Carbon Dioxide in Magmas and Implications for Hydrothermal Systems

Total Page:16

File Type:pdf, Size:1020Kb

Carbon Dioxide in Magmas and Implications for Hydrothermal Systems Mineralium Deposita ,2001) 36: 490±502 DOI 10.1007/s001260100185 ARTICLE Jacob B. Lowenstern Carbon dioxide in magmas and implications for hydrothermal systems Received: 15 September 1999 / Accepted: 12 April 2001 / Published online: 6 July 2001 Ó Springer-Verlag 2001 Abstract This review focuses onthe solubility, origin, presence of CO2 caninduceimmiscibility both withinthe abundance, and degassing of carbon dioxide ,CO2)in magmatic volatile phase and in hydrothermal systems. magma±hydrothermal systems, with applications for Because some metals, including gold, can be more vol- those workers interested in intrusion-related deposits of atile invapor phases thancoexistingliquids, the pres- gold and other metals. The solubility of CO2 increases ence of CO2 may indirectly aid the process of with pressure and magma alkalinity. Its solubility is low metallogenesis by inducing phase separation. relative to that of H2O, so that ¯uids exsolved deep in the crust tend to have high CO2/H2O compared with ¯uids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompres- Introduction sion- or crystallization-induced degassing. The temper- ature dependence of solubility is a function of the After H2O, carbondioxide is the secondmost common speciationof CO 2, which dissolves inmolecular form in gas in volcanic exhalations ,White and Waring 1963; rhyolites ,retrograde temperature solubility), but exists Symonds et al. 1994). In gases exsolved from basaltic as dissolved carbonate groups in basalts ,prograde). magmas, CO2 sometimes exceeds water in concentration Magnesite and dolomite are stable under a relatively ,e.g., Gerlach 1980; Giggenbach 1997), presumably due wide range of mantle conditions, but melt just above the to its greater abundance in some mantle source regions. solidus, thereby contributing CO to mantle magmas. 2 The presence of CO2 inmagmatic systems, combined Graphite, diamond, and a free CO2-bearing ¯uid may be with its relatively low solubility, results inearly exsolu- the primary carbon-bearing phases in other mantle tionof vapors that are rich inCO 2 ,Holloway 1976). source regions. Growing evidence suggests that most Once exsolved, this low density vapor phase has im- CO is contributed to arc magmas via recycling of sub- 2 portant implications for the ascent and eruption of CO2- ducted oceanic crust and its overlying sediment blanket. bearing magmas ,Papale and Polacci 1999). Many Additional carbon can be added to magmas during workers have noted evidence for CO2-rich ¯uids ina magma±wallrock interactions in the crust. Studies of variety of intrusion-related ore deposits, particularly ¯uid and melt inclusions from intrusive and extrusive those associated with Au and lithophile enrichment igneous rocks yield ample evidence that many magmas ,Newberry et al. 1995; Goldfarb et al. 1998; Thompson are vapor saturated as deep as the mid crust ,10±15 km) et al. 1999). Insuch systems, CO 2 may be derived from and that CO2 is anappreciable part of the exsolved the magma, and even from a mantle source, although vapor. Such is the case inboth basaltic andsome silicic there are other means for CO2 to enter ore-forming magmas. Under most conditions, the presence of a CO2- systems such as decarbonation reactions in wallrock and bearing vapor does not hinder, and in fact may promote, dissolutionof CO 2 and carbonate minerals from crustal the ascent and eruption of the host magma. Carbonic hydrothermal systems. ¯uids are poorly miscible with aqueous ¯uids, particu- This review focuses onCO inmagmas, providing larly at high temperature and low pressure, so that the 2 anintroductiontothe behavior of CO 2-bearing vapors withinmagmas, andas