Pdf Clickbook Booklet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California Vegetation Map in Support of the DRECP
CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California -
Appendix F3 Rare Plant Survey Report
Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5 -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
TREES Guror to Llnosca.Prnc
SONORAN DESERT SERIES NATIVE TREES Guror to LlNosca.prNc ff tn, en,ru,,n N.rrrvt PLANr soLrEr'! CONTENTS White Thorn Acacia A.a.ia .onslri.d . .....................12 SweetAcacia-A.aciart,n.siand................ 1,+ Catclaw Acacia-A.a.ia 9r99ii........................ 16 Netleaf Hackberry Csl,is ,?h.uiata............ 18 DesertWillow-Chilotisiined,n .. ..............20 Kidne,'wood-El,s.fl hdrdtia atrhocd,pa. ............................ 22 Goodding Ash-Irdinls soaddinlii..................24 F€ather Tree-rysiloma wa15oni............. .26 Deserttronwood-Olr.tyak5o.a. .....................28 BIue PaIo Verde-Parhiflsanid 11on.1d.............................30 Foothills Palo Verd€-Parhinsa[a nicrophJlla...............32 Western Honey Mesquit€ Prcsapis Blandul\d \^t. tonano..34 Screwbean Mesquite-P,lsopirl&ber..ns .......36 Velvet Mesquite-Prosopis re| ina............ .38 Smoke Tr€e PsoDrhanrls spin s6................ ... 40 Soapberry-Sdpind"J atumnanaii ...................................42 Arizona Rosewood-vaq, elinia .dtl,Jonied ... ... 44 Resources....... ........... ..........46 THE ARIZONA NATIVE PLANT SoCIETY thc Aizona Narire Planl So(iely /ANP$ is a srcletttde nonprol I organiz at1 on whose mission is to promote hnowledge, appreciatton, consenatton, \nd restoration of Ai^ona natiye plants and thet hobitats. This publication may best be t$ea tu conjunction with other boohlets Jrom this seies to deyelop tattue kndscapes. Whv Plant Natives? Crearing a landscape in rhe desert should be a rewarding experience. A beautiful, native yard will bring endless enjopnent, attract butterflies, native pollinabrs and birds and give you more time to enjoy il than planting wilh non-nalives. The native plants of Arizona arc those thar existed hele prior to European contact. These plants are the foundation of our native ecosysrems because they have evolved here over rhousands of yea$ with ani- mals, fungi, and microbes to form a complex net- work of relationships. -
Publications of Peter H. Raven
Peter H. Raven LIST OF PUBLICATIONS 1950 1. 1950 Base Camp botany. Pp. 1-19 in Base Camp 1950, (mimeographed Sierra Club report of trip). [Upper basin of Middle Fork of Bishop Creek, Inyo Co., CA]. 1951 2. The plant list interpreted for the botanical low-brow. Pp. 54-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). 3. Natural science. An integral part of Base Camp. Pp. 51-52 in Base Camp 1951, (mimeographed Sierra Club report of trip). 4. Ediza entomology. Pp. 52-54 in Base Camp 1951, (mimeographed Sierra Club report of trip). 5. 1951 Base Camp botany. Pp. 51-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). [Devils Postpile-Minaret Region, Madera and Mono Counties, CA]. 1952 6. Parsley for Marin County. Leafl. West. Bot. 6: 204. 7. Plant notes from San Francisco, California. Leafl. West. Bot. 6: 208-211. 8. 1952 Base Camp bird list. Pp. 46-48 in Base Camp 1952, (mimeographed Sierra Club report of trip). 9. Charybdis. Pp. 163-165 in Base Camp 1952, (mimeographed Sierra Club report of trip). 10. 1952 Base Camp botany. Pp. 1-30 in Base Camp 1952, (mimeographed Sierra Club report of trip). [Evolution Country - Blaney Meadows - Florence Lake, Fresno, CA]. 11. Natural science report. Pp. 38-39 in Base Camp 1952, (mimeographed Sierra Club report of trip). 1953 12. 1953 Base Camp botany. Pp. 1-26 in Base Camp 1953, (mimeographed Sierra Club report of trip). [Mono Recesses, Fresno Co., CA]. 13. Ecology of the Mono Recesses. Pp. 109-116 in Base Camp 1953, (illustrated by M. -
IP Athos Renewable Energy Project, Plan of Development, Appendix D.2
