Relationship of Structural Geology of the Duluth Complex to Economic Mineralization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lexicon of Pleistocene Stratigraphic Units of Wisconsin
Lexicon of Pleistocene Stratigraphic Units of Wisconsin ON ATI RM FO K CREE MILLER 0 20 40 mi Douglas Member 0 50 km Lake ? Crab Member EDITORS C O Kent M. Syverson P P Florence Member E R Lee Clayton F Wildcat A Lake ? L L Member Nashville Member John W. Attig M S r ik be a F m n O r e R e TRADE RIVER M a M A T b David M. Mickelson e I O N FM k Pokegama m a e L r Creek Mbr M n e M b f a e f lv m m i Sy e l M Prairie b C e in Farm r r sk er e o emb lv P Member M i S ill S L rr L e A M Middle F Edgar ER M Inlet HOLY HILL V F Mbr RI Member FM Bakerville MARATHON Liberty Grove M Member FM F r Member e E b m E e PIERCE N M Two Rivers Member FM Keene U re PIERCE A o nm Hersey Member W le FM G Member E Branch River Member Kinnickinnic K H HOLY HILL Member r B Chilton e FM O Kirby Lake b IG Mbr Boundaries Member m L F e L M A Y Formation T s S F r M e H d l Member H a I o V r L i c Explanation o L n M Area of sediment deposited F e m during last part of Wisconsin O b er Glaciation, between about R 35,000 and 11,000 years M A Ozaukee before present. -
Tectonic Imbrication and Foredeep Development in the Penokean
Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in Books of the U.S. -
Ecological Regions of Minnesota: Level III and IV Maps and Descriptions Denis White March 2020
Ecological Regions of Minnesota: Level III and IV maps and descriptions Denis White March 2020 (Image NOAA, Landsat, Copernicus; Presentation Google Earth) A contribution to the corpus of materials created by James Omernik and colleagues on the Ecological Regions of the United States, North America, and South America The page size for this document is 9 inches horizontal by 12 inches vertical. Table of Contents Content Page 1. Introduction 1 2. Geographic patterns in Minnesota 1 Geographic location and notable features 1 Climate 1 Elevation and topographic form, and physiography 2 Geology 2 Soils 3 Presettlement vegetation 3 Land use and land cover 4 Lakes, rivers, and watersheds; water quality 4 Flora and fauna 4 3. Methods of geographic regionalization 5 4. Development of Level IV ecoregions 6 5. Descriptions of Level III and Level IV ecoregions 7 46. Northern Glaciated Plains 8 46e. Tewaukon/BigStone Stagnation Moraine 8 46k. Prairie Coteau 8 46l. Prairie Coteau Escarpment 8 46m. Big Sioux Basin 8 46o. Minnesota River Prairie 9 47. Western Corn Belt Plains 9 47a. Loess Prairies 9 47b. Des Moines Lobe 9 47c. Eastern Iowa and Minnesota Drift Plains 9 47g. Lower St. Croix and Vermillion Valleys 10 48. Lake Agassiz Plain 10 48a. Glacial Lake Agassiz Basin 10 48b. Beach Ridges and Sand Deltas 10 48d. Lake Agassiz Plains 10 49. Northern Minnesota Wetlands 11 49a. Peatlands 11 49b. Forested Lake Plains 11 50. Northern Lakes and Forests 11 50a. Lake Superior Clay Plain 12 50b. Minnesota/Wisconsin Upland Till Plain 12 50m. Mesabi Range 12 50n. Boundary Lakes and Hills 12 50o. -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth Permalink https://escholarship.org/uc/item/9v96g1j5 Author Reinhard, Christopher Thomas Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Christopher Thomas Reinhard September 2012 Dissertation Committee: Dr. Timothy W. Lyons, Chairperson Dr. Gordon D. Love Dr. Nigel C. Hughes ! Copyright by Christopher Thomas Reinhard 2012 ! ! The Dissertation of Christopher Thomas Reinhard is approved: ________________________________________________ ________________________________________________ ________________________________________________ Committee Chairperson University of California, Riverside ! ! ACKNOWLEDGEMENTS It goes without saying (but I’ll say it anyway…) that things like this are never done in a vacuum. Not that I’ve invented cold fusion here, but it was quite a bit of work nonetheless and to say that my zest for the enterprise waned at times would be to put it euphemistically. As it happens, though, I’ve been fortunate enough to be surrounded these last years by an incredible group of people. To those that I consider scientific and professional mentors that have kept me interested, grounded, and challenged – most notably Tim Lyons, Rob Raiswell, Gordon Love, and Nigel Hughes – thank you for all that you do. I also owe Nigel and Mary Droser a particular debt of graditude for letting me flounder a bit my first year at UCR, being understanding and supportive, and encouraging me to start down the road to where I’ve ended up (for better or worse). -
