och jämföra förändringarna i arsenikinnehåll med δ13C-värden i samma prover, analyserade av en annan forskargrupp. Proverna bekräftade att en ökning av arsenik skedde för runt 2,25 miljarder år sedan, och att ökningen åtminstone lokalt var över 600% jämfört med arkeiska nivåer. Trots detta verkar det enligt δ13C som att den biologiska aktiviteten under denna tid inte påverkades. Järn hade störst inflytande över arsenikkoncentrationerna under de tider då haven var syrefria och rika på antingen järn eller svavel. Detta beror troligen på järnmineralens förmåga att adsorbera arsenik. I vatten där det fanns syre var det istället svavel som utövade den största kontrollen, förmodligen på grund av bristen på järn. Högst arsenikhalter uppmättes i de prover som kom från syrehaltiga vatten, vilket troligen beror på att arsenik har lägre löslighet under dessa förhållanden. Trots att arsenikens påverkan på livet inte kunde styrkas så kan det inte uteslutas att en ökning av ämnet bidrog till att ha försenat evolutionen av multicellulärt liv under i första hand Mesoproterozoikum, i synnerhet om de gener som ger viss resistans mot arsenik ännu inte hade utvecklats. 5 6 Content Abstract ................................................................................................................................................................................. 3 Sammanfattning ................................................................................................................................................................ 5 Introduction ........................................................................................................................................................................ 9 The biogeochemistry of the Precambrian oceans ............................................................................................. 10 The Archaean ferruginous oceans ...................................................................................................................... 11 Definition of ferruginous waters and BIFs ................................................................................................. 11 Formations of BIFs ............................................................................................................................................... 12 Spatial and stratigraphic distribution of BIFs .......................................................................................... 13 The oceans after the BIFs .................................................................................................................................. 14 The oxygenation of the oceans and atmosphere .......................................................................................... 14 The emergence of free oxygen ........................................................................................................................ 14 The role of cyanobacteria .................................................................................................................................. 15 The role of O2 sinks and nutrients ................................................................................................................. 16 Effects on the atmosphere ................................................................................................................................ 17 The sulphidic oceans of the Proterozoic .......................................................................................................... 18 Definition of euxinic waters ............................................................................................................................. 18 The effects of H2S .................................................................................................................................................. 19 The effect of sulphur upon other elements ................................................................................................ 21 The end of the euxinic conditions .................................................................................................................. 22 Arsenic ................................................................................................................................................................................. 24 The distribution of arsenic in nature ................................................................................................................. 24 Arsenic cycling ............................................................................................................................................................ 25 The toxicity of arsenic .............................................................................................................................................. 27 Arsenic detoxification mechanisms ................................................................................................................... 29 Evolution of life ................................................................................................................................................................ 31 Signs of early life ........................................................................................................................................................ 31 δ13C as a proxy of biological activity .................................................................................................................. 32 Geological background.................................................................................................................................................. 33 South Africa .................................................................................................................................................................. 33 Gabon .............................................................................................................................................................................
Recommended publications
  • Tectonic Imbrication and Foredeep Development in the Penokean
    Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S.
    [Show full text]
  • Early Atmosphere and Hydrosphere Oxygenation: Clues from Precambrian Paleosols and Chemical Sedimentary Records of India