APPENDIX D.2 Plant Survey Memorandum Athos Memo Report To: Aspen Environmental Group From: Lehong Chow, Ironwood Consulting, Inc. Date: April 3, 2019 Re: Athos Supplemental Spring 2019 Botanical Surveys This memo report presents the methods and results for supplemental botanical surveys conducted for the Athos Solar Energy Project in March 2019 and supplements the Biological Resources Technical Report (BRTR; Ironwood 2019) which reported on field surveys conducted in 2018. BACKGROUND Botanical surveys were previously conducted in the spring and fall of 2018 for the entirety of the project site for the Athos Solar Energy Project (Athos). However, due to insufficient rain, many plant species did not germinate for proper identification during 2018 spring surveys. Fall surveys in 2018 were conducted only on a reconnaissance-level due to low levels of rain. Regional winter rainfall from the two nearest weather stations showed rainfall averaging at 0.1 inches during botanical surveys conducted in 2018 (Ironwood, 2019). In addition, gen-tie alignments have changed slightly and alternatives, access roads and spur roads have been added. PURPOSE The purpose of this survey was to survey all new additions and re-survey areas of interest including public lands (limited to portions of the gen-tie segments), parcels supporting native vegetation and habitat, and windblown sandy areas where sensitive plant species may occur. The private land parcels in current or former agricultural use were not surveyed (parcel groups A, B, C, E, and part of G). METHODS Survey Areas: The area surveyed for biological resources included the entirety of gen-tie routes (including alternates), spur roads, access roads on public land, parcels supporting native vegetation (parcel groups D and F), and areas covered by windblown sand where sensitive species may occur (portion of parcel group G). -
Caracterización Ecológica Cuantitativa De La Vegetación En Sitios De La Costa Central Del Golfo En El Desierto Sonorense
European Scientific Journal December 2016 edition vol.12, No.35 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Caracterización Ecológica Cuantitativa De La Vegetación En Sitios De La Costa Central Del Golfo En El Desierto Sonorense Carlos Hugo Alcalá Galván, Dr. Departamento de Agricultura y Ganadería de la Universidad de Sonora. Carretera a Bahía de Kino km. 21. Hermosillo, Sonora, México José Enrique Maytorena Gaytán, Biol. Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora. Luis D. Colosio s/n y Sahuaripa. Hermosillo, Sonora, México Ramón Héctor Barraza Guardado, Dr. Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora. Luis D. Colosio s/n y Sahuaripa. Hermosillo, Sonora, México Edgar Omar Rueda-Puente, Dr. Departamento de Agricultura y Ganadería de la Universidad de Sonora. Carretera a Bahía de Kino km. 21. Hermosillo, Sonora, México doi: 10.19044/esj.2016.v12n35p266 URL:http://dx.doi.org/10.19044/esj.2016.v12n35p266 Abstract The Central Gulf Coast, subdivision of the Sonoran Desert, requires urgent actions to ecological restoration and development of sustainable alternatives to promote the generation of economic benefits in a manner consistent with the conservation of natural resources. Four sites were selected in the coastal region of the municipality of Hermosillo between 28°42'04" and 28°52'24" North and 111°45'39" and 111°56'48" West. Sites are representative of the various plant associations with variants in soil structure, topography and intensities of use. General plant diversity, plant density, height and canopy cover from shrub/tree plants, and basal cover from herbaceous plants were evaluated at each site. -
APPENDIX D Biological Technical Report
