Discovery of 2 Distinctive Lineages of Lymphocytes, T Cells and B Cells

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of 2 Distinctive Lineages of Lymphocytes, T Cells and B Cells Opinion VIEWPOINT Discovery of 2 Distinctive Lineages of Lymphocytes, T Cells and B Cells, as the Basis of the Adaptive Immune System and Immunologic Function 2019 Albert Lasker Basic Medical Research Award Max Dale Cooper, MD The 2019 Albert Lasker Basic Medical Research Award has such as wasting, thought to be the result of infection by Emory University been presented to Max Dale Cooper and Jacques F.A. P.Miller organisms present in the environment, notably mouse School of Medicine, for discovery of the 2 distinct classes of lymphocytes, B and hepatitis virus. They showed a marked deficiency of lym- Atlanta, Georgia. T cells, a monumental achievement that provided the orga- phocytes both in the circulation and lymphoid tissues. nizing principle of the adaptive immune system and launched Their antibody responses to certain antigens were di- Jacques F. A. P.Miller, the course of modern immunology. MD, PhD minished; skin grafts from foreign strains of mice, and The Walter and Eliza even from rats, were not rejected.1,2 Germ-free mice Hall Institute of Medical To survive and resist invasion by pathogens, all living raised in a sterile environment did not develop any signs Research, Parkville, organisms have evolved mechanisms of defense. of ill health after neonatal thymectomy but still showed Victoria, Australia. In a general way, a distinction can be made between defects in immune responsiveness. constitutive mechanisms, which do not depend on the Lethally irradiated mice that were thymectomized introduction of something new into the body to as adults can be rescued by injection of bone marrow Viewpoint induce their development, and adaptive mechanisms, cells but are still immunodeficient. Even nonlethal pages 1249 and 1251 which require the entry of some foreign agent or anti- whole-body irradiation can destroy lymphocytes along gen to stimulate their formation. In both vertebrates with members of rapidly dividing hematopoietic and and invertebrates, constitutive mechanisms are non- epithelial populations of cells, and this explains why specific and often associated with cells that perform mice that were thymectomized as adults and subse- the function of phagocytosis. Adaptive mechanisms quently irradiated became as immunoincompetent as are specific and exemplified by acquired immunity, mice that were neonatally thymectomized.3 The eluci- which is a function of lymphocytes. Although these dation of these irradiation effects would also lead to cells circulate in blood and lymph, they are concen- the design of experimental models that allowed dissec- trated in lymphoid organs, such as the thymus, bone tion of the immunological roles of different cell types. marrow, spleen, and lymph nodes, and gut-associated Implanting thymus tissue in neonatally thymecto- structures, such as the tonsils, adenoids, Peyer’s mized mice enabled them to perform immune func- patches, and appendix. tions as efficiently as normal mice.2 When the thymus The thymus differs from other lymphoid organs graft was taken from a foreign strain, the thymecto- both structurally and functionally. It is relatively large in mized recipients were specifically immunologically tol- infants, reaches its maximum size of about 40 g around erantofthehistocompatibilityantigensofthedonor,sug- 3 years of age, and then gradually regresses to become gesting that self-tolerance is, at least in part, a function little more than a vestigial structure in old age. For cen- of the thymus.2 turies, it had remained an enigmatic organ, and conten- When placed in culture, an epithelial thymus from tions and controversies abounded regarding its embry- a mouse embryo becomes filled with lymphocytes ology, anatomy, physiology, pathology, and clinical over the next few days. Related studies in mature significance. As late as 1960, immunologists did not mice showed that circulating lymphocytes labeled consider that the thymus or its lymphocytes had any with a DNA marker often leave the bloodstream to significant role in immunity for several reasons. First, enter lymphoid tissues, like the spleen and lymph the cytological hallmarks of an immune response, such nodes, before subsequently migrating via lymphatic as plasma cell development and germinal center forma- channels to reenter the circulation. Some of the tion, were never seen in the thymus of normal immu- labeled small lymphocytes were noted to become nized animals. Second, thymus lymphocytes, unlike plasma cells. These findings suggested that thymus- cells from other lymphoid tissues, could not initiate or derived lymphocytes circulate throughout the body transfer an immune response to antigen in appropriate and can respond to stimulation in peripheral lymphoid Corresponding recipients. Third, animals thymectomized in adult life tissues to differentiate into the plasma cells that pro- Author: Max Dale Cooper, MD, produced both antibody-independent “cellular” duce antibodies. Emory University immune responses and antibody-dependent “humoral” This idea of a single lymphocyte lineage was chal- School of Medicine, immune responses as efficiently as intact animals. lenged, however, by observations in other vertebrate 1462 Clifton Rd, In contrast to mice that were thymectomized in species. One important discovery, which was made DSB 403C, Atlanta, GA 30322 (mdcoope@ adult life, mice that were neonatally thymectomized de- by poultry scientists in 1956, went unnoticed by most emory.edu). veloped, some weeks after weaning, signs of ill health, contemporary immunologists. In addition to having jama.com (Reprinted) JAMA October 1, 2019 Volume 322, Number 13 1247 © 2019 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 Opinion Viewpoint a thymus, birds have a lymphoid organ called the bursa of Fabricius, irradiatedbursalymphocytesrestoredgerminalcenters,plasmacells, sometimes nicknamed the “cloacal thymus” because of its location and immunoglobulin production.6 above the cloaca and its histological appearance. A postulated These results were indicative of 2 distinctive lineages of lym- endocrine role of the bursa was not supported by the normal phocytes, a thymus-dependent lineage of lymphocytes that was growth and sexual development of chicks following early bursec- primarily responsible for cellular immunity and a bursa-dependent tomy, but severe impairment of antibody responses was fortu- lineage of cells that was responsible for antibody production and itously discovered in these bursa-less birds. Testosterone treat- humoral immunity. Contemporaneous studies defining hematopoi- ment of chick embryos also inhibited bursa development and etic stem cells suggested these could be the precursors of both antibody production, and this “chemical bursectomy” sometimes lymphocyte lineages. Validation of this compartmentalized model impaired thymus development as well. Subsequent studies sug- of lymphocyte development in humans was provided by the gested the avian thymus and bursa could differentially influence plasma cell development and antibody production observed in cellular and humoral immune functions, but the functional effects congenitally athymic patients. of early thymectomy were inconsistent in different chicken strains Experiments in which the techniques of thymectomy, irradia- and difficult to correlate with related studies in mammals. tion, and inoculation of genetically marked cells from the lymph and Patients with familial immunodeficiency diseases offered ad- from bone marrow were combined indicated that thymus-derived ditional insight into immune system development. Boys who had re- cells (now called T cells) were not antibody-producing cells, but current bacterial infections because of congenital agammaglobu- helped other lymphocytes derived from bone marrow (now called linemia were noted to be deficient in germinal centers and plasma B cells) to produce antibody.7 Collectively, these findings estab- cells, although their thymus and lymphocyte levels were normal, and lished that the adaptive immune system is based on 2 universes of they could control most virus infections. Conversely, boys with lymphocytes, one T-celldependent and responsible for cellular im- Wiskott-Aldrich syndrome (frequent ear infections, eczema, and munity,as in graft rejection and in the control of virus infections, the platelet deficiency) were found to have an atrophic thymus, severe other B-cell dependent and involved in humoral immunity by means lymphocyte deficiency, and inability to survive herpes simplex vi- of antibody secretion. rus infection, despite having an abundance of plasma cells and their A search for the origