© Copyright 2018 Matthew C. Koehler

Total Page:16

File Type:pdf, Size:1020Kb

© Copyright 2018 Matthew C. Koehler © Copyright 2018 Matthew C. Koehler The co-evolution of life and the nitrogen cycle on the early Earth Matthew C. Koehler A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2018 Reading Committee: Roger Buick, Ph.D., Chair David Catling, Ph.D. Eric Steig, Ph.D. Program Authorized to Offer Degree: Earth and Space Sciences & Astrobiology University of Washington Abstract The co-evolution of life and the nitrogen cycle on the early Earth Matthew C. Koehler Chair of the Supervisory Committee: Roger Buick, Ph.D. Earth and Spaces Sciences & Astrobiology Nitrogen is an essential element for all life as we know it. Its abundance and speciation in the atmosphere and ocean has been dynamic through Earth’s history. The dynamic nature of nitrogen cycling is invariably linked to the dynamic nature of oxygenation on the early Earth, and the evolution of these two biogeochemical cycles influenced biological evolution and diversification. Exploration of the mode, tempo, and scale of such changes will add to our mechanistic understanding of these components of the inhabited Earth-system and should provide insight into how these cycles might operate on an alien planet that is different from our own. Here, I explore four critical points in Earth’s redox and biological evolution: Chapter 2 – The dominantly anoxic world of the Mesoarchean, when aerobic nitrogen metabolisms did not exist, and bioavailable nitrogen could only be obtained through biological nitrogen fixation or remineralized ammonium. Biological nitrogen fixation by the Mo-nitrogenase dominated. Chapter 3 – Incipient oxygenation ~300 Myr before the great oxidation event. We start to characterize the mode, tempo, and scale of these transient oxygenation events, and provide the oldest evidence of aerobic nitrogen cycling 2.66 Gyr ago. Chapter 4 – The state of nitrogen cycling during the Mesoproterozoic. We find further evidence that the Mesoproterozoic was characterized by an oceanic nitrate minimum, and that this nitrate scarcity could have prevented the radiation of early eukaryotes until the end of the Proterozoic. Chapter 5 – Nitrogen cycling across the Hirnantian glaciation and end Ordovician mass extinction event. We find that oceans during this period were characterized by widespread ocean anoxia that led to a scarcity in nitrate much like in the Mesoproterozoic. Nitrate scarcity was temporarily alleviated in near-shore settings during glaciation. Much like in the Pacific Ocean during the Last Glacial Maximum, the carbonate compensation depth at multiple sites seems to have deepened substantially during peak Hirnantian glaciation. These results highlight the relationship between ecology, evolution, nitrogen speciation/abundance, and surface oxygen. TABLE OF CONTENTS List of Figures ................................................................................................................................ vi List of Tables ............................................................................................................................... xiii Chapter 1: Introduction ........................................................................................................... 17 Chapter 2: Nitrogen isotope evidence for anoxic deep marine environments from the Mesoarchean Mosquito Creek Formation, Australia .................................................................... 22 2.1 Abstract ..................................................................................................................... 22 2.2 Introduction ............................................................................................................... 22 2.3 Geologic Setting........................................................................................................ 23 2.4 Methods..................................................................................................................... 28 2.5 Results ....................................................................................................................... 30 2.6 Discussion ................................................................................................................. 32 2.6.1 Isotopic fidelity ......................................................................................................... 32 2.6.2 Redox and paleoecology ........................................................................................... 34 2.6.3 Marine or non-marine? ............................................................................................. 36 2.6.4 Implications for microbial evolution ........................................................................ 40 2.7 Acknowledgements ................................................................................................... 40 Chapter 3: Transient surface ocean oxygenation recorded in the ~2.66 Ga Jeerinah Formation, Australia ..................................................................................................................... 41 3.1 Abstract ..................................................................................................................... 41 3.2 Introduction ............................................................................................................... 42 i 3.3 Geologic Setting........................................................................................................ 