they enterhydrothermal sys- tems. First, it outlines current knowledge about the solubility of carbonspecies insilicate melts, thencon- J.B. Lowenstern U.S. Geological Survey, Mail Stop 910, tinues with a summary of carbon in the mantle and 345 Middle®eld Road, Menlo Park, CA 94025, USA mantle melts, and proceeds to discuss CO2 ininter- E-mail: [email protected] mediate and silicic magmas. Next, it concentrates on 491 the compositionof exsolved magmatic vapors andthe gens). She found that the eect of Ca2+ was most pro- + + 2+ 2+ eect of CO2 on magma properties, ascent, eruption, nounced, followed by K ,Na ,Mg ,andFe in and intrusion. Finally, it provides a brief summary of descending order of importance. In contrast, CO2 does CO2 inhydrothermal andgeothermal systems, and not react with the melt as it dissolves in molecular form, speculates onthe importance of CO 2 insome ore- so that there should be little variationinCO 2 solubility forming systems. This synthesis of current knowledge infelsic magmas. Moreover, ona molar basis, CO 2 about CO2, and its role in magmas, attempts to provide solubility changes little with melt composition along the economic geologists with a background that can be tholeiitic basalt±rhyolite join ,Blank and Brooker 1994; used when interpreting the role of CO2 in intrusion- see also Fig. 1). related deposits. Solubility as a function of pressure and temperature The solubility of CO2 in silicate melts Inall studied magma types, the solubility of CO 2 in- CO2 dissolution creases with pressure at a nearly linear rate ,Fig. 1). Temperature eects are not so simple, as they are de- To understand the systematics of CO2 behavior inig- pendent on the mechanism of incorporation of the CO2 neous systems, one must ®rst consider how CO2 dis- inthe melt ,Stolper et al. 1987). Inrhyolitic magmas, the solves in magmas and the variables that in¯uence its solubility of CO2 clearly decreases as temperature in- solubility ,see Blank and Brooker 1994 for an excellent creases ,see Fig. 4 from Fogel and Rutherford 1990). review). Experimental studies in the 1960s and 1970s This is consistent with the typical inverse correlation recognized that CO2 solubility innatural rock melts is betweenmolecular gas solubility andtemperature, about anorder of magnitude less thanthat of water whether inroom-temperature liquids, hydrothermal ,e.g., Wyllie and Tuttle 1959; Kadik et al. 1972). In the ¯uids, or rock melts. Exceptions occur when the gases late 1970s and 1980s, experimentalists were able to use dissolve by interacting with the melt to form charged vibrational spectroscopy to determine the speciation of complexes ,Fig. 2). For example, the solubility of sulfate volatiles within silicate melts and obtain more quanti- ,which exists only in oxidized magmas) increases with tative solubility estimates. Mysenet al. ,1975) used 14C temperature ,Baker and Rutherford 1996), as does car- beta-track mapping techniques to study the solubility bonate solubility in albite melts ,Stolper et al. 1987) and of CO2 in a variety of natural melt compositions and basaltic melts ,Mysenet al. 1975). Ingeneral, though, found that it dissolves both as carbonate groups and the temperature eect onsolubility is very small com- molecular CO2. Later, Fine and Stolper ,1985) explored pared with the eects of melt compositionandpressure the incorporation of CO2 insodium aluminosilicate ,Blank and Brooker 1994). glasses, and found that it dissolved both as molecular CO2 and Na±CO3 ionic complexes, with the latter in- creasing along with Na2O onthe Na 2O±SiO2 join. In subsequent studies, researchers have found that CO2 dissolves solely as carbonate groups in basaltic melts including ma®c alkaline magmas such as basanites, leucitites, and nephelinites ,Blank and Brooker 1994). Incontrast,solely molecular CO 2 is found in rhyolites ,Fogel and Rutherford 1990). Intermediate melt com- positions ,andesites) have both species present ,Mysen et al. 1975; King et al. 1996), as is the case for evolved silica-undersaturated magmas such as phonolites ,Blank and Brooker 1994). Because CO2 reacts with the melt as it dissolves to form carbonate groups in ma®c melts, its solubility is highly dependent on the nature and abundance of vari- ous cations; in particular, Ca, K, and Na. As a result, carbonate is far more soluble in alkaline basalts than tholeiites ,Blank and Brooker 1994). Dixon ,1997) de- rived a parameter ,P), which she used to model the re- Fig. 1 Solubility of total CO2 ,molecular + carbonate) as a func- lationship between carbonate solubility and melt tionof pressure for four melt compositions, ppmw parts per million compositionfor tholeiitic to leucititic compositions.The by weight). Leucitite, basanite, and tholeiitic basalt calculated from variable P, which correlates positively with carbonate compositions and parameters given in Holloway and Blank ,1994) at 1,200 °C. Rhyolite curve from experimental data of Fogel and solubility, decreases as a function of silica and alumina Rutherford ,1990) at 1,150 °C. The solubility of CO inrhyolite concentrations. It also increases with alkalis and alkaline 2 and tholeiitic basalt are very similar. The CO2 solubility increases earth elements ,and therefore with non-bridging oxy- both with pressure and with magma alkalinity 492 Fig. 2 Molecular CO2 vs. carbonate concentrations for CO2- saturated albite melt ,after Stolper et al. 1987). Inalbite, CO 2 dissolves as both carbonate and molecular CO2. Bulk solubility increases with pressure. The carbonate to molecular CO2 ratio Fig. 3 Solubility plot for system rhyolite±H2O±CO2 at 675 °C. increases sympathetically with temperature Lines labeled with units of pressure represent isobars that display solubility of H2OandCO2 as function of ¯uid composition; intersections with X- and Y-axes represent H2OandCO2
Recommended publications
  • Volcanic Gases and Aerosols Guidelines Introduction
    IVHHN Gas Guidelines www.ivhhn.org/gas/guidelines.html Volcanic Gases and Aerosols Guidelines The following pages contain information relating to the health hazards of gases and aerosols typically emitted during volcanic activity. Each section outlines the properties of the emission; its impacts on health; international guidelines for concentrations; and examples of concentrations and effects in volcanic contexts, including casualties. Before looking at the emissions data, we recommend that you read the general introduction to volcanic gases and aerosols first. A glossary to some of the terms used in the explanations and guidelines is also provided at the end of this document. Introduction An introduction to the aims and purpose of the Gas and Aerosol Guidelines is given here, as well as further information on international guideline levels and the units used in the website. A brief review of safety procedures currently implemented by volcanologists and volcano observatories is also provided. General Introduction Gas and aerosol hazards are associated with all volcanic activity, from diffuse soil gas emissions to 2- plinian eruptions. The volcanic emissions of most concern are SO2, HF, sulphate (SO4 ), CO2, HCl and H2S, although, there are other volcanic volatile species that may have human health implications, including mercury and other metals. Since 1900, there have been at least 62 serious volcanic-gas related incidents. Of these, the gas-outburst at Lake Nyos in 1986 was the most disastrous, causing 1746 deaths, >845 injuries and the evacuation of 4430 people. Other volcanic-gas related incidents have been responsible for more than 280 deaths and 1120 injuries, and contributed to the evacuation or ill health of >53,700 people (Witham, in review).