The Geology of the Middle Precambrian Rove Formation in Northeastern Minnesota
MINNESOTA GEOLOGICAL SURVEY 5 P -7 Special Publication Series The Geology of the Middle Precambrian Rove Formation in northeastern Minnesota G. B. Morey UNIVERSITY OF MINNESOTA MINNEAPOLIS • 1969 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I THE GEOLOGY OF THE MIDDLE PRECAMBRIAN ROVE FORMATION IN NORTHEASTERN MINNESOTA by G. B. Morey CONTENTS Page Abstract ........................................... 1 Introduction. 3 Location and scope of study. 3 Acknowledgements .. 3 Regional geology . 5 Structural geology . 8 Rock nomenclature . 8 Stratigraphy . .. 11 Introduction . .. 11 Nomenclature and correlation. .. 11 Type section . .. 11 Thickness . .. .. 14 Lower argillite unit. .. 16 Definition, distribution, and thickness. .. 16 Lithologic character . .. 16 Limestones. .. 17 Concretions. .. 17 Transition unit . .. 17 Definition, distribution, and thickness. .. 17 Lithologic character . .. 19 Thin-bedded graywacke unit . .. 19 Definition, distribution, and thickness. .. 19 Lithologic character. .. 20 Concretions ... .. 20 Sedimentary structures. .. 22 Internal bedding structures. .. 22 Structureless bedding . .. 23 Laminated bedding . .. 23 Graded bedding. .. 23 Cross-bedding . .. 25 Convolute bedding. .. 26 Internal bedding sequences . .. 26 Post-deposition soft sediment deformation structures. .. 27 Bed pull-aparts . .. 27 Clastic dikes . .. 27 Load pockets .. .. 28 Flame structures . .. 28 Overfolds . .. 28 Microfaults. .. 28 Ripple marks .................................. 28 Sole marks . .. 28 Groove casts . .. 30 Flute casts . -
How Environmentally Responsible Mining Will Boost Minnesota's Economy
Unearthing Prosperity How Environmentally Responsible Mining Will Boost Minnesota’s Economy ISAAC M. ORR, DEBRA W. STRUHSACKER, JOHN PHELAN Isaac Orr is a policy fellow at Center of the American Experiment specializing in energy and environmental policy. He graduated from the University of Wisconsin–Eau Claire with studies in political science and geology, winning awards for his undergraduate geology research. Debra Struhsacker is a hardrock mining policy expert with over 30 years of hands-on expertise with the environmental and public land laws and regulations pertaining to mineral exploration and mine development. Ms. Struhsacker is a Phi Beta Kappa graduate of Wellesley College where she majored in both geology and French. She also has a Master of Science degree in geology from the University of Montana. Debra is one of the founders of the Women’s Mining Coalition and currently serves on the Coalition’s Board of Directors. She is a Certified Professional Geologist with the American Institute of Professional Geologists. Her professional memberships include the Mining and Metallurgical Society of America; the Society for Mining, Metallurgy, and Exploration, Inc.; and the Geological Society of Nevada. She has served twice as a trustee of the Northwest Mining Association (now the American Exploration & Mining Association) and is an Emeritus Member of the Board of Directors of the Mountain States Legal Foundation. John Phelan is an economist at Center of the American Experiment. He is a graduate of Birkbeck College, University of London, where he earned a BSc in Economics, and the London School of Economics where he earned an MSc. John worked in finance for ten years before becoming a professional economist. -
The Mineral Industry of Minnesota