44 3.4 Results ....................................................................................................................... 45 3.4.1 AIDP-2 ...................................................................................................................... 48 3.4.2 AIDP-3 ...................................................................................................................... 48 3.5 Discussion ................................................................................................................. 51 3.5.1 Proxy Alteration ........................................................................................................ 51 3.5.2 Interpretation of nitrogen isotopic data ..................................................................... 53 3.5.3 Interpretation of selenium concentrations and isotopic ratios .................................. 54 3.5.4 Transient surface ocean oxygenation in the Neoarchean: mode and tempo ............. 55 3.6 Conclusion ................................................................................................................ 57 3.7 Methods..................................................................................................................... 58 3.8 Acknowledgements ................................................................................................... 58 Chapter 4: Spatial and temporal trends in Precambrian nitrogen cycling: a Mesoproterozoic offshore nitrate minimum ............................................................................................................. 60 4.1 Abstract ..................................................................................................................... 60 4.2 Introduction ............................................................................................................... 61 4.3 Precambrian nitrogen cycling ................................................................................... 64 4.4 Location and geologic setting ................................................................................... 68 4.4.1 Bangemall Supergroup.............................................................................................. 68 4.4.2 Roper Group.............................................................................................................. 71 4.5 Analytical methods ................................................................................................... 73 4.5.1 Sample preparation for bulk rock analyses ............................................................... 73 4.5.2 Kerogen extraction for organic nitrogen ................................................................... 73 ii 4.5.3 Isotopic analyses ....................................................................................................... 74 4.6 Results ....................................................................................................................... 75 4.6.1 Bangemall basin ........................................................................................................ 75 4.6.2 Roper basin ............................................................................................................... 76 4.7 Discussion ................................................................................................................. 77 4.7.1 Diagenesis and metamorphism ................................................................................. 77 15 4.7.1.1 Oxic diagenesis: effects on preserved δ Nbulk ...................................................... 77 15 4.7.1.2 Anoxic diagenesis: effects on preserved δ Nbulk .................................................. 81 4.7.1.3 Diagenetic effects on the δ 13 C of organic matter .................................................. 82 4.7.1.4 Metamorphism ...................................................................................................... 83 4.7.2 Carbon cycling in the Bangemall and Roper Basins ................................................ 85 4.7.3
Recommended publications
  • Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling” by N
    CORRECTED 21 MAY 2010; SEE LAST PAGE REPORTS 13. J. Helbert, A. Maturilli, N. Mueller, in Venus Eds. (U.S. Geological Society Open-File Report 2005- M. F. Coffin, Eds. (Monograph 100, American Geophysical Geochemistry: Progress, Prospects, and New Missions 1271, Abstracts of the Annual Meeting of Planetary Union, Washington, DC, 1997), pp. 1–28. (Lunar and Planetary Institute, Houston, TX, 2009), abstr. Geologic Mappers, Washington, DC, 2005), pp. 20–21. 44. M. A. Bullock, D. H. Grinspoon, Icarus 150, 19 (2001). 2010. 25. E. R. Stofan, S. E. Smrekar, J. Helbert, P. Martin, 45. R. G. Strom, G. G. Schaber, D. D. Dawson, J. Geophys. 14. J. Helbert, A. Maturilli, Earth Planet. Sci. Lett. 285, 347 N. Mueller, Lunar Planet. Sci. XXXIX, abstr. 1033 Res. 99, 10,899 (1994). (2009). (2009). 46. K. M. Roberts, J. E. Guest, J. W. Head, M. G. Lancaster, 15. Coronae are circular volcano-tectonic features that are 26. B. D. Campbell et al., J. Geophys. Res. 97, 16,249 J. Geophys. Res. 97, 15,991 (1992). unique to Venus and have an average diameter of (1992). 47. C. R. K. Kilburn, in Encyclopedia of Volcanoes, ~250 km (5). They are defined by their circular and often 27. R. J. Phillips, N. R. Izenberg, Geophys. Res. Lett. 22, 1617 H. Sigurdsson, Ed. (Academic Press, San Diego, CA, radial fractures and always produce some form of volcanism. (1995). 2000), pp. 291–306. 16. G. E. McGill, S. J. Steenstrup, C. Barton, P. G. Ford, 28. C. M. Pieters et al., Science 234, 1379 (1986). 48.