    Article 175 by Partha Pratim Chakraborty1, Joydip Mukhopadhyay2, Pritam P. Paul3, Dhiraj Mohan Banerjee1 and Melinda K. Bera4 Early atmosphere and hydrosphere oxygenation: Clues from Precambrian paleosols and chemical sedimentary records of India 1. Department of Geology, University of Delhi, Delhi-11007 2. Department of Geology, Presidency University, Kolkata- 700073 3. Department of Earth Sciences, Indian Institute of Technology, Mumbai- 400076 4. Manav Rachna University, Faridabad, Haryana, India - 121004 Corresponding author E-mail: [email protected] (Received : 23/02/2019; Revised accepted : 13/11/2019) https://doi.org/10.18814/epiiugs/2020/020011 A number of Precambrian sedimentary basins of the (Hoffman et al., 1998), biological evolution leading to the advent of Indian subcontinent offer scope for tracking early multicellular life (Knoll, 1994) and major changes in the upper crustal composition (Taylor and McLennan, 1997). None of these changes oxygenation history of atmosphere and hydrosphere. followed uniform and steady character e.g., Paleoproterozoic (2500 - Available studies, though certainly not exhaustive, record 1800 Ma) and late Neoproterozoic (800 -541 Ma) witnessed major signatures of pre-great oxygenation event (GOE) whiffs biological, tectonic, climatic and atmospheric changes. The billion of atmospheric oxygenation between 3.29 and 3.02 Ga. year interval (1800 - 800 Ma) mostly encompassing the Besides, available geochemical signatures from Mesoproterozoic time on the other hand is marked by tectonic, climatic and evolutionary stability (Reddy and Evans, 2009; Mukherjee et Precambrian sedimentary rocks (BIF, sulfides, sulfates, al., 2018). Nevertheless, amongst above mentioned breakthrough argillaceous sediments and phosphorites) suggest a changes, the most debated one is oxygenation of Proterozoic generally sub-oxic shallow marine and bipartite oxic- atmosphere and hydrosphere, since it is intimately tied up with sulfidic condition in late Paleoproterozoic and appearance and proliferation of life.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth Permalink https://escholarship.org/uc/item/9v96g1j5 Author Reinhard, Christopher Thomas Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Christopher Thomas Reinhard September 2012 Dissertation Committee: Dr. Timothy W. Lyons, Chairperson Dr. Gordon D. Love Dr. Nigel C. Hughes ! Copyright by Christopher Thomas Reinhard 2012 ! ! The Dissertation of Christopher Thomas Reinhard is approved: ________________________________________________ ________________________________________________ ________________________________________________ Committee Chairperson University of California, Riverside ! ! ACKNOWLEDGEMENTS It goes without saying (but I’ll say it anyway…) that things like this are never done in a vacuum. Not that I’ve invented cold fusion here, but it was quite a bit of work nonetheless and to say that my zest for the enterprise waned at times would be to put it euphemistically. As it happens, though, I’ve been fortunate enough to be surrounded these last years by an incredible group of people. To those that I consider scientific and professional mentors that have kept me interested, grounded, and challenged – most notably Tim Lyons, Rob Raiswell, Gordon Love, and Nigel Hughes – thank you for all that you do. I also owe Nigel and Mary Droser a particular debt of graditude for letting me flounder a bit my first year at UCR, being understanding and supportive, and encouraging me to start down the road to where I’ve ended up (for better or worse).
    [Show full text]
  • The Geology of the Middle Precambrian Rove Formation in Northeastern Minnesota
    MINNESOTA GEOLOGICAL SURVEY 5 P -7 Special Publication Series The Geology of the Middle Precambrian Rove Formation in northeastern Minnesota G. B. Morey UNIVERSITY OF MINNESOTA MINNEAPOLIS • 1969 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I THE GEOLOGY OF THE MIDDLE PRECAMBRIAN ROVE FORMATION IN NORTHEASTERN MINNESOTA by G. B. Morey CONTENTS Page Abstract ........................................... 1 Introduction. 3 Location and scope of study. 3 Acknowledgements .. 3 Regional geology . 5 Structural geology . 8 Rock nomenclature . 8 Stratigraphy . .. 11 Introduction . .. 11 Nomenclature and correlation. .. 11 Type section . .. 11 Thickness . .. .. 14 Lower argillite unit. .. 16 Definition, distribution, and thickness. .. 16 Lithologic character . .. 16 Limestones. .. 17 Concretions. .. 17 Transition unit . .. 17 Definition, distribution, and thickness. .. 17 Lithologic character . .. 19 Thin-bedded graywacke unit . .. 19 Definition, distribution, and thickness. .. 19 Lithologic character. .. 20 Concretions ... .. 20 Sedimentary structures. .. 22 Internal bedding structures. .. 22 Structureless bedding . .. 23 Laminated bedding . .. 23 Graded bedding. .. 23 Cross-bedding . .. 25 Convolute bedding. .. 26 Internal bedding sequences . .. 26 Post-deposition soft sediment deformation structures. .. 27 Bed pull-aparts . .. 27 Clastic dikes . .. 27 Load pockets .. .. 28 Flame structures . .. 28 Overfolds . .. 28 Microfaults. .. 28 Ripple marks .................................. 28 Sole marks . .. 28 Groove casts . .. 30 Flute casts .
    [Show full text]
  • Cyanobacterial Evolution During the Precambrian
    International Journal of Astrobiology 15 (3): 187–204 (2016) doi:10.1017/S1473550415000579 © Cambridge University Press 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Cyanobacterial evolution during the Precambrian Bettina E. Schirrmeister1, Patricia Sanchez-Baracaldo2 and David Wacey1,3 1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK e-mail: [email protected] 2School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK 3Centre for Microscopy, Characterisation and Analysis, and ARC Centre of Excellence for Core to Crust Fluid Systems, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia Abstract: Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth’s biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth’s atmosphere and hydrosphere, triggered the evolution of plants –being ancestral to chloroplasts– and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history.