MINNESOTA KITTSON ROSEAU SG LAKE OF THE WOODS CS MARSHALL Peat KOOCHICHING PENNINGTON BELTRAMI Peat COOK E Lime RED LAK CS ST LOUIS SG D-G CLEAR Fe POLK 1 WATER LAKE ITASCA SG CS Fe CS NORMAN CS Peat SG MAHNOMEN SG SG HUBBARD CASS 2 SG Peat SG Lime BECKER SG Peat CLAY LEGEND AITKIN County boundary Peat Peat CS Peat Peat Duluth Capital WADENA CROW Peat CARLTON OTTER TAIL WING SG Per City WILKIN Peat Peat Peat SG Crushed stone/sand SG 1 and gravel districts MILLE TODD PINE SG LACS MORRISON SG D-G MINERAL SYMBOLS GRANT DOUGLAS KANABEC (Major producing areas) 3 SG BENTON Peat Clay Common clay SG STEARNS TRAVERSE SG SG SG POPE CS Peat ISANTI Crushed stone STEVENS CS BIG D-G SHERBURNE STONE SG CHISAGO D-G Dimension granite ANOKA D-G Peat CS SWIFT WRIGHT D-L Dimension limestone D-G KANDIYOHI WASHINGTON MEEKER SG SG 5 Fe Iron LAC QUI RAM- Peat CS PARLE CHIPPEWA SEY Steel HENNEPIN SG S-o IS Industrial sand Minneapolis IS St. Paul McLEOD CARVER SG CS SG Lime Lime plant YELLOW RENVILLE SG Lime SG DAKOTA MEDICINE Clay CS SG Peat Peat Clay SCOTT CS SIBLEY D-G LE Per Perlite plant Clay Peat LINCOLN LYON REDWOOD SUEUR GOODHUE NICOLLET IS SG CS SG S-o Sulfur (oil) RICE SG WABASHA CS SG D-L BROWN CS 4 Clay CS SG SG SG Construction sand BLUE STEELE DODGE and gravel PIPE- COTTON- CS SG D-L MURRAY EARTH WASECA CS CS STONE WOOD WATONWAN OLMSTED SG WINONA CS Steel Steel plant SG SG CS CS 6 Rochester Concentration of MOWER FILLMORE HOUSTON mineral operations ROCK NOBLES JACKSON MARTIN FARIBAULT FREEBORN CS CS CS SG 0 100 Kilometers Source: Minnesota Department of Natural Resources, Division of Lands and Minerals/U.S. -
Quarrernary GEOLOGY of MINNESOTA and PARTS of ADJACENT STATES
UNITED STATES DEPARTMENT OF THE INTERIOR Ray Lyman ,Wilbur, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director P~ofessional Paper 161 . QUArrERNARY GEOLOGY OF MINNESOTA AND PARTS OF ADJACENT STATES BY FRANK LEVERETT WITH CONTRIBUTIONS BY FREDERICK w. SARDE;30N Investigations made in cooperation with the MINNESOTA GEOLOGICAL SURVEY UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1932 ·For sale by the Superintendent of Documents, Washington, D. C. CONTENTS Page Page Abstract ________________________________________ _ 1 Wisconsin red drift-Continued. Introduction _____________________________________ _ 1 Weak moraines, etc.-Continued. Scope of field work ____________________________ _ 1 Beroun moraine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47 Earlier reports ________________________________ _ .2 Location__________ _ __ ____ _ _ __ ___ ______ 47 Glacial gathering grounds and ice lobes _________ _ 3 Topography___________________________ 47 Outline of the Pleistocene series of glacial deposits_ 3 Constitution of the drift in relation to rock The oldest or Nebraskan drift ______________ _ 5 outcrops____________________________ 48 Aftonian soil and Nebraskan gumbotiL ______ _ 5 Striae _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 48 Kansan drift _____________________________ _ 5 Ground moraine inside of Beroun moraine_ 48 Yarmouth beds and Kansan gumbotiL ______ _ 5 Mille Lacs morainic system_____________________ 48 Pre-Illinoian loess (Loveland loess) __________ _ 6 Location__________________________________ -
Minnesota Ground Water Bibliography
First Edition: May 1989 Second Edition: June 1990 MINNESOTA GROUND WATER BIBLIOGRAPHY By Dave Armstrong Revised by Toby McAdams First Edition: May 1989 Second Edition: June 1990 Original paper document scanned and converted to electronic format: 2004. MINNESOTA DEPARTMENT OF NATURAL RESOURCES Division of Waters St. Paul, MN ii Acknowledgements Many thanks for their willing help to Colleen Mlecoch and Char Feist, DNR librarians, and to the clerical and other library staff who assisted in the search for publications, to the Division of Waters groundwater unit staff members Jeanette Leete, Jay Frischman, Andrew Streitz, and Eric Mohring for their suggestions and patience and to Pat Bloomgren for review. Special thanks to Tami Brue, Chris Weller, and Penny Wheeler for scanning, typing, editing and word processing. iii iv PREFACE The primary objectives for this Bibliography were to provide both a localized reference to Ground Water Resource Publications, and a reference to the organizations, agencies and individuals in Minnesota who are currently publishing information on and related to ground water. The Bibliography is divided into two sections. Chapter I lists the publications of the United States Geological Survey (USGS) and the Minnesota Geological Survey (MGS). Publications which deal with a specific area are listed by area within the six DNR regions of Minnesota. These are followed by the listing of USGS and MGS publications of a general nature which deal with all of Minnesota. Chapter II contains publications from many organizations, individuals and journals. It is divided loosely into subject categories, and an index is provided at the end of the document to help locate additional subjects. -