    [Show full text]
  • Tectonic Imbrication and Foredeep Development in the Penokean
    Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth Permalink https://escholarship.org/uc/item/9v96g1j5 Author Reinhard, Christopher Thomas Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Christopher Thomas Reinhard September 2012 Dissertation Committee: Dr. Timothy W. Lyons, Chairperson Dr. Gordon D. Love Dr. Nigel C. Hughes ! Copyright by Christopher Thomas Reinhard 2012 ! ! The Dissertation of Christopher Thomas Reinhard is approved: ________________________________________________ ________________________________________________ ________________________________________________ Committee Chairperson University of California, Riverside ! ! ACKNOWLEDGEMENTS It goes without saying (but I’ll say it anyway…) that things like this are never done in a vacuum. Not that I’ve invented cold fusion here, but it was quite a bit of work nonetheless and to say that my zest for the enterprise waned at times would be to put it euphemistically. As it happens, though, I’ve been fortunate enough to be surrounded these last years by an incredible group of people. To those that I consider scientific and professional mentors that have kept me interested, grounded, and challenged – most notably Tim Lyons, Rob Raiswell, Gordon Love, and Nigel Hughes – thank you for all that you do. I also owe Nigel and Mary Droser a particular debt of graditude for letting me flounder a bit my first year at UCR, being understanding and supportive, and encouraging me to start down the road to where I’ve ended up (for better or worse).
    [Show full text]
  • The Geology of the Middle Precambrian Rove Formation in Northeastern Minnesota
    MINNESOTA GEOLOGICAL SURVEY 5 P -7 Special Publication Series The Geology of the Middle Precambrian Rove Formation in northeastern Minnesota G. B. Morey UNIVERSITY OF MINNESOTA MINNEAPOLIS • 1969 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I THE GEOLOGY OF THE MIDDLE PRECAMBRIAN ROVE FORMATION IN NORTHEASTERN MINNESOTA by G. B. Morey CONTENTS Page Abstract ........................................... 1 Introduction. 3 Location and scope of study. 3 Acknowledgements .. 3 Regional geology . 5 Structural geology . 8 Rock nomenclature . 8 Stratigraphy . .. 11 Introduction . .. 11 Nomenclature and correlation. .. 11 Type section . .. 11 Thickness . .. .. 14 Lower argillite unit. .. 16 Definition, distribution, and thickness. .. 16 Lithologic character . .. 16 Limestones. .. 17 Concretions. .. 17 Transition unit . .. 17 Definition, distribution, and thickness. .. 17 Lithologic character . .. 19 Thin-bedded graywacke unit . .. 19 Definition, distribution, and thickness. .. 19 Lithologic character. .. 20 Concretions ... .. 20 Sedimentary structures. .. 22 Internal bedding structures. .. 22 Structureless bedding . .. 23 Laminated bedding . .. 23 Graded bedding. .. 23 Cross-bedding . .. 25 Convolute bedding. .. 26 Internal bedding sequences . .. 26 Post-deposition soft sediment deformation structures. .. 27 Bed pull-aparts . .. 27 Clastic dikes . .. 27 Load pockets .. .. 28 Flame structures . .. 28 Overfolds . .. 28 Microfaults. .. 28 Ripple marks .................................. 28 Sole marks . .. 28 Groove casts . .. 30 Flute casts .