    [Show full text]
  • Summary of the Mineral Information Package for the Khanneshin Carbonatite Area of Interest
    Chapter 21A. Summary of the Mineral Information Package for the Khanneshin Carbonatite Area of Interest Contribution by Robert D. Tucker, Harvey E. Belkin, Klaus J. Schulz, Stephen G. Peters, and Kim P. Buttleman Abstract The Khanneshin carbonatite is a deeply dissected igneous complex of Quaternary age that rises approximately 700 meters above the flat-lying Neogene sediments of the Registan Desert, Helmand Province, Afghanistan. The complex consists almost exclusively of carbonate-rich intrusive and extrusive igneous rocks, crudely circular in outline, with only three small hypabyssal plugs of leucite phonolite and leucitite outcropping in the southeastern part of the complex. The complex is broadly divisible into a central intrusive vent (or massif), approximately 4 kilometers in diameter, consisting of coarse-grained sövite and brecciated and agglomeratic barite-ankerite alvikite; a thin marginal zone (less than 1 kilometer wide) of outwardly dipping (5°–45°). Neogene sedimentary strata; and a peripheral apron of volcanic and volcaniclastic strata extending another 3–5 kilometers away from the central intrusive massif. Small satellitic intrusions of biotite-calcite carbonatite, no larger than 400 meters in diameter, crop out on the southern and southeastern margin of the central intrusive massif. In the 1970s several teams of Soviet geologists identified prospective areas of interest for uranium, phosphorus, and light rare earth element (LREE) mineralization in four regions of the carbonatite complex. High uranium concentrations are reported in two regions; the greatest concentrations are confined to silicified shear zones in sandy clay approximately 1.1 kilometers southwest of the peripheral part of the central vent. An area of phosphorus enrichment, primarily occurring in apatite, is present in coarse-grained agglomeratic alvikite, with abundant fenite xenoliths, approximately 750 meters south of the periphery of the central vent.
    [Show full text]
  • Geology of the Nairobi Region, Kenya
    % % % % % % % % %% %% %% %% %% %% %% % GEOLOGIC HISTORY % %% %% % % Legend %% %% %% %% %% %% %% % % % % % % HOLOCENE: %% % Pl-mv Pka %%% Sediments Mt Margaret U. Kerichwa Tuffs % % % % %% %% % Longonot (0.2 - 400 ka): trachyte stratovolcano and associated deposits. Materials exposed in this map % %% %% %% %% %% %% % section are comprised of the Longonot Ash Member (3.3 ka) and Lower Trachyte (5.6-3.3 ka). The % Pka' % % % % % % L. Kerichwa Tuff % % % % % % Alluvial fan Pleistocene: Calabrian % % % % % % % Geo% lo% gy of the Nairobi Region, Kenya % trachyte lavas were related to cone building, and the airfall tuffs were produced by summit crater formation % % % % % % % % % % % % % % % % % Pna % % % % %% % (Clarke et al. 1990). % % % % % % Pl-tb % % Narok Agglomerate % % % % % Kedong Lake Sediments Tepesi Basalt % % % % % % % % % % % % % % % % %% % % % 37.0 °E % % % % 36.5 °E % % % % For area to North see: Geology of the Kijabe Area, KGS Report 67 %% % % % Pnt %% % PLEISTOCENE: % % %% % % % Pl-kl %% % % Nairobi Trachyte % %% % -1.0 ° % % % % -1.0 ° Lacustrine Sediments % % % % % % % % Pleistocene: Gelasian % % % % % Kedong Valley Tuff (20-40 ka): trachytic ignimbrites and associated fall deposits created by caldera % 0 % 1800 % % ? % % % 0 0 % % % 0 % % % % % 0 % 0 8 % % % % % 4 % 4 Pkt % formation at Longonot. There are at least 5 ignimbrite units, each with a red-brown weathered top. In 1 % % % % 2 % 2 % % Kiambu Trachyte % Pl-lv % % % % % % % % % % %% % % Limuru Pantellerite % % % % some regions the pyroclastic glass and pumice has been
    [Show full text]
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • Chapter 2 Alaska’S Igneous Rocks
    Chapter 2 Alaska’s Igneous Rocks Resources • Alaska Department of Natural Resources, 2010, Division of Geological and Geophysical Surveys, Alaska Geologic Materials Center website, accessed May 27, 2010, at http://www.dggs.dnr.state.ak.us/?link=gmc_overview&menu_link=gmc. • Alaska Resource Education: Alaska Resource Education website, accessed February 22, 2011, at http://www.akresource.org/. • Barton, K.E., Howell, D.G., and Vigil, J.F., 2003, The North America tapestry of time and terrain: U.S. Geological Survey Geologic Investigations Series I-2781, 1 sheet. (Also available at http://pubs.usgs.gov/imap/i2781/.) • Danaher, Hugh, 2006, Mineral identification project website, accessed May 27, 2010, at http://www.fremontica.com/minerals/. • Digital Library for Earth System Education, [n.d.], Find a resource—Bowens reaction series: Digital Library for Earth System Education website, accessed June 10, 2010, at http://www.dlese.org/library/query.do?q=Bowens%20reaction%20series&s=0. • Edwards, L.E., and Pojeta, J., Jr., 1997, Fossils, rocks, and time: U.S. Geological Survey website. (Available at http://pubs.usgs.gov/gip/fossils/contents.html.) • Garden Buildings Direct, 2010, Rocks and minerals: Garden Buildings Direct website, accessed June 4, 2010, at http://www.gardenbuildingsdirect.co.uk/Article/rocks-and- minerals. • Illinois State Museum, 2003, Geology online–GeoGallery: Illinois State Museum Society database, accessed May 27, 2010 at http://geologyonline.museum.state.il.us/geogallery/. • Knecht, Elizebeth, designer, Pearson, R.W., and Hermans, Majorie, eds., 1998, Alaska in maps—A thematic atlas: Alaska Geographic Society, 100 p. Lillie, R.J., 2005, Parks and plates—The geology of our National parks, monuments, and seashores: New York, W.W.