Cyanobacterial Evolution During the Precambrian
International Journal of Astrobiology 15 (3): 187–204 (2016) doi:10.1017/S1473550415000579 © Cambridge University Press 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Cyanobacterial evolution during the Precambrian Bettina E. Schirrmeister1, Patricia Sanchez-Baracaldo2 and David Wacey1,3 1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK e-mail: [email protected] 2School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK 3Centre for Microscopy, Characterisation and Analysis, and ARC Centre of Excellence for Core to Crust Fluid Systems, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia Abstract: Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth’s biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth’s atmosphere and hydrosphere, triggered the evolution of plants –being ancestral to chloroplasts– and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. -
Mineral Development in Minnesota
MINNESOTA GEOLOGICAL SURVEY D.L. Southwick, Director MINERAL DEVELOPMENT IN MINNESOTA PAST HISTORY, PRESENT TRENDS, AND FUTURE POSSIBILITIES G.B. MOREY Report of Investigations 52 ISSN 0076-9177 UNIVERSITY OF MINNESOTA NOV 6 2UOD, Saint Paul-1998 DEt,;~",' " MINERAL DEVELOPMENT IN MINNESOTA PAST HISTORY, PRESENT TRENDS, AND FUTURE POSSIBILITIES Minnesota Geological Survey 2642 University Avenue West Saint Paul, Minnesota 55114-1057 Telephone: 612-627-4780 Fax: 612-627-4778 E-mail address:[email protected] Web Site: http://geolab.geo.umn.edu/mgs ©1998 by the Board of Regents of the University of Minnesota All rights reserved. The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, puclic assistance status, veteran status, or sexual orientation. ii CONTENTS Page ABSTRACT .......................................................................................................................................................................... 1 INTRODUCTION ................................................................................................................................................................. 2 A BRIEF mSTORY OF MINING IN MINNESOTA ........................................................................................................... 2 IMPORTANCE OF MINING IN MINNESOTA ................................................................................................................. -
The Penokean Orogeny in the Lake Superior Region Klaus J
Precambrian Research 157 (2007) 4–25 The Penokean orogeny in the Lake Superior region Klaus J. Schulz ∗, William F. Cannon U.S. Geological Survey, 954 National Center, Reston, VA 20192, USA Received 16 March 2006; received in revised form 1 September 2006; accepted 5 February 2007 Abstract The Penokean orogeny began at about 1880 Ma when an oceanic arc, now the Pembine–Wausau terrane, collided with the southern margin of the Archean Superior craton marking the end of a period of south-directed subduction. The docking of the buoyant craton to the arc resulted in a subduction jump to the south and development of back-arc extension both in the initial arc and adjacent craton margin to the north. A belt of volcanogenic massive sulfide deposits formed in the extending back-arc rift within the arc. Synchronous extension and subsidence of the Superior craton resulted in a broad shallow sea characterized by volcanic grabens (Menominee Group in northern Michigan). The classic Lake Superior banded iron-formations, including those in the Marquette, Gogebic, Mesabi and Gunflint Iron Ranges, formed in that sea. The newly established subduction zone caused continued arc volcanism until about 1850 Ma when a fragment of Archean crust, now the basement of the Marshfield terrane, arrived at the subduction zone. The convergence of Archean blocks of the Superior and Marshfield cratons resulted in the major contractional phase of the Penokean orogeny. Rocks of the Pembine–Wausau arc were thrust northward onto the Superior craton causing subsidence of a foreland basin in which sedimentation began at about 1850 Ma in the south (Baraga Group rocks) and 1835 Ma in the north (Rove and Virginia Formations).