STEP: the VST Survey of the SMC and the Magellanic Bridge

Total Page:16

File Type:pdf, Size:1020Kb

STEP: the VST Survey of the SMC and the Magellanic Bridge Astronomical Science STEP: The VST Survey of the SMC and the Magellanic Bridge Vincenzo Ripepi1 Time Observation survey being carried exploiting the large field of view (FoV) and Michele Cignoni2,3 out at the VLT Survey Telescope. STEP the high resolution of the OmegaCAM Monica Tosi3 will obtain homogeneous photometry instrument on the VLT Survey Telescope Marcella Marconi1 in the g-, r-, i- and Hα-bands over an (VST); see Ripepi et al. (2014) for a Ilaria Musella1 area of 74 square degrees covering the detailed presentation of the survey. The Aniello Grado1 main body of the Small Magellanic STEP survey is the optical complement to Luca Limatola1 Cloud (42 square degrees), the Bridge the VISTA Magellanic Cloud (VMC1) ESO Gisella Clementini3 that connects it to the Large Magellanic Public Survey (Principal Investigator [PI] Enzo Brocato4 Cloud (30 square degrees) and a small M.-R. Cioni), which is collecting Y, J and Michele Cantiello5 part of the Magellanic Stream (2 square Ks near-infrared photometry over an area Massimo Capaccioli6 degrees). Our photometry will allow us of about 184 square degrees covering Enrico Cappellaro7 to detect and measure the magnitudes the LMC, SMC and Bridge. STEP is part Maria-Rosa L. Cioni8,9 of individual stars well below the main of a large international effort aimed at Felice Cusano3 sequence turnoff of the oldest popula- studying in detail stellar populations, Massimo Dall’Ora1 tions. Here we describe the observing structure and evolution of the SMC, and Jay S. Gallagher10 strategy, the photometric techniques, based on photometric and spectroscopic Eva K. Grebel11 and the upcoming data products of the data acquired at the major international Antonella Nota2,12 STEP survey. Preliminary results for facilities (e.g., Hubble Space Telescope Francesco Palla13 the first two fields for which data acqui- [HST] and Very Large Telescope [VLT]). Donatella Romano3 sition is complete are also presented. Gabriella Raimondo5 The colour–magnitude diagram (CMD), Elena Sabbi2 containing stars born over the whole Fedor Getman1 Introduction lifetime of the galaxy, is a fossil record of Nicola R. Napolitano1 its SFH. Since the lookback time that Pietro Schipani1 The Local Group dwarf galaxies provide can be safely be investigated is of the Simone Zaggia7 an ideal laboratory for studying and test- order of the evolutionary time of the least ing galaxy formation theories and cos- massive main sequence (MS) star that mology. Their close proximity allows indi- can be resolved, deep CMDs are crucial 1 INAF-Osservatorio Astronomico di vidual stars to be resolved, with accurate to detect Solar-like MS stars (corre- Capodimonte, Naples, Italy photometry and spectroscopy. (see e.g., sponding to the oldest MS turn-off with 2 Space Telescope Science Institute, Tolstoy et al., 2009). Their stellar popula- evolutionary times comparable with an Baltimore, USA tions can be characterised in detail and entire Hubble time). Although this is usu- 3 INAF-Osservatorio Astronomico di their star formation histories (SFHs) ally the realm of HST (see e.g., Cignoni et Bologna, Italy derived. The Small Magellanic Cloud al., 2012; 2013), HST’s small FoV does 4 INAF-Osservatorio Astronomico di (SMC) is the closest dwarf galaxy of late not allow a systematic study of the whole Roma, Italy morphological type; hence the best SMC. 5 INAF-Osservatorio Astronomico di location for detailed studies of the prop- Teramo, Italy erties of this the most common class of With STEP we aim to investigate the stel- 6 Università Federico II, Naples, Italy galaxies. Its low chemical abundance lar populations of the SMC with CMDs 7 INAF-Osservatorio Astronomico di (Z = 0.004) makes the SMC the best local up to 1–2 magnitudes fainter than the Padova, Italy counterpart to the large majority of dwarf turn-off (TO) of the oldest population (with 8 University of Hertfordshire, Hatfield, irregulars and blue compact galaxies, sufficient photometric quality to reach a United Kingdom whose metallicity distribution is peaked 2 Gyr resolution for stars born 10 Gyr 9 Leibnitz-Institut für Astrophysik Pots- at this mean value. The SMC is also a ago), for a huge area including the entire dam, Germany member of the nearest group of interact- SMC and the Bridge as well. We also 10 University of Wisconsin-Madison, USA ing galaxies. In fact, it is tidally interacting intend to use classical variable stars (e.g., 11 Astronomisches Rechen-Institut, with its neighbours, the Large Magellanic RR Lyrae and Cepheid stars), as popu- Zentrum für Astronomie der Universität Cloud (LMC) and the Milky Way. Investi- lation tracers in the relatively unexplored Heidelberg, Germany gating the signatures of these interactions region of the Bridge, and a spatially 12 European Space Agency, Space Tele- (the Bridge towards the LMC and the complete census (up to ~ 1 MA) of pre- scope Science Institute, Baltimore, Magellanic Stream) will allow us to con- main sequence (PMS) objects to investi- USA strain models of galaxy interaction. gate the first stages of star formation. 