    [Show full text]
  • The Penokean Orogeny in the Lake Superior Region Klaus J
    Precambrian Research 157 (2007) 4–25 The Penokean orogeny in the Lake Superior region Klaus J. Schulz ∗, William F. Cannon U.S. Geological Survey, 954 National Center, Reston, VA 20192, USA Received 16 March 2006; received in revised form 1 September 2006; accepted 5 February 2007 Abstract The Penokean orogeny began at about 1880 Ma when an oceanic arc, now the Pembine–Wausau terrane, collided with the southern margin of the Archean Superior craton marking the end of a period of south-directed subduction. The docking of the buoyant craton to the arc resulted in a subduction jump to the south and development of back-arc extension both in the initial arc and adjacent craton margin to the north. A belt of volcanogenic massive sulfide deposits formed in the extending back-arc rift within the arc. Synchronous extension and subsidence of the Superior craton resulted in a broad shallow sea characterized by volcanic grabens (Menominee Group in northern Michigan). The classic Lake Superior banded iron-formations, including those in the Marquette, Gogebic, Mesabi and Gunflint Iron Ranges, formed in that sea. The newly established subduction zone caused continued arc volcanism until about 1850 Ma when a fragment of Archean crust, now the basement of the Marshfield terrane, arrived at the subduction zone. The convergence of Archean blocks of the Superior and Marshfield cratons resulted in the major contractional phase of the Penokean orogeny. Rocks of the Pembine–Wausau arc were thrust northward onto the Superior craton causing subsidence of a foreland basin in which sedimentation began at about 1850 Ma in the south (Baraga Group rocks) and 1835 Ma in the north (Rove and Virginia Formations).
    [Show full text]
  • Isotopic and Chemical Characterization of Water from Mine Pits and Wells on the Mesabi Iron Range, Northeastern Minnesota, As a Tool for Drinking Water Protection
    Isotopic and Chemical Characterization of Water From Mine Pits and Wells on the Mesabi Iron Range, Northeastern Minnesota, as a Tool for Drinking Water Protection James F. Walsh, Minnesota Department of Health Abstract The Biwabik Iron Formation is both a world-class source of iron ore and an important aquifer for the residents of the Mesabi Iron Range in northeastern Minnesota. Numerous public water supply wells draw from this aquifer, and several communities pump directly from abandoned mine pits for their water supply. It is important that the groundwater flow characteristics of this aquifer be determined so that drinking water supplies can be protected in a technically defensible manner. The iron formation is early Proterozoic in age and consists primarily of fine-grained silica and iron minerals that were deposited as chemical sediments in a marine environment. The unit has little primary porosity. Groundwater flow through the aquifer is controlled predominantly by secondary features such as folds, high- angle faults, joints, and man-made mining structures. Efforts at delineating source water protection areas on the Mesabi Range have been complicated by the extremely heterogeneous and anisotropic nature of porosity in the Biwabik Iron Formation aquifer. In the absence of reliable groundwater flow models for this type of setting, isotopic and chemical studies have been emphasized, in addition to hydrogeologic mapping. Conservative environmental tracers such as chloride and the stable isotopes of oxygen and hydrogen have proved useful for 1) identifying wells that are receiving recharge from mine pits, 2) characterizing the tracer signature of those mine pits that may represent recharge areas for nearby public supply wells, and 3) quantifying the significance of these recharge areas for the purpose of targeting source water protection efforts.
