Influence of Gene Modification in Biological Behaviors and Responses of Mouse Lung Telocytes to Inflammation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity. -
OR2W1 (Human) Recombinant Protein
OR2W1 (Human) Recombinant Entrez GeneID: 26692 Protein Gene Symbol: OR2W1 Catalog Number: H00026692-G01 Gene Alias: MGC119162, MGC119163, MGC119165, hs6M1-15 Regulation Status: For research use only (RUO) Gene Summary: Olfactory receptors interact with Product Description: Human OR2W1 full-length ORF odorant molecules in the nose, to initiate a neuronal (NP_112165.1) recombinant protein without tag. response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family Sequence: of G-protein-coupled receptors (GPCR) arising from MDQSNYSSLHGFILLGFSNHPKMEMILSGVVAIFYLITL single coding-exon genes. Olfactory receptors share a VGNTAIILASLLDSQLHTPMYFFLRNLSFLDLCFTTSIIP 7-transmembrane domain structure with many QMLVNLWGPDKTISYVGCIIQLYVYMWLGSVECLLLAV neurotransmitter and hormone receptors and are MSYDRFTAICKPLHYFVVMNPHLCLKMIIMIWSISLANS responsible for the recognition and G protein-mediated VVLCTLTLNLPTCGNNILDHFLCELPALVKIACVDTTTV transduction of odorant signals. The olfactory receptor EMSVFALGIIIVLTPLILILISYGYIAKAVLRTKSKASQRKA gene family is the largest in the genome. The MNTCGSHLTVVSMFYGTIIYMYLQPGNRASKDQGKFL nomenclature assigned to the olfactory receptor genes TLFYTVITPSLNPLIYTLRNKDMKDALKKLMRFHHKSTK and proteins for this organism is independent of other IKRNCKS organisms. [provided by RefSeq] Host: Wheat Germ (in vitro) Theoretical MW (kDa): 36.1 Applications: AP (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Form: Liquid Preparation Method: in vitro wheat germ expression system with proprietary liposome technology Purification: None Recommend Usage: Heating may cause protein aggregation. Please do not heat this product before electrophoresis. Storage Buffer: 25 mM Tris-HCl of pH8.0 containing 2% glycerol. Storage Instruction: Store at -80°C. Aliquot to avoid repeated freezing and thawing. Page 1/1 Powered by TCPDF (www.tcpdf.org). -
Telocytes - Stem Cells
INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING The Tandem: Telocytes - Stem Cells Lawrence M. Popescu Abstract - We have recently described a novel type of inter- II. TeloCyTeS and/oR fIbRoblaSTS ? stitial (stromal) cells – Telocytes (TC) – in several cavitary The interstitium (stroma) is in most of the cases seen as a and non-cavitary organs from humans and other mammalians. connecting “device” for the specific structures of an organ. TC have a small cell body, but specific (unique) prolongations Usually, people are perceiving interstitial cells as being that we named Telopodes (Tp). Therefore, the simplest defi- mainly (or even, only) fibroblasts. However, fibroblasts have nition for TC is: cells with Tp. Tp are characterized by: a) the function of generating connective tissue matrix, specifi- number (1-5/cell, frequently 2 or 3); b) length (tens up to hun- cally, collagen. The distinction between TC and fibroblasts dreds of mm); c) moniliform aspect – an alternation of thin is obvious since they have different ultrastructure and phe- segments, podomeres (with caliber under 200 nm, below the notype. Therefore, their functions should be mostly different: resolving power of light microscopy) and dilated segments, TC - intercellular signalling (connections), but fibroblasts - podoms, which accommodate mitochondria, (rough) endo- collagen synthesis. In other words, TC are “more” function- 2+ plasmic-reticulum and caveolae, the so-called “Ca uptake/ ally oriented, and fibroblasts are “more” structuraly oriented, release units”; d) dichotomous branching pattern forming a responsible for fibrosis. 3D network, a labyrinthine system with complex homo- and There are some clear ultrastructural features that differ- heterocellular junctions, revealed only by electron tomogra- entiate TC from fibroblasts. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supplemental Data