13 INAF-Osservatorio Astrofisico di Hence the SMC is an ideal benchmark Arcetri, Firenze, Italy in the study of the effects of tidal interac- With these broad capabilities, the STEP tions on galaxy evolution. survey will allow us to answer the fol- lowing open questions: 1) What is the STEP (Small Magellanic Cloud in Time: We are carrying out the first deep and global SFH and age–metallicity relation Evolution of a Prototype interacting homogeneous photometric survey of the (AMR) of the SMC?; 2) Do field and star late-type dwarf galaxy) is a Guaranteed entire SMC body and of the Bridge by cluster components share the same 32 The Messenger 157 – September 2014 Figure 1. Map of STEP tiles (the two tiles centred in the direction of the Magellanic Stream are outside of the figure). To highlight the location of the SMC 2 body and of part of the Bridge, black dots indicate the position of known star clusters and associations (according to Bica et al. [2008]). The thick boxes correspond to the 1 square degree FoV of the VST tiles. Red boxes represent tiles whose observations are completed, green boxes those with completed ) time series photometry and blue boxes the remain- 0 4_6 ing ones. For comparison, thin grey boxes show (Deg the VMC tiles, whereas the HST fields are the small ) 3_7 cyan-filled circles (note that the true size of HST .0 fields is significantly smaller). The two tiles analysed 73 in this work (tiles 3_7 and 4_6) are highlighted with + δ filled red boxes. ( –2 tile and for each filter in the SMC body we obtain a couple of mosaics created by merging five dithered sub-images. We acquire a mosaic of short- and long- –4 exposure times in order to reach faint magnitudes, avoiding saturation for any –10–5 0 5 10 star. The time series images, on the (α–33.0) (Deg) contrary, consist of just one shot for each filter. For each tile we also obtain pairs SFH and AMR?; 3) Are there trends in of the RR Lyrae stars), with S/N of 100. of g, i (r, Hα) images during a photometric SFH connected with the interaction his- When summed, these images will allow night, in order to build up lists of second- tory of the SMC?; 4) How did the stellar us to reach g ~ 24 mag with S/N of 10. ary standards for the final photometric component of the Bridge form and what Originally, we planned to image the whole calibration (usually the scientific images is its SFH?; 5) What is the impact of Bridge with time series. However, the are taken in non-photometric conditions, metallicity on PMS accretion and on the overheads proved to be too high and we to increase the probability of execution — global properties of star formation? decided to cover the remaining Bridge see Table 2). fields without time series. STEP tiles are placed so as to maximise the overlap STEP observing strategy with the VMC survey (Cioni et al., 2011). Observations and data reduction In order to address the questions listed The STEP observing strategy is reported The VST (built by the INAF–Osservatorio above, we proposed, and have obtained, in Table 1, whereas Table 2 shows the Astronomico di Capodimonte, Naples, part of the VST Guaranteed Time Obser- constraints for our observations. For each Italy) is a 2.6-metre-wide field optical sur- vation (GTO) allocation by ESO to the vey telescope (Capaccioli & Schipani, Italian Istituto Nazionale di Astrofisica Table 1. Observing strategy of the STEP survey 2011) sited on Paranal. The telescope is (INAF) in return for the procurement of (e.g., 5 × 25 s means five dithered exposures of equipped with OmegaCAM, a 1-square- the telescope. With STEP we aim at 25 s each). degree camera built by a consortium of acquiring g, r, i and H photometry for European institutes (Kuijken, 2011). The α Period T (g) T (i) 72 square degrees covering the whole exp exp camera is a 32 CCD, 16 k × 16 k detector 88–90 5 × 25 s; 5 × 25 s; SMC body, the Bridge and 2 square 5 × 520 s 5 × 520 s mosaic with 0.214 arcseconds per pixel degrees of the Magellanic Stream down 91–93 5 × 25 s; 5 × 25 s; scale. to a limiting magnitude (on the AB sys- 10 × 300 s 10 × 300 s tem) of g ~ 24 mag with signal-to-noise Photometric calibration STEP observations started in late 2011 (S/N) of 10 and Hα photometry to ~ 22.5 88–93 1 × 45 s 1 × 45 s during ESO Period 88 and are currently mag with S/N of 5.