    [Show full text]
  • Hydrovolcanic Vs Magmatic Processes in Forming Maars and Associated Pyroclasts: the Calatrava -Spain- Case History
    1 Hydrovolcanic vs Magmatic Processes in Forming Maars and Associated Pyroclasts: The Calatrava -Spain- Case History F. Stoppa, G. Rosatelli, M. Schiazza and A. Tranquilli Università Gabriele d'Annunzio, Dipartimento di Scienze, Chieti Italy 1. Introduction The Calatrava Volcanic Field (CVF) of Castilla-La Mancha is characterised by numerous monogenetic volcanic centres, that erupted mainly foidites, melilitites and carbonatites (ultra-alkaline rock-association sensu, Le Bas, 1981) carrying abundant mantle xenoliths. At CVF, carbonatites have been described by Bailey et al. (2005) and Stoppa et al. (2011). Along with the volcanic field of Eifel of Germany, Limagne basin of France and Intra-mountain Ultra-alkaline Province (IUP) of Italy, the CVF encompasses the most numerous Pliocene- Quaternary extrusive carbonatites in Western Europe in terms of dimension, number and size of volcanoes (Bailey et al., 2005; Bailey et al., 2006). Similar volcanic fields are Toro- Akole and Bufumbira in Uganda (Bailey & Collier, 2000), the Avon district in Missouri (Callicoat et al., 2008), Mata da Corda in Brazil (Junqueira-Brod et al., 1999) and West Qinling in Gansu Province, China (Yu et al., 2003). In spite of abundant local studies (González Cárdenas et al., 2010; Peinado et al., 2009), the CVF has been mostly neglected by the international audience, although Bailey (2005) outlined the need for a long-term research program on CVF. This work focuses on the role of deep CO2 at CVF, which is considered an intrinsic component of carbonatitic mantle magmatism (Hamilton et al., 1979). Previous, studies of CVF volcanoes considered that the hydrovolcanism is a necessary and sufficient condition to explain the CVF volcanological features, and, as a corollary that the carbonate present in the pyroclastic rocks is remobilised limestones (e.g., López-Ruiz et al., 2002).