    [Show full text]
  • Cretaceous Paleoceanography
    GEOLOGIC A CARPATH1CA, 46, 5, BRATISLAVA, OCTOBER 1995 257 - 266 CRETACEOUS PALEOCEANOGRAPHY A v Z XI06ER WILLIAM W. HAY BORE* CRETACEOUS GEOMAR, Wischhofstr. 1-3, D-24148 Kiel, Germany Department of Geological Sciences and Cooperative Institute for Research in Environmental Sciences, Campus Box 250, University of Colorado, Boulder, CO 80309, USA (Manuscript received January 17, 1995; accepted in revised form June 14, 1995) Abstract: The modem ocean is comprised of four units: an equatorial belt shared by the two hemispheres, tropical-subtropi­ cal anticyclonic gyres, mid-latitude belts of water with steep meridional temperature gradients, and polar oceans characterized by cyclonic gyres. These units are separated by lines of convergence, or fronts: subequatorial, subtropical, and polar. Con­ vergence and divergence of the ocean waters are forced beneath zonal (latitude-parallel) winds. The Early Cretaceous ocean closely resembled the modem ocean. The developing Atlantic was analogous to the modem Mediterranean and served as an Intermediate Water source for the Pacific. Because sea-ice formed seasonally in the Early Cretaceous polar seas, deep water formation probably took place largely in the polar region. In the Late Cretaceous, the high latitudes were warm and deep waters moved from the equatorial region toward the poles, enhancing the ocean’s capacity to transport heat poleward. The contrast between surface gyre waters and intermediate waters was less, making them easier to upwell, but be­ cause their residence time in the oxygen minimum was less and they contained less nutrients. By analogy to the modem ocean, ’’Tethyan” refers to the oceans between the subtropical convergences and ’’Boreal” refers to the ocean poleward of the subtropical convergences.
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • The History of Ice on Earth by Michael Marshall
    The history of ice on Earth By Michael Marshall Primitive humans, clad in animal skins, trekking across vast expanses of ice in a desperate search to find food. That’s the image that comes to mind when most of us think about an ice age. But in fact there have been many ice ages, most of them long before humans made their first appearance. And the familiar picture of an ice age is of a comparatively mild one: others were so severe that the entire Earth froze over, for tens or even hundreds of millions of years. In fact, the planet seems to have three main settings: “greenhouse”, when tropical temperatures extend to the polesand there are no ice sheets at all; “icehouse”, when there is some permanent ice, although its extent varies greatly; and “snowball”, in which the planet’s entire surface is frozen over. Why the ice periodically advances – and why it retreats again – is a mystery that glaciologists have only just started to unravel. Here’s our recap of all the back and forth they’re trying to explain. Snowball Earth 2.4 to 2.1 billion years ago The Huronian glaciation is the oldest ice age we know about. The Earth was just over 2 billion years old, and home only to unicellular life-forms. The early stages of the Huronian, from 2.4 to 2.3 billion years ago, seem to have been particularly severe, with the entire planet frozen over in the first “snowball Earth”. This may have been triggered by a 250-million-year lull in volcanic activity, which would have meant less carbon dioxide being pumped into the atmosphere, and a reduced greenhouse effect.
    [Show full text]
  • SVP's Letter to Editors of Journals and Publishers on Burmese Amber And
    Society of Vertebrate Paleontology 7918 Jones Branch Drive, Suite 300 McLean, VA 22102 USA Phone: (301) 634-7024 Email: [email protected] Web: www.vertpaleo.org FEIN: 06-0906643 April 21, 2020 Subject: Fossils from conflict zones and reproducibility of fossil-based scientific data Dear Editors, We are writing you today to promote the awareness of a couple of troubling matters in our scientific discipline, paleontology, because we value your professional academic publication as an important ‘gatekeeper’ to set high ethical standards in our scientific field. We represent the Society of Vertebrate Paleontology (SVP: http://vertpaleo.org/), a non-profit international scientific organization with over 2,000 researchers, educators, students, and enthusiasts, to advance the science of vertebrate palaeontology and to support and encourage the discovery, preservation, and protection of vertebrate fossils, fossil sites, and their geological and paleontological contexts. The first troubling matter concerns situations surrounding fossils in and from conflict zones. One particularly alarming example is with the so-called ‘Burmese amber’ that contains exquisitely well-preserved fossils trapped in 100-million-year-old (Cretaceous) tree sap from Myanmar. They include insects and plants, as well as various vertebrates such as lizards, snakes, birds, and dinosaurs, which have provided a wealth of biological information about the ‘dinosaur-era’ terrestrial ecosystem. Yet, the scientific value of these specimens comes at a cost (https://www.nytimes.com/2020/03/11/science/amber-myanmar-paleontologists.html). Where Burmese amber is mined in hazardous conditions, smuggled out of the country, and sold as gemstones, the most disheartening issue is that the recent surge of exciting scientific discoveries, particularly involving vertebrate fossils, has in part fueled the commercial trading of amber.