Recommended publications
  • Metallicity Relation in the Magellanic Clouds Clusters,,
    A&A 554, A16 (2013) Astronomy DOI: 10.1051/0004-6361/201220926 & c ESO 2013 Astrophysics Age – metallicity relation in the Magellanic Clouds clusters,, E. Livanou1, A. Dapergolas2,M.Kontizas1,B.Nordström3, E. Kontizas2,J.Andersen3,5, B. Dirsch4, and A. Karampelas1 1 Section of Astrophysics Astronomy & Mechanics, Department of Physics, University of Athens, 15783 Athens, Greece e-mail: [email protected] 2 Institute of Astronomy and Astrophysics, National Observatory of Athens, PO Box 20048, 11810 Athens, Greece 3 Niels Bohr Institute Copenhagen University, Astronomical Observatory, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 4 Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, B1900 FWA La Plata Buenos Aires, Argentina 5 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain Received 14 December 2012 / Accepted 2 March 2013 ABSTRACT Aims. We study small open star clusters, using Strömgren photometry to investigate a possible dependence between age and metallicity in the Magellanic Clouds (MCs). Our goals are to trace evidence of an age metallicity relation (AMR) and correlate it with the mutual interactions of the two MCs and to correlate the AMR with the spatial distribution of the clusters. In the Large Magellanic Cloud (LMC), the majority of the selected clusters are young (up to 1 Gyr), and we search for an AMR at this epoch, which has not been much studied. Methods. We report results for 15 LMC and 8 Small Magellanic Cloud (SMC) clusters, scattered all over the area of these galaxies, to cover a wide spatial distribution and metallicity range. The selected LMC clusters were observed with the 1.54 m Danish Telescope in Chile, using the Danish Faint Object Spectrograph and Camera (DFOSC) with a single 2k × 2k CCD.
    [Show full text]
  • Luminosities and Mass-Loss Rates of SMC and LMC AGB Stars and Red Supergiants Dependence of Mass Loss on Metallicity, the Amount of Dust Pro- PAH Emission1
    Astronomy & Astrophysics manuscript no. art63 c ESO 2018 November 10, 2018 Luminosities and mass-loss rates of SMC and LMC AGB stars and Red Supergiants ⋆ M. A. T. Groenewegen1, G. C. Sloan2, I. Soszy´nski3, and E. A. Petersen4,5 1 Koninklijke Sterrenwacht van Belgi¨e, Ringlaan 3, B–1180 Brussels, Belgium e-mail: [email protected] 2 Cornell University, Astronomy Department, Ithaca, NY 14853-6801, USA 3 Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland 4 University of Nebraska, Department of Physics and Astronomy, Lincoln, NE 68588, USA 5 NSF REU Research Assistant, Cornell University, Astronomy Department, Ithaca, NY 14853-6801, USA received: 2009, accepted: 20-08-2009 ABSTRACT Context Mass loss is one of the fundamental properties of Asymptotic Giant Branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking, particularly its dependence on metallicity. Aims To investigate the relation between mass loss, luminosity and pulsation period for a large sample of evolved stars in the Small and Large Magellanic Cloud. Results Dust radiative transfer models are presented for 101 carbon stars and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5–35 µm Spitzer IRS spectra are available. The spectra are complemented with available optical and infrared photometry to construct the spectral energy distribution. A minimisation procedure is used to fit luminosity, mass-loss rate and dust temperature at the inner radius.