APPENDIX D Biological Technical Report CarMax Auto Superstore EIR BIOLOGICAL TECHNICAL REPORT PROPOSED CARMAX AUTO SUPERSTORE PROJECT CITY OF OCEANSIDE, SAN DIEGO COUNTY, CALIFORNIA Prepared for: EnviroApplications, Inc. 2831 Camino del Rio South, Suite 214 San Diego, California 92108 Contact: Megan Hill 619-291-3636 Prepared by: 4629 Cass Street, #192 San Diego, California 92109 Contact: Melissa Busby 858-334-9507 September 29, 2020 Revised March 23, 2021 Biological Technical Report CarMax Auto Superstore TABLE OF CONTENTS EXECUTIVE SUMMARY ................................................................................................ 3 SECTION 1.0 – INTRODUCTION ................................................................................... 6 1.1 Proposed Project Location .................................................................................... 6 1.2 Proposed Project Description ............................................................................... 6 SECTION 2.0 – METHODS AND SURVEY LIMITATIONS ............................................ 8 2.1 Background Research .......................................................................................... 8 2.2 General Biological Resources Survey .................................................................. 8 2.3 Jurisdictional Delineation ...................................................................................... 9 2.3.1 U.S. Army Corps of Engineers Jurisdiction .................................................... 9 2.3.2 Regional Water Quality -
Vestured Pits in Wood of Onagraceae: Correlations with Ecology, Habit, and Phylogeny1
VESTURED PITS IN WOOD OF Sherwin Carlquist2 and Peter H. Raven3 ONAGRACEAE: CORRELATIONS WITH ECOLOGY, HABIT, AND PHYLOGENY1 ABSTRACT All Onagraceae for which data are available have vestured pits on vessel-to-vessel pit pairs. Vestures may also be present in some species on the vessel side of vessel-to-ray pit pairs. Herbaceous Onagraceae do not have fewer vestures, although woods with lower density (Circaea L. and Oenothera L.) have fewer vestures. Some Onagraceae from drier areas tend to have smaller vessel pits, and on that account may have fewer vestures (Epilobium L. and Megacorax S. Gonz´alez & W. L. Wagner). Pit apertures as seen on the lumen side of vessel walls are elliptical, occasionally oval, throughout the family. Vestures are predominantly attached to pit aperture margins. As seen from the outer surfaces of vessels, vestures may extend across the pit cavities. Vestures are usually absent or smaller on the distal portions of pit borders (except for Ludwigia L., which grows consistently in wet areas). Distinctive vesture patterns were observed in the several species of Lopezia Cav. and in Xylonagra Donn. Sm. & Rose. Vestures spread onto the lumen-facing vessel walls of Ludwigia octovalvis (Jacq.) P. H. Raven. Although the genera are presented here in the sequence of a recent molecular phylogeny of Onagraceae, ecology and growth forms are more important than evolutionary relationships with respect to abundance, degree of grouping, and morphology of vestured pits. Designation of vesture types is not warranted based on the distribution of named types in Onagraceae and descriptive adjectives seem more useful, although more data on vesturing in the family are needed before patterns of diversity and their extent can be fully ascertained. -
The Mojave Desert Native Plant Program
The Mojave Desert Native Plant Program: DEVELOPING NATIVE PLANT MATERIALS FOR MOJAVE DESERT RESTORATION Mojave Desert Ecoregion Invasive Annual Grasses and Restoration? Aleta Nafus – BLM Southern Nevada District Lynn Sweet – University of California Riverside Natural Die-Off Events in Cheatgrass Owen W. Baughman, Susan E. Meyer, Zachary T. Aanderud, and Elizabeth Leger. 2016. Cheatgrass die-offs as an opportunity for restoration in the Great Basin, USA: Will local or commercial native plants succeed where exotic invaders fail? Journal of Arid Environments 124: 193-204. Loss of Native Species from Soil Seed Banks Todd C. Esque, James A. Young, C. Richard Tracy. 