    [Show full text]
  • G-012011-1E Geological Precambrian Timeline Midwest
    Copper Harbor Conglomerate Gunflint Formation: Breccia with white quartz Precambrian Geologic Events in the Mid-Continent of North America G-012011-1E 1 inch (Century Mine, Upper Peninsula MI) (Sibley Peninsula, Thunder Bay, ON) Compiled by: Steven D.J. Baumann, Alexandra B. Cory, Micaela M. Krol, Elisa J. Piispa Updated March 2013 Oldest known rock showing a dipole magnetic field: red dacite in Austrailia Paleomagnetic Line 3,800 3,700 3,600 3,500 3,400 3,300 3,200 3,100 3,000 2,900 2,800 2,700 2,600 2,500 2,400 2,300 2,200 2,100 2,000 1,900 1,800 1,700 1,600 1,500 1,400 1,300 1,200 1,100 1,000 900 800 700 600 500 Paleozoic Period Siderian Rhyacian Orosirian Statherian Calymmian Ectasian Stenian Tonian Cryogenian Ediacaran Eoarchean Paleoarchean Mesoarchean Neoarchean Era Paleoproterozoic Mesoproterozoic Neoproterozoic Eon Archean Proterozoic Pass Lake Kama Hill Sibley Group Sediments (Sibley Basin, Thunder Bay Area, ON) McGrath Gneiss McGrath Complex (EC MN) Metamorphic and cataclastic event Formation Formation Outan Island Formation Nipigon Formation Recent Era of Great Mid-continent Basin Formation (MI, IL, IA, IN, KY, MO) 2 inches Marshfield Archean Gneiss (C WI) Linwood Archean Migmatite (C WI) Sudbury Dike Swarm (SE ON) Quinnesec Formation Intrusions (NE WI) Quinnesec Formation Metamorphism (NE WI) Hatfield Gneiss (WC WI) Pre-Quinnesec Formations deposited (NE WI) Upper Rove Formation Baraboo Quartzite LEGEND (Sibley Peninsula, Thunder Bay, ON) Gray granodioritic phase Montevideo Gneiss (SW MN) Red granite phase Montevideo Gneiss
    [Show full text]
  • MIDCONTINENT RIFT SYSTEM BIBLIOGRAPHY by Steven A
    MIDCONTINENT RIFT SYSTEM BIBLIOGRAPHY By Steven A. Hauck December 1995 Technical Report NRRI/TR-95/33 Funded by the Natural Resources Research Institute In Preparation for the 1995 International Geological Correlation Program Project 336 Field Conference in Duluth, MN Natural Resources Research Institute University of Minnesota, Duluth 5013 Miller Trunk Highway Duluth, MN 55811-1442 TABLE OF CONTENTS INTRODUCTION ................................................... 1 THE DATABASE .............................................. 1 Use of the PAPYRUS Retriever Program (Diskette) .............. 3 Updates, Questions, Comments, Etc. ......................... 3 ACKNOWLEDGEMENTS ....................................... 4 MIDCONTINENT RIFT SYSTEM BIBLIOGRAPHY ......................... 5 AUTHOR INDEX ................................................. 191 KEYWORD INDEX ................................................ 216 i This page left blank intentionally. ii INTRODUCTION The co-chairs of the IGCP Project 336 field conference on the Midcontinent Rift System felt that a comprehensive bibliography of articles relating to a wide variety of subjects would be beneficial to individuals interested in, or working on, the Midcontinent Rift System. There are 2,543 references (>4.2 MB) included on the diskette at the back of this volume. PAPYRUS Bibliography System software by Research Software Design of Portland, Oregon, USA, was used in compiling the database. A retriever program (v. 7.0.011) for the database was provided by Research Software Design for use with the database. The retriever program allows the user to use the database without altering the contents of the database. However, the database can be used, changed, or augmented with a complete version of the program (ordering information can be found in the readme file). The retriever program allows the user to search the database and print from the database. The diskette contains compressed data files.
    [Show full text]
  • Minimum Age and Provenance of the Correlated Thomson and Rove Formations of Eastern Minnesota
    Kerber, L. 2006. 19th Annual Keck Symposium; http://keck.wooster.edu/publications MINIMUM AGE AND PROVENANCE OF THE CORRELATED THOMSON AND ROVE FORMATIONS OF EASTERN MINNESOTA LAURA KERBER Pomona College Sponsor: Robert Gaines INTRODUCTION and in other areas finely bedded argillite. The dominant phase is called a slate because the thin The correlated Thomson and Rove Formations beds have been recrystallized to the point that are exposed as heterogeneous formations they do not disintegrate to clay like common composed of greywacke, slate, sandstone, and shale slabs. They were deposited in a marine argillite in Northeastern Minnesota as part of environment and are characterized in places by the Animikie Group (Morey, 1970). Other turbidites (Morey, 1970). The top and bottom members of the group include the Kakabeka contacts of the Thomson are not exposed, and Pokegama Quartzites (mature quartz and the Rove is exposed in sections that have arenites made from quartz sand and mud with been pieced together to create the probable a basal conglomerate that separates it from the stratigraphy of the whole. The deposition of the underlying Lower Precambrian granites and Rove Formation has been dated previously to volcanic-sedimentary rocks of Northeastern 1836 + 5 Ma using ID-TIMS (isotope-dilution Minnesota) and The Biwabik Iron Formation thermal ionization mass spectrometer) on a (which underlies the Thomson Formation) single zircon and to a mean age of 1827 + 8 and the Gunflint Iron Formation (which Ma using SHRIMP (sensitive high-resolution underlies the Rove Formation) (Ojakangas, ion microprobe) for 15 analyses. All of the 2004). The Thomson and Rove Formations zircons for these analyses were obtained are overlain unconformably by Keweenawan from interbedded tuff layers (Kissin, 2003).
    [Show full text]
  • Relationship of Structural Geology of the Duluth Complex to Economic Mineralization
    MINNESOTA DEPARTMENT OF NATURAL RESOURCES Division of Minerals Report 241-2 RELATIONSHIP OF STRUCTURAL GEOLOGY OF THE DULUTH COMPLEX TO ECONOMIC MINERALIZATION A Final Report to the Minnesota Department of Natural Resources and the Natural Resources Research Institute of the University of Minnesota Duluth by Timothy B. Holst, Eugene E. Mullenmeister, Val W. Chandler, John C. Green, and Paul w. Weiblen Funded by The Legislative Commission on Minnesota Resources The Natural Resources Research Institute TABLE OF CONTENTS I. Introduction I-1 II. Structural Analysis of the Northeast Mesabi Range II-1 III. Structural Analysis of the Dunka River Area III-1 IV. The Form of the Base of the Duluth Complex IV-1 v. Field Mapping V-1 VI. Geophysical Studies VI-1 VII. Discussion, Interpretation, Conclusions VII-1 VIII. Further Work VIII-1 References R-1 Maps: ~)Ire·,:,,,( Plate I: ~Geology of the Northeast Mesabi Range Plate II: Structure Contour Map on the Upper Contact of the Lower Slatey Member of the Biwabik Iron Formation in the Dunka Pit Area Plate III: Structure Contour Map of the Base of the Duluth Complex in the Minnamax Area Plate IV: Structure Contour Map on the Base of the Duluth Complex From the Dunka River Area to Hoyt Lakes Plate V: Structure Contour Map on the Base of the Duluth Complex in the Dunka River Area Plate VI: Structural Geology of the Dunka River Area Cross Sections: A: Minnamax Project Area B: Minnamax Project Area C: Minnamax Project Area D: Dunka River Area INTRODUCTION A series of mafic igneous rocks (both intrusive and extrusive), known from outcrop or inferred from geophysical data, forms an arc that runs from Kansas, through Iowa and Minnesota, through Lake Superior, and south through Michigan, perhaps into Ohio.
    [Show full text]
  • 9.18 Iron Formations: Their Origins and Implications for Ancient Seawater
    9.18 Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry A Bekker, University of Manitoba, Winnipeg, MB, Canada NJ Planavsky, Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA B Krapezˇ and B Rasmussen, Curtin University, Perth, WA, Australia A Hofmann, University of Johannesburg, Johannesburg, South Africa JF Slack, US Geological Survey, Reston, VA, USA OJ Rouxel, IFREMER, Centre de Brest, Plouzane´, France KO Konhauser, University of Alberta, Edmonton, AB, Canada ã 2014 Elsevier Ltd. All rights reserved. 9.18.1 Introduction 562 9.18.2 Definition of IF 563 9.18.3 Mineralogy of IF 566 9.18.3.1 Precursor Sediments 568 9.18.3.1.1 Secular trend in Fe mineralogy of GIFs 569 9.18.4 Depositional Setting and Sequence-Stratigraphic Framework 569 9.18.4.1 Basin-Type Control on IF Deposition 571 9.18.4.2 Sedimentation Rates 572 9.18.5 IF: A Proxy for Ancient Seawater Composition 573 9.18.5.1 Trace Elements 573 9.18.5.1.1 Rare earth elements 573 9.18.5.1.2 Phosphorus 574 9.18.5.1.3 Nickel 577 9.18.5.1.4 Chromium 577 9.18.5.2 Stable Isotope Studies of IF 579 9.18.5.2.1 Traditional light stable isotopes 579 9.18.5.2.2 Nontraditional stable isotopes 581 9.18.6 Perspective from the Modern Iron Cycle 584 9.18.6.1 Hydrothermal Pulses of Si Synchronous with Fe Addition to Seawater 586 9.18.6.2 Oxidation Mechanism: Biological versus Nonbiological 586 9.18.6.2.1 Oxidation of Fe(II) by cyanobacterial O2 588 9.18.6.2.2 Metabolic Fe(II) oxidation 588 9.18.6.2.3 Ultraviolet photooxidation of Fe(II) 589 9.18.7
    [Show full text]