    [Show full text]
  • Expected Differences Between AGB Stars in the LMC and the SMC Due to Differences in Chemical Composition
    New Views of the Magellanic Clouds fA U Symposium, Vol. 190, 1999 Y.-H. Chu, N.B. Suntzef], J.E. Hesser, and D.A. Bohlender, eds. Expected Differences between AGB Stars in the LMC and the SMC Due to Differences in Chemical Composition Ju. Frantsman Astronomical Institute, Latvian University, Raina Blvd. 19, Riga, LV-1586, LATVIA Abstract. Certain aspects of the AGB population, such as the relative number of M and N stars, the mass loss rates, and the initial masses of carbon- oxygen cores, depend on the initial heavy element abundance Z. I have calculated synthetic populations of AGB stars for different initial Z values taking into consideration the evolution of single and close binary stars. I present the results of population syntheses of AGB stars in clusters as a function of different initial chemical compositions. The relation for the tip luminosity of AGB stars versus cluster age as a function of Z is presented and is used to determine the ages for a number of clusters in the LMC and the SMC, including clusters with no previous age determinations. Population simulations show that for low heavy element abundance (Z = 0.001) few M stars are formed with respect to the number of carbon stars. However, the total number of all AGB stars in clusters is not affected by the initial chemical composition. As a result of the evolution of close binary components after the mass exchange, an increase in the range of limiting values of the thermal pulsing AGB star luminosities is expected. The difference between the maximum luminosity on the AGB of single star and the luminosity of a star after a mass exchange event in a close binary system may be as great as 1 magnitude for very young clusters.
    [Show full text]
  • Electron Temperature Fluctuations in NGC
    A&A 492, 463–468 (2008) Astronomy DOI: 10.1051/0004-6361:200810542 & c ESO 2008 Astrophysics Electron temperature fluctuations in NGC 346 V. A. Oliveira1,M.V.F.Copetti1, and A. C. Krabbe2 1 Laboratório de Análise Numérica e Astrofísica, Departamento de Matemática, Universidade Federal de Santa Maria, 97119-900 Santa Maria, RS, Brazil e-mail: [email protected] 2 Southern Astrophysical Research Telescope, c/o AURA Inc., Casilla 603, La Serena, Chile Received 8 July 2008 / Accepted 28 September 2008 ABSTRACT Context. The existence and origin of large spatial temperature fluctuations in H ii regions and planetary nebulae are assumed to ex- plain the differences between the heavy element abundances inferred from collisionally excited and recombination lines, although this interpretation remains significantly controversial. Aims. We investigate the spatial variation in electron temperature inside NGC 346, the brightest H ii region in the Small Magellanic Cloud. Methods. Long slit spectrophotometric data of high signal-to-noise were employed to derive the electron temperature from measure- ments derived from localized observations of the [O iii](λ4959 + λ5007)/λ4363 ratio in three directions across the nebula. Results. The electron temperature was estimated in 179 areas of 5 × 1. 5 of size distributed along three different declinations. A largely homogeneous temperature distribution was found with a mean temperature of 12 269 K and a dispersion of 6.1%. After cor- 2 = . recting for pure measurements errors, a temperature fluctuation on the plane of the sky of ts 0 0021 (corresponding to a dispersion of 4.5%) was obtained, which indicates a 3D temperature fluctuation parameter of t2 ≈ 0.008.
    [Show full text]
  • The Role of Evolutionary Age and Metallicity in the Formation of Classical Be Circumstellar Disks 11
    < * - - *" , , Source of Acquisition NASA Goddard Space Flight Center THE ROLE OF EVOLUTIONARY AGE AND METALLICITY IN THE FORMATION OF CLASSICAL BE CIRCUMSTELLAR DISKS 11. ASSESSING THE TRUE NATURE OF CANDIDATE DISK SYSTEMS J.P. WISNIEWSKI"~'~,K.S. BJORKMAN~'~,A.M. MAGALH~ES~",J.E. BJORKMAN~,M.R. MEADE~, & ANTONIOPEREYRA' Draft version November 27, 2006 ABSTRACT Photometric 2-color diagram (2-CD) surveys of young cluster populations have been used to identify populations of B-type stars exhibiting excess Ha emission. The prevalence of these excess emitters, assumed to be "Be stars". has led to the establishment of links between the onset of disk formation in classical Be stars and cluster age and/or metallicity. We have obtained imaging polarization observations of six SMC and six LMC clusters whose candidate Be populations had been previously identified via 2-CDs. The interstellar polarization (ISP). associated with these data has been identified to facilitate an examination of the circumstellar environments of these candidate Be stars via their intrinsic ~olarization signatures, hence determine the true nature of these objects. We determined that the ISP associated with the SMC cluster NGC 330 was characterized by a modified Serkowski law with a A,,, of -4500A, indicating the presence of smaller than average dust grains. The morphology of the ISP associated with the LMC cluster NGC 2100 suggests that its interstellar environment is characterized by a complex magnetic field. Our intrinsic polarization results confirm the suggestion of Wisniewski et al. that a substantial number of bona-fide classical Be stars are present in clusters of age 5-8 Myr.
    [Show full text]
  • Download the 2016 Spring Deep-Sky Challenge
    Deep-sky Challenge 2016 Spring Southern Star Party Explore the Local Group Bonnievale, South Africa Hello! And thanks for taking up the challenge at this SSP! The theme for this Challenge is Galaxies of the Local Group. I’ve written up some notes about galaxies & galaxy clusters (pp 3 & 4 of this document). Johan Brink Peter Harvey Late-October is prime time for galaxy viewing, and you’ll be exploring the James Smith best the sky has to offer. All the objects are visible in binoculars, just make sure you’re properly dark adapted to get the best view. Galaxy viewing starts right after sunset, when the centre of our own Milky Way is visible low in the west. The edge of our spiral disk is draped along the horizon, from Carina in the south to Cygnus in the north. As the night progresses the action turns north- and east-ward as Orion rises, drawing the Milky Way up with it. Before daybreak, the Milky Way spans from Perseus and Auriga in the north to Crux in the South. Meanwhile, the Large and Small Magellanic Clouds are in pole position for observing. The SMC is perfectly placed at the start of the evening (it culminates at 21:00 on November 30), while the LMC rises throughout the course of the night. Many hundreds of deep-sky objects are on display in the two Clouds, so come prepared! Soon after nightfall, the rich galactic fields of Sculptor and Grus are in view. Gems like Caroline’s Galaxy (NGC 253), the Black-Bottomed Galaxy (NGC 247), the Sculptor Pinwheel (NGC 300), and the String of Pearls (NGC 55) are keen to be viewed.
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]
  • The VLT-FLAMES Survey of Massive Stars: Nitrogen Abundances for Be-Type Stars in the Magellanic Clouds
    A&A 536, A65 (2011) Astronomy DOI: 10.1051/0004-6361/201117588 & c ESO 2011 Astrophysics The VLT-FLAMES survey of massive stars: Nitrogen abundances for Be-type stars in the Magellanic Clouds P. R. Dunstall1, I. Brott2,P.L.Dufton1, D. J. Lennon4,C.J.Evans3,S.J.Smartt1, and I. Hunter1 1 Department of Physics & Astronomy, The Queen’s University of Belfast, BT7 1NN, Northern Ireland, UK e-mail: [email protected] 2 University of Vienna, Department of Astronomy, Türkenschanzstr. 17, 1180 Vienna, Austria 3 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 ESA, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Received 28 June 2011 / Accepted 3 October 2011 ABSTRACT Aims. We compare the predictions of evolutionary models for early-type stars with atmospheric parameters, projected rotational velocities and nitrogen abundances estimated for a sample of Be-type stars. Our targets are located in 4 fields centred on the Large Magellanic Cloud cluster: NGC 2004 and the N 11 region as well as the Small Magellanic Cloud clusters: NGC 330 and NGC 346. Methods. Atmospheric parameters and photospheric abundances have been determined using the non-LTE atmosphere code tlusty. Effective temperature estimates were deduced using three different methodologies depending on the spectral features observed; in general they were found to yield consistent estimates. Gravities were deduced from Balmer line profiles and microturbulences from the Si iii spectrum. Additionally the contributions of continuum emission from circumstellar discs were estimated. Given its importance in constraining stellar evolutionary models, nitrogen abundances (or upper limits) were deduced for all the stars analysed.