    [Show full text]
  • A Simple Classification of Volcanic Rocks Summary Introduction
    A Simple Classification of Volcanic Rocks E. A. K. MIDDLEMOST* Summary There is a considerable volume of information on the abundance, distribu- tion and chemical composition of volcanic rocks. In this paper an attempt is made to use these data to construct a simple chemical classification of the volcanic rocks. Silica content is used to divide the rocks into seven major classes; and the major classes are then subdivided using soda, potash, alumina and lime. Introduction At the present time there is a reawakening of interest in the problem of the classification of igneous rocks (STRECr~ISEN, 1965, 1967; IRVINE and BARAaAR, 1971). Much of this interest has been generated by attempts to use electronic computers to store and manip- ulate large volumes of petrological data (CHAYES, 1969b; HUBAUX, 1969; HARRISON and SABINE, 1970). It has also been shown that it is not possible to devise a single comprehensive classification of igneous rocks that can be used in both the fields of petrography and petro- genesis (MIDDLEMOST, 1971). Petrographic classifications are essentially concerned with producing a systematic framework that provides compartments into which rocks can be placed (i.e. JOHANNSEN, 1931). The needs of petrogenesis are different, as this branch of petrology is constantly searching for ways in which to adapt our vocabulary of rock names so that the language we use is able to change in response to new discoveries, or new ways of interpreting old discoveries. * Dept. of Geology and Geophysics, University of Sydney, NSW, Australia. I -- 383 There is a large store of information on the abundance, composi- tion and distribution of igneous rocks.
    [Show full text]
  • Depth and Degree of Melting of Komatiites
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. B4, PAGES 4521-4540, APRIL 10, 1992 Depth and Degree of Melting of Komatiites CLAUDE HERZBERG Departmentof GeologicalSciences, Rutgers University,New Brunswick,New Jersey Mineral PhysicsInstitute, State Universityof New York, StonyBrook, New York High pressuremelting experimentsßhove ." v .......... new constraintsto be placedon the depthand degreeof partial melting of komatiites. Komatiitesfrom GorgonaIsland were formed by relatively low degreesof pseudoinvariantmelting(< 30 %)involving L + O1 + Opx + Cpx + Gt on the solidusat 40 kbar, about 130 km depth. Munro-typekomatiites were separatedfrom a harzburgiteresidue (L + O1 + Opx) at pressuresthat are poorly constrained,but were probablyaround 50 kbar, about 165 km depth;the degreeof partial melting was <40%. Komatiites from the BarbertonMountain Land were formed by high degrees(-50 %) of pseudoinvariantmelting (L + O1 + Gt + Cpx) of fertile mantleperidotitc in the 80- to 100-kbarrange, about 260- to 330- km depth. Secularvariations in the geochemistryof komatiitescould have formed in response to a reductionin the temperatureand pressureof meltingwith time. The 3.5 Ga Barbertonkomatiites and the 2.7 Ga Munro-typekomatiites could have formedin plumesthat were hotterthan the present-daymantle by 500ø and 30(Y',respectively. When excesstemperatures are this size, melting is deeperand volcanismchanges from basalticto komatiitic. The komatiitesfrom Gorgona Island, which are Mesozoic in age, may be representativeof komatiitesthat are predictedto occur in oceanicplateaus of Cretaceousage throughoutthe Pacific [Storey et al., 1991]. 1. INTRODUCTION range of CaO and A1203contents in the 80- to 160-kbar range. A calibration has been made of the effect of pressure on Komatiites are high MgO volcanic rocks that can be CaO/(CaO + A1203)and MgO in komatiiticliquids formed on roughly explained by high degrees of melting of mantle the solidus, and an examinationhas been made of the effect of peridotitc,typically 50 to 100 % [e.g., Vi.ljoenand Vi.ljoen, FeO.
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Lecture 8: Volcanism
    Lecture 8: Volcanism EAS 2200 Introduction to the Earth System Today’s Plan Introduction Melting in the Earth mid-ocean ridges subduction zones mantle plumes Crystallization of igneous rocks Volcanic eruptions Introduction Volcanic eruptions are among the most spectacular natural phenomena. Where does the magma come from? Why does most volcanism occur only in certain areas? What causes eruptions to sometimes be catastrophic and sometimes quiescent? Why is there such a variety of igneous rocks? Where does magma come from? Early ideas: Hot vapors produce melting Burning coals layers provide heat for melting Global layer of molten rock at depth Modern ideas: Decompression melting Flux melting Intrusions of magma into the crust (but this begs the question of the origin of the original magma). Deep burial of low melting point material (rare). Melting of Rock Complex (“multi-phase”) substances progressively melt over a range of temperatures. The lowest temperature at which melt exists (temperature at which melting begins) is known as the solidus. The highest temperature at which solid persists (temperature at which melting is complete) is known as the liquidus. The melting range for most rocks (diference in solidus and liquidus) is several hundred degrees C. In essentially all cases, melting in the Earth is believed to be partial (i.e., liquidus temperature Volcanoes are like Clouds Decompression Melting Solidus temperature of rock decreases with decreasing pressure. Temperature of rising mantle rock also decreases with pressure (adiabatic decompression). Adiabat is steeper than solidus, so that rising mantle rock eventually reaches solidus and Melting and Mantle Convection We can expect melting to occur within hot, rising mantle convection cells.