    [Show full text]
  • Timing and Tempo of the Great Oxidation Event
    Timing and tempo of the Great Oxidation Event Ashley P. Gumsleya,1, Kevin R. Chamberlainb,c, Wouter Bleekerd, Ulf Söderlunda,e, Michiel O. de Kockf, Emilie R. Larssona, and Andrey Bekkerg,f aDepartment of Geology, Lund University, Lund 223 62, Sweden; bDepartment of Geology and Geophysics, University of Wyoming, Laramie, WY 82071; cFaculty of Geology and Geography, Tomsk State University, Tomsk 634050, Russia; dGeological Survey of Canada, Ottawa, ON K1A 0E8, Canada; eDepartment of Geosciences, Swedish Museum of Natural History, Stockholm 104 05, Sweden; fDepartment of Geology, University of Johannesburg, Auckland Park 2006, South Africa; and gDepartment of Earth Sciences, University of California, Riverside, CA 92521 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved December 27, 2016 (received for review June 11, 2016) The first significant buildup in atmospheric oxygen, the Great situ secondary ion mass spectrometry (SIMS) on microbaddeleyite Oxidation Event (GOE), began in the early Paleoproterozoic in grains coupled with precise isotope dilution thermal ionization association with global glaciations and continued until the end of mass spectrometry (ID-TIMS) and paleomagnetic studies, we re- the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact solve these uncertainties by obtaining accurate and precise ages timing of and relationships among these events are debated for the volcanic Ongeluk Formation and related intrusions in because of poor age constraints and contradictory stratigraphic South Africa. These ages lead to a more coherent global per- correlations. Here, we show that the first Paleoproterozoic global spective on the timing and tempo of the GOE and associated glaciation and the onset of the GOE occurred between ca.
    [Show full text]
  • Gawler Craton: Half a Billion Years Older Than Previously Thought!
    ISSUE 92 Dec 2008 Foundations of South Australia discovered Gawler Craton: half a billion years older than previously thought! Geoff Fraser, Chris Foudoulis, Narelle Neumann, Keith Sircombe (Geoscience Australia) Stacey McAvaney, Anthony Reid, Michael Szpunar (Primary Industries and Resources South Australia) Recent geochronology results obtained using Geoscience Australia’s a billion years older than the Sensitive High Resolution Ion Microprobe (SHRIMP) have identified oldest previously-dated rock from Mesoarchean rocks (about 3150 million years old) in the eastern South Australia, making these Gawler Craton, South Australia. These rocks are approximately half the oldest rocks yet discovered in 136° 137° Australia outside the Pilbara and Port Augusta Yilgarn Craton areas of Western 08GA-G01 Australia. A series of seismic transects are being collected across selected regions of the Australian 33° See Inset below Whyalla continent as part of Geoscience Kimba Australia’s Onshore Energy SOUTH Security Program. One of these AUSTRALIA seismic transects, collected in June 2008, traverses the northern Cowell Eyre Peninsula of South Australia Iron Monarch (figure 1). When processed, the seismic data will provide an east– 23 Mile Wallaroo west cross-section of the eastern 34° margin of the Gawler Craton. Spencer Moonta Gulf This region hosts significant CUMMINS uranium, geothermal, copper- Iron Baron/ TUMBY BAY Iron Prince gold, gold and iron resources. Maitland To assist the interpretation of 08-3449-1 0 50 km the seismic data and the current geological mapping program of Mesoarchean granite NT QLD Primary Industries and Resources WA Seismic survey route SA Road South Australia, a program of NSW VIC Railway geochronology is underway to Mineral occurence TAS Town/locality determine the ages of major rock units crossed by the seismic line.
    [Show full text]