2010. Short-term effects of experimental fires on a Mojave Desert seed bank. Journal of Arid Environments, 74: 1302-1308. • Fire depleted both native and non-native seed densities • Native seed densities were significantly lower than non-native seed densities both before and after fire Mojave Desert Restoration Challenges: It’s Hot and Dry! ⚫ No source-identified Mojave seed producers ⚫ Wildland seed collection dependent on undependable precipitation ⚫ Restoration seed germination dependent on undependable precipitation ⚫ Heavy granivore pressure ⚫ Container stock planting works, but requires watering ⚫ Large acreage restoration impractical for container stock ⚫ Competition from invasive species What are seed transfer zones? Models based on: ⚫ Temperature and precipitation (provisional) ⚫ Genetic adaptation (empiric) Bower et al 2013 Provisional seed transfer zones Wyoming Big Sagebrush from 13 Locations Planted in Glenns Ferry, ID in 1987 Sands & Moser, 2013 A Path Towards Native Plant Restoration Ecoregional Native Plant Programs: Mojave Desert Native Plant Program Solving the Problem: From Seeds of Success to Ecoregional Programs Seeds of Success Early Years: ⚫ Seeds of Success wildland seed collection program began in 2001. -
Lake Havasu City Recommended Landscaping Plant List
Lake Havasu City Recommended Landscaping Plant List Lake Havasu City Recommended Landscaping Plant List Disclaimer Lake Havasu City has revised the recommended landscaping plant list. This new list consists of plants that can be adapted to desert environments in the Southwestern United States. This list only contains water conscious species classified as having very low, low, and low-medium water use requirements. Species that are classified as having medium or higher water use requirements were not permitted on this list. Such water use classification is determined by the type of plant, its average size, and its water requirements compared to other plants. For example, a large tree may be classified as having low water use requirements if it requires a low amount of water compared to most other large trees. This list is not intended to restrict what plants residents choose to plant in their yards, and this list may include plant species that may not survive or prosper in certain desert microclimates such as those with lower elevations or higher temperatures. In addition, this list is not intended to be a list of the only plants allowed in the region, nor is it intended to be an exhaustive list of all desert-appropriate plants capable of surviving in the region. This list was created with the intention to help residents, businesses, and landscapers make informed decisions on which plants to landscape that are water conscious and appropriate for specific environmental conditions. Lake Havasu City does not require the use of any or all plants found on this list. List Characteristics This list is divided between trees, shrubs, groundcovers, vines, succulents and perennials. -
Philip A. Munz, Botanist and Friend Sherwin Carlquist Claremont Graduate University; Rancho Santa Ana Botanic Garden
Aliso: A Journal of Systematic and Evolutionary Botany Volume 8 | Issue 3 Article 2 1975 Philip A. Munz, Botanist and Friend Sherwin Carlquist Claremont Graduate University; Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1975) "Philip A. Munz, Botanist and Friend," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 8: Iss. 3, Article 2. Available at: http://scholarship.claremont.edu/aliso/vol8/iss3/2 ALISO VoL. 8, No. 3, pp. 211-220 SEPTEMBER 22, 1975 PHILIP A. MUNZ, BOTANIST AND FRIEND SHERWIN CAHLQUIST Claremont Graduate School ancl Rancho Santa Ana Botanic Garden, Claremont, California 91711 With the passing of Philip Alexander Munz on April 10, 1974, we, his many friends, have lost a personality whose importance far exceeded what his modest, gentle demeanor suggested. To me, he was a fine scientist whose qualities demonstrated that great contributions to botany can be the product of simple and compelling virtues rather than spectacular charisma. Some of these simple virtues could no doubt be traced to his rural origins. He was born on April 1, 1892, in Saratoga, Wyoming. When he was six, his family moved to Denver. He graduated from high school at the age of sixteen, but his parents then kept him at home for a year because that chronological age made him too young to begin college. H e attended the University of D enver, living at home and traveling to classes on his bicycle. As a sophomore in college, Phil Munz was told he should continue in the sciences.