    [Show full text]
  • GY 111: Physical Geology
    UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 9: Extrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) The chemical composition of the crust 2) Crystallization of molten rock 3) Bowen's Reaction Series Web notes 8 Chemical Composition of the Crust Element Wt% % of atoms Oxygen 46.6 60.5 Silicon 27.7 20.5 Aluminum 8.1 6.2 Iron 5.0 1.9 Calcium 3.6 1.9 Sodium 2.8 2.5 Potassium 2.6 1.8 Magnesium 2.1 1.4 All other elements 1.5 3.3 Crystallization of Magma http://myweb.cwpost.liu.edu/vdivener/notes/igneous.htm Bowen’s Reaction Series Source http://www.ltcconline.net/julian Igneous Rock Composition Source: http://hyperphysics.phy-astr.gsu.edu Composition Formation Dominant Silica content Temperature Minerals Ultramafic Very high Olivine, pyroxene Very low (<45%) Mafic High Olivine, pyroxene, low Ca-plagioclase Intermediate Medium Na-Plagioclase, moderate amphibole, biotite Felsic Medium-low Orthoclase, quartz, high (>65%) muscovite, biotite Igneous Rock Texture Extrusive Rocks (Rapid Cooling; non visible* crystals) Intrusive Rocks (slow cooling; 100 % visible crystals) *with a hand lens Igneous Rock Texture Igneous Rock Texture Today’s Agenda 1) Pyro-what? (air fall volcanic rocks) 2) Felsic and Intermediate Extrusive Rocks 3) Mafic Extrusive Rocks Web notes 9 Pyroclastic Igneous Rocks Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”. Clastic means particles; both are of Greek origin. Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”. Clastic means particles; both are of Greek origin. Pyroclastic rocks are usually erupted from composite volcanoes (e.g., they are produced via explosive eruptions from viscous, “cool” lavas) Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”.
    [Show full text]
  • Volcanic Eruptions
    Volcanic Eruptions •Distinguish between nonexplosive and explosive volcanic eruptions. • Identify the features of a volcano. • Explain how the composition of magma affects the type of volcanic eruption that will occur. • Describe four types of lava and four types of pyroclastic material. I. Volcanic Eruptions A. A volcano is a vent or fissure in the Earth’s surface through which molten rock and gases are expelled. B. Molten rock is called magma. C. Magma that flows onto the Earth’s surface is called lava. II. Nonexplosive Eruptions A. Nonexplosive eruptions are the most common type of volcanic eruptions. These eruptions produce relatively calm flows of lava in huge amounts. B. Vast areas of the Earth’s surface, including much of the sea floor and the Northwestern United States, are covered with lava form nonexplosive eruptions. Kilauea Volcano in Hawaii Island III. Explosive Eruptions A. While explosive eruptions are much rarer than non-explosive eruptions, the effects can be incredibly destructive. B. During an explosive eruption, clouds of hot debris, ash, and gas rapidly shoot out from a volcano. C. An explosive eruption can also blast millions of tons of lava and rock from a volcano, and can demolish and entire mountainside. Alaska's Mount Redoubt eruption in March 2009 IV. What Is Inside a Volcano? A. The interior of a volcano is made up of two main features. B. The magma chamber is the body of molten rock deep underground that feeds a volcano. C. The vent is an opening at the surface of the Earth through which volcanic material passes.
    [Show full text]