Geologic Analyses of Selected Apollo 10 7 Mm Lunar and Terrestrial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Structure of Shallow Maria
NASA CR. Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator John A. Waskom, Co-Investigator (NASA-CR-lq7qoo GEOLOGIC STahJCTUnF OF N76-17001 ISBALOW M1BIA-'(Arkansas Uni.v., mHiticelio.) 96 p BC $5.00' CSCL O3B Unclas G3/91, 09970- University of Arkansas at Monticello Monticello, Arkansas December 1975 Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator I John A. Waskom, Co-Investigator Un-iversity-of Arkansas-:at-.Monticl o Monticello, Arkansas December 1975 ABSTRACT Isopach maps and structural contour maps of the 0 0 eastern mare basins (30 N to 30 OS; 00 to 100 E) are constructed from measurements of partially buried craters. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of b-asalt in the irregular maria is between 200 and 400 m. Multiringed mascon basins are filled to various levels. The Serenitatis and Crisium basins have deeply flooded interiors and extensively flooded shelves. Mare basalts in the Nectaris basin fill only the innermost basin, and mare basalts in the Smythii basin occupy a small portion of the basin floor. Sinus Amoris, Mare Spumans, and Mare Undarum are partially filled troughs concentric to large circular basins. The Tranquillitatis and Fecunditatis are composite depressions containing basalts which flood degraded circular basins and adjacent terrain modified by the formation of nearby cir cular basins. -
Sky and Telescope
SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history. -
Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process -
Location #1: Peary/Whipple Crater
Location, Location, Location A Lunar Investment Strategy Hoyt Davidson Near Earth LLC June 2017 ISU's International Institute of Space Commerce Lunar Economic Action Plan (LEAP) Space and Questions from 1960 Still Relevant Today Economic Development • How can we utilize our dynamic system of competitive private enterprise in space, as on earth, to make newly discovered resources useful to man? • How can private enterprise and private capital make their maximum contribution? Philosophy and Policy The ultimate goal is not to impress others, or merely to explore our planetary system, but to use accessible space for the benefit of humankind. It is a goal that is not confined to a decade or a century. Nor is it confined to a single nearby destination, or to a fleeting dash to plant a flag. The idea is to begin preparing now for a future in which the material trapped in the Sun's vicinity is available for incorporation into our way of life. Dr. John Marburger, Head of the Office of Science and Technology Policy 2006 3 The Investment Premise • Just as on Earth, lunar real estate “value” is driven by location, location, location Rank Location Why Valuable 1 Peary Crater Best 1st industrial base and settlement 2 Sinus Medii Good cargo port & space elevator site 3 Largest skylights / lava tubes Best large scale settlements 4 Tsiolkovskiy crater, dark side Prime radio astronomy site 5 High helium-3 concentrations Potential high value mining 6 Lipsky Crater Space elevator site for Earth-Moon L2 7 Aristillus High Thorium concentrations • Lunar real -
October 2006
OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area. -
Orbital Infrared Observations of Lunar Craters and Possible Implications For
Proc. Lunar Planet. Sci. Conf 9th (1978), p. 2857~2883. Printed in the United States of America 1978LPSC....9.2857S Orbital infrared observations of lunar craters and possible implications for impact ejecta emplacement PETER H. SCHULTZ Lunar and Planetary Institute, 3303 NASA Road 1, Houston, Texas 77058 WENDELL MENDELL NASA-Johnson Space Center, Houston, Texas 77058 Abstract-The Apollo 17 Scanning Infrared Radiometer experiment revealed that the ejecta deposits of large lunar craters (D > 3 km) typically exhibit uniform night-time temperatures comparable to or less than those of the surrounding mare plains. This thermal signature implies that the surface of ejecta deposits displays block sizes typically smaller than 30 cm and that the non-blocky surface extends out to three crater radii from the crater rim. Local thermal anomalies occur within certain ejecta facies and appear to correlate with smooth-surfaced units believed to represent solidified impact melt. Beyond three crater radii from the rim, secondary craters and ray systems typically lack thermal enhancements and in certain areas are cooler than the surrounding mare surfaces. The characteristically non-blocky nature of these ejecta deposits is in contrast to what might be expected from simply extrapolating unmodified block-size distributions around small terrestrial craters. Four mechanisms are proposed to account for the observed thermal signatures. First, primary-crater ejecta fragmentation and locally excavated debris, which will be smaller than impacting debris, reduce the original size-distribution of ejected materials. Second, interactions between ejecta further comminute debris and, third, may result in sorting out of the smallest size fraction. Fourth, large impact craters generate a greater fraction of small-size ejecta as a result of both greater shock pressures over a larger fraction of the crater and longer residence time within the transient crater prior to ejection, thereby resulting in greater commi- nution. -
Water on the Moon, III. Volatiles & Activity
Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere). -
Glossary of Lunar Terminology
Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites. -
Lunar Sourcebook : a User's Guide to the Moon