    [Show full text]
  • SPIRIT Target Lists
    JANUARY and FEBRUARY deep sky objects JANUARY FEBRUARY OBJECT RA (2000) DECL (2000) OBJECT RA (2000) DECL (2000) Category 1 (west of meridian) Category 1 (west of meridian) NGC 1532 04h 12m 04s -32° 52' 23" NGC 1792 05h 05m 14s -37° 58' 47" NGC 1566 04h 20m 00s -54° 56' 18" NGC 1532 04h 12m 04s -32° 52' 23" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1672 04h 45m 43s -59° 14' 52" NGC 1313 03h 18m 16s -66° 29' 43" NGC 1313 03h 18m 15s -66° 29' 51" NGC 1365 03h 33m 37s -36° 08' 27" NGC 1566 04h 20m 01s -54° 56' 14" NGC 1097 02h 46m 19s -30° 16' 32" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1232 03h 09m 45s -20° 34' 45" NGC 1433 03h 42m 01s -47° 13' 19" NGC 1068 02h 42m 40s -00° 00' 48" NGC 1792 05h 05m 14s -37° 58' 47" NGC 300 00h 54m 54s -37° 40' 57" NGC 2217 06h 21m 40s -27° 14' 03" Category 1 (east of meridian) Category 1 (east of meridian) NGC 1637 04h 41m 28s -02° 51' 28" NGC 2442 07h 36m 24s -69° 31' 50" NGC 1808 05h 07m 42s -37° 30' 48" NGC 2280 06h 44m 49s -27° 38' 20" NGC 1792 05h 05m 14s -37° 58' 47" NGC 2292 06h 47m 39s -26° 44' 47" NGC 1617 04h 31m 40s -54° 36' 07" NGC 2325 07h 02m 40s -28° 41' 52" NGC 1672 04h 45m 43s -59° 14' 52" NGC 3059 09h 50m 08s -73° 55' 17" NGC 1964 05h 33m 22s -21° 56' 43" NGC 2559 08h 17m 06s -27° 27' 25" NGC 2196 06h 12m 10s -21° 48' 22" NGC 2566 08h 18m 46s -25° 30' 02" NGC 2217 06h 21m 40s -27° 14' 03" NGC 2613 08h 33m 23s -22° 58' 22" NGC 2442 07h 36m 20s -69° 31' 29" Category 2 Category 2 M 42 05h 35m 17s -05° 23' 25" M 42 05h 35m 17s -05° 23' 25" NGC 2070 05h 38m 38s -69° 05' 39" NGC 2070 05h 38m 38s -69°
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • Star Clusters As Witnesses of the Evolutionary History of the Small Magellanic Cloud
    JENAM, Symposium 5: Star Clusters – Witnesses of Cosmic History Star Clusters as Witnesses of the Evolutionary History of the Small Magellanic Cloud Eva K. Grebel Astronomisches Rechen-Institut 11.0Z9.2e00n8 trum für AstrGroebnel,o JEmNAMie Sy mdp.e 5:r S MUC nStairv Celusrtesrsität Heidelbe0 rg My collaborators: ! PhD student Katharina Glatt ! PhD student Andrea Kayser (both University of Basel & University of Heidelberg) ! Andreas Koch (U Basel & UCLA / OCIW) ! Jay Gallagher, D. Harbeck (U Wisc) ! Elena Sabbi (U Heidelberg & STScI) ! Antonella Nota, Marco Sirianni (STScI) ! Monica Tosi, Gisella Clementini (U Bologna) ! Andrew Cole (U Tasmania) ! Gary Da Costa (ANU) 11.09.2008 Grebel, JENAM Symp. 5: SMC Star Clusters 1 NGC 416 (OGLE) Tracers of the Age-Metallicity Relation: ! Star clusters: ! Easily identifiable. ! Chronometers of intense star formation events. ! Single-age, single-metallicity fossils of local conditions. ! Star clusters in the SMC: ! Clusters formed (and survived) for most of its lifetime " Closely spaced set of age tracers! " Unique property of the SMC. # Milky Way: No comparable set of intermediate-age, populous clusters. # LMC: Age gap at intermediate ages. 11.09.2008 Grebel, JENAM Symp. 5: SMC Star Clusters 2 Cluster-based Age-Metallicity Relation: Photometry Spectroscopy After Da Costa 2002 An inhomogeneous sample: ! Photometric and spectroscopic metallicities from different techniques ! Photometric ages from ground-/space-based data of differing depth 11.09.2008 Grebel, JENAM Symp. 5: SMC Star Clusters 3 Getting Homogeneous Ages and Metallicities: PhD thesis Katharina Glatt ! HST / ACS program to obtain deep CMDs (PI: Gallagher) $ GO 10396, 29 orbits, executed 2005 – 2006. $ 6 populous intermediate-age clusters, 1 globular cluster: NGC 419, Lindsay 38, NGC 416, 339, Kron 3, Lindsay 1, NGC 121.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]