1 Supplementary Figure 1. Immunohistochemical distribution of urothelial cells, renal tubular cells, and interstitial cells stained 2 by uroplakin III, kidney specific protein, and vimentin, respectively. Magnification, ×100 (inset x400). Representative 3 micrographs were obtained from normal papillary tissues of CaOx stone formers. 1 Supplementary Table 1. Top 100 upregulated genes in papillary tissue of both Randall’s Plaque and normal mucosa with calcium oxalate stone formers compared to those with control patients. Fold Agilent ID Gene Symbol Description change A_23_P128868 OR11H12 Homo sapiens olfactory receptor, family 11, subfamily H, member 12 (OR11H12), mRNA [NM_001013354] 26.613 Homo sapiens killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 2 (KIR2DS2), mRNA A_23_P130815 KIR2DS2 26.224 [NM_012312] A_24_P402855 PROL1 Homo sapiens proline rich, lacrimal 1 (PROL1), mRNA [NM_021225] 23.733 A_24_P917306 ZNF385D zinc finger protein 385D [Source:HGNC Symbol;Acc:26191] [ENST00000494108] 23.050 A_33_P3260667 OR2T34 Homo sapiens olfactory receptor, family 2, subfamily T, member 34 (OR2T34), mRNA [NM_001001821] 20.948 A_33_P3259440 GOLGA6A Homo sapiens golgin A6 family, member A (GOLGA6A), mRNA [NM_001038640] 20.628 A_33_P3417281 MUC4 Homo sapiens mucin 4, cell surface associated (MUC4), transcript variant 1, mRNA [NM_018406] 20.610 A_24_P239176 MUC4 Homo sapiens mucin 4, cell surface associated (MUC4), transcript variant 1, mRNA [NM_018406] 19.965 A_21_P0006968 SFTA1P Homo sapiens surfactant associated 1, pseudogene -
Ultrastructural Identification of Telocytes in the Muscularis of Chicken Ileum
EXPERIMENTAL AND THERAPEUTIC MEDICINE 10: 2325-2330, 2015 Ultrastructural identification of telocytes in the muscularis of chicken ileum PING YANG, YA'AN LIU, NISAR AHMED, SHAKEEB ULLAH, YI LIU and QIUSHENG CHEN Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China Received November 13, 2014; Accepted September 24, 2015 DOI: 10.3892/etm.2015.2841 Abstract. Telocytes (TCs) are a specialized type of intersti- waves, a basal electrical rhythm leading to contraction of the tial cells, characterized by a small cell body and long, thin smooth muscle (1‑3). In the last decade, ICCs were investigated processes, that have recently been identified in various cavitary from a number of aspects, including ultrastructure, immuno- and non‑cavitary organs of humans and laboratory mammals. reactivity, electrophysiology and pathology (4‑6). In a 2008 Chickens present significant economical and scientific nota- study (7), the intestinal wall cell population was re‑examined; bility; however, ultrastructural identification of TCs remains consequently, a novel cell type was observed by transmission unclear in birds. The aim of the present study was to describe electron microscopy (TEM) and immunohistochemistry. This electron microscopic evidence for the presence of TCs in novel type of interstitial cell, previously known as interstitial the chicken gut. The ileum of healthy adult broiler chickens Cajal-like cells (ICLCs), are now established to be telocytes (n=10) was studied by transmission electron microscopy. TCs (TCs) (8). Characteristics of TCs include long, projected are characterized by several, long (tens to hundreds of µm) prolongations termed telopodes (Tps) measuring tens to prolongations called telopodes (Tps). -
Identification and Characterization of Telocytes in the Uterus of the Oviduct
J. Cell. Mol. Med. Vol 18, No 12, 2014 pp. 2385-2392 Identification and characterization of telocytes in the uterus of the oviduct in the Chinese soft-shelled turtle, Pelodiscus sinensis: TEM evidence Shakeeb Ullah #, Ping Yang #, Linli Zhang, Qian Zhang, Yi Liu, Wei Chen, Yasir Waqas, Yuan Le, Bing Chen, Qiusheng Chen * Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China Received: April 12, 2014; Accepted: July 16, 2014 Abstract Telocytes (Tcs) are cells with telopodes (Tps), which are very long cellular extensions with alternating thin segments (podomers) and dilated bead-like thick regions known as podoms. Tcs are a distinct category of interstitial cells and have been identified in many mammalian organs including heart, lung and kidney. The present study investigates the existence, ultrastructure, distribution and contacts of Tcs with surrounding cells in the uterus (shell gland) of the oviduct of the Chinese soft-shelled turtle, Pelodiscus sinensis. Samples from the uterine segment of the oviduct were examined by transmission electron microscopy. Tcs were mainly located in the lamina propria beneath the simple columnar epithelium of the uterus and were situated close to nerve endings, capillaries, collagen fibres and secretory glands. The complete morphology of Tcs and Tps was clearly observed and our data confirmed the existence of Tcs in the uterus of the Chinese soft-shelled turtle Pelodiscus sinensis. Our results suggest these cells contribute to the function of the secretory glands and contraction of the uterus. Keywords: telocytes uterus Chinese soft-shelled turtle (Pelodiscus sinensis) ultrastructure Introduction Telocytes (TCs) are a novel type of interstitial (stromal) cell that have blast-like cells [3]. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors
fncel-11-00003 January 20, 2017 Time: 14:24 # 1 CORE Metadata, citation and similar papers at core.ac.uk Provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 24 January 2017 doi: 10.3389/fncel.2017.00003 Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors Nikolina Jovancevic1*, Kirsten A. Wunderlich2, Claudia Haering1, Caroline Flegel1, Désirée Maßberg1, Markus Weinrich1, Lea Weber1, Lars Tebbe2, Anselm Kampik3, Günter Gisselmann1, Uwe Wolfrum2, Hanns Hatt1† and Lian Gelis1† 1 Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany, 2 Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz, Mainz, Germany, 3 Department of Ophthalmology, Ludwig Maximilian University of Munich, Munich, Germany Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a Edited by: stage for subsequent functional analyses. RNA-Sequencing datasets of three individual Hansen Wang, University of Toronto, Canada neural retinae were generated using Next-generation sequencing and were compared Reviewed by: to previously published but reanalyzed datasets of the peripheral and the macular Ewald Grosse-Wilde, human retina and to reference tissues. The protein localization of several ORs was Max Planck Institute for Chemical Ecology (MPG), Germany investigated by immunohistochemistry. The transcriptome analyses detected an average Takaaki Sato, of 14 OR transcripts in the neural retina, of which OR6B3 is one of the most highly National Institute of Advanced expressed ORs. -
WO 2019/068007 Al Figure 2
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/068007 Al 04 April 2019 (04.04.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and C12N 15/10 (2006.01) C07K 16/28 (2006.01) (71) Applicants: GROSS, Gideon [EVIL]; IE-1-5 Address C12N 5/10 (2006.0 1) C12Q 1/6809 (20 18.0 1) M.P. Korazim, 1292200 Moshav Almagor (IL). GIBSON, C07K 14/705 (2006.01) A61P 35/00 (2006.01) Will [US/US]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., C07K 14/725 (2006.01) P.O. Box 4044, 7403635 Ness Ziona (TL). DAHARY, Dvir [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (21) International Application Number: Box 4044, 7403635 Ness Ziona (IL). BEIMAN, Merav PCT/US2018/053583 [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (22) International Filing Date: Box 4044, 7403635 Ness Ziona (E.). 28 September 2018 (28.09.2018) (74) Agent: MACDOUGALL, Christina, A. et al; Morgan, (25) Filing Language: English Lewis & Bockius LLP, One Market, Spear Tower, SanFran- cisco, CA 94105 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/564,454 28 September 2017 (28.09.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/649,429 28 March 2018 (28.03.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: IMMP ACT-BIO LTD. -
Evaluating Recovery Potential of the Northern White Rhinoceros from Cryopreserved Somatic Cells
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Research Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells Tate Tunstall,1 Richard Kock,2 Jiri Vahala,3 Mark Diekhans,4 Ian Fiddes,4 Joel Armstrong,4 Benedict Paten,4 Oliver A. Ryder,1,5 and Cynthia C. Steiner1,5 1San Diego Zoo Institute for Conservation Research, Escondido, California 92027, USA; 2Royal Veterinary College, University of London, London NW1 0TU, United Kingdom; 3Dvur Krlov Zoo, Dvr Krlov nad Labem 544 01, Czech Republic; 4Jack Baskin School of Engineering, University California Santa Cruz, Santa Cruz, California 95064, USA The critically endangered northern white rhinoceros is believed to be extinct in the wild, with the recent death of the last male leaving only two remaining individuals in captivity. Its extinction would appear inevitable, but the development of advanced cell and reproductive technologies such as cloning by nuclear transfer and the artificial production of gametes via stem cells differentiation offer a second chance for its survival. In this work, we analyzed genome-wide levels of genetic diversity, inbreeding, population history, and demography of the white rhinoceros sequenced from cryopreserved somatic cells, with the goal of informing how genetically valuable individuals could be used in future efforts toward the genetic res- cue of the northern white rhinoceros. We present the first sequenced genomes of the northern white rhinoceros, which show relatively high levels of heterozygosity and an average genetic divergence of 0.1% compared with the southern sub- species. The two white rhinoceros subspecies appear to be closely related, with low genetic admixture and a divergent time <80,000 yr ago. -
Genetic and Genomics Laboratory Tools and Approaches
Genetic and Genomics Laboratory Tools and Approaches Meredith Yeager, PhD Cancer Genomics Research Laboratory Division of Cancer Epidemiology and Genetics [email protected] DCEG Radiation Epidemiology and Dosimetry Course 2019 www.dceg.cancer.gov/RadEpiCourse (Recent) history of genetics 2 Sequencing of the Human Genome Science 291, 1304-1351 (2001) 3 The Human Genome – 2019 • ~3.3 billion bases (A, C, G, T) • ~20,000 protein-coding genes, many non-coding RNAs (~2% of the genome) • Annotation ongoing – the initial sequencing in 2001 is still being refined, assembled and annotated, even now – hg38 • Variation (polymorphism) present within humans – Population-specific – Cosmopolitan 4 Types of polymorphisms . Single nucleotide polymorphisms (SNPs) . Common SNPs are defined as > 5% in at least one population . Abundant in genome (~50 million and counting) ATGGAACGA(G/C)AGGATA(T/A)TACGCACTATGAAG(C/A)CGGTGAGAGG . Repeats of DNA (long, short, complex, simple), insertions/deletions . A small fraction of SNPs and other types of variation are very or slightly deleterious and may contribute by themselves or with other genetic or environmental factors to a phenotype or disease 5 Different mutation rates at the nucleotide level Mutation type Mutation rate (per generation) Transition on a CpG 1.6X10-7 Transversion on a CpG 4.4X10-8 Transition: purine to purine Transition out of CpG 1.2X10-8 Transversion: purine to pyrimidine Transversion out of CpG 5.5X10-9 Substitution (average) 2.3X10-8 A and G are purines Insertion/deletion (average) 2.3X10-9 C and T are pyrimidines Mutation rate (average) 2.4X10-8 . Size of haploid genome : 3.3X109 nucleotides .