4 LUNAR SURFACE PROCESSES Friedrich Hörz, Richard Grieve, Grant Heiken, Paul Spudis, and Alan Binder The Moon’s surface is not affected by atmosphere, encounters with each other and with larger planets water, or life, the three major agents for altering throughout the lifetime of the solar system. These terrestrial surfaces. In addition, the lunar surface has orbital alterations are generally minor, but they not been shaped by recent geological activity, because ensure that, over geological periods, collisions with the lunar crust and mantle have been relatively cold other bodies will occur. and rigid throughout most of geological time. When such a collision happens, two outcomes are Convective internal mass transport, which dominates possible. If “target” and “projectile” are of comparable the dynamic Earth, is therefore largely absent on the size, collisional fragmentation and annihilation Moon, and so are the geological effects of such occurs, producing a large number of much smaller internal motions—volcanism, uplift, faulting, and fragments. If the target object is very large compared subduction—that both create and destroy surfaces on to the projectile, it behaves as an “infinite halfspace,” Earth. The great contrast between the ancient, stable and the result is an impact crater in the target body. Moon and the active, dynamic Earth is most clearly For collisions in the asteroid belt, many of the shown by the ages of their surfaces. Nearly 80% of the resulting collisional fragments or crater ejecta escape entire solid surface of Earth is <200 m.y. old. In the gravitational field of the impacted object; many of contrast, >99% of the lunar surface formed more than these fragments are then further perturbed into 3 b.y. -
Surveyor 1 Space- Craft on June 2, 1966 As Seen by the Narrow Angle Camera of the Lunar Re- Connaissance Orbiter Taken on July 17, 2009 (Also See Fig
i “Project Surveyor, in particular, removed any doubt that it was possible for Americans to land on the Moon and explore its surface.” — Harrison H. Schmitt, Apollo 17 Scientist-Astronaut ii Frontispiece: Landing site of the Surveyor 1 space- craft on June 2, 1966 as seen by the narrow angle camera of the Lunar Re- connaissance Orbiter taken on July 17, 2009 (also see Fig. 13). The white square in the upper photo outlines the area of the enlarged view below. The spacecraft is ca. 3.3 m tall and is casting a 15 m shadow to the East. (NASA/LROC/ ASU/GSFC photos) iii iv Surveyor I: America’s First Moon Landing by William F. Mellberg v © 2014, 2015 William F. Mellberg vi About the author: William Mellberg was a marketing and public relations representative with Fokker Aircraft. He is also an aerospace historian, having published many articles on both the development of airplanes and space vehicles in various magazines. He is the author of Famous Airliners and Moon Missions. He also serves as co-Editor of Harrison H. Schmitt’s website: http://americasuncommonsense.com Acknowledgments: The support and recollections of Frank Mellberg, Harrison Schmitt, Justin Rennilson, Alexander Gurshstein, Paul Spudis, Ronald Wells, Colin Mackellar and Dwight Steven- Boniecki is gratefully acknowledged. vii Surveyor I: America’s First Moon Landing by William F. Mellberg A Journey of 250,000 Miles . December 14, 2013. China’s Chang’e 3 spacecraft successfully touched down on the Moon at 1311 GMT (2111 Beijing Time). The landing site was in Mare Imbrium, the Sea of Rains, about 25 miles (40 km) south of the small crater, Laplace F, and roughly 100 miles (160 km) east of its original target in Sinus Iridum, the Bay of Rainbows. -
Tectonic Evolution of Northwestern Imbrium of the Moon That Lasted In
Daket et al. Earth, Planets and Space (2016) 68:157 DOI 10.1186/s40623-016-0531-0 FULL PAPER Open Access Tectonic evolution of northwestern Imbrium of the Moon that lasted in the Copernican Period Yuko Daket1* , Atsushi Yamaji1, Katsushi Sato1, Junichi Haruyama2, Tomokatsu Morota3, Makiko Ohtake2 and Tsuneo Matsunaga4 Abstract The formation ages of tectonic structures and their spatial distributions were studied in the northwestern Imbrium and Sinus Iridum regions using images obtained by Terrain Camera and Multiband Imager on board the SELENE spacecraft and the images obtained by Narrow Angle Camera on board LRO. The formation ages of mare ridges are constrained by the depositional ages of mare basalts, which are either deformed or dammed by the ridges. For this purpose, we defined stratigraphic units and determined their depositional ages by crater counting. The degradation levels of craters dislocated by tectonic structures were also used to determine the youngest limits of the ages of the tectonic activities. As a result, it was found that the contractions to form mare ridges lasted long after the deposition of the majority of the mare basalts. There are mare ridges that were tectonically active even in the Copernican Period. Those young structures are inconsistent with the mascon tectonics hypothesis, which attributes tectonic deforma- tions to the subsidence of voluminous basaltic fills. The global cooling or the cooling of the Procellarum KREEP Ter- rane region seems to be responsible for them. In addition, we found a graben that was active after the Eratosthenian Period. It suggests that the global or regional cooling has a stress level low enough to allow the local extensional tectonics. -
GRAIL-Identified Gravity Anomalies in Oceanus Procellarum: Insight Into 2 Subsurface Impact and Magmatic Structures on the Moon 3 4 Ariel N
1 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into 2 subsurface impact and magmatic structures on the Moon 3 4 Ariel N. Deutscha, Gregory A. Neumannb, James W. Heada, Lionel Wilsona,c 5 6 aDepartment of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 7 02912, USA 8 bNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 9 cLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 10 11 Corresponding author: Ariel N. Deutsch 12 Corresponding email: [email protected] 13 14 Date of re-submission: 5 April 2019 15 16 Re-submitted to: Icarus 17 Manuscript number: ICARUS_2018_549 18 19 Highlights: 20 • Four positive Bouguer gravity anomalies are analyzed on the Moon’s nearside. 21 • The amplitudes of the anomalies require a deep density contrast. 22 • One 190-km anomaly with crater-related topography is suggestive of mantle uplift. 23 • Marius Hills anomalies are consistent with intruded dike swarms. 24 • An anomaly south of Aristarchus has a crater rim and possibly magmatic intrusions. 25 26 Key words: 27 Moon; gravity; impact cratering; volcanism 1 28 Abstract 29 30 Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter 31 (~90–190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central 32 Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of 33 Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic 34 complex (north and south). Each is characterized by distinct surface geologic features suggestive 35 of ancient impact craters and/or volcanic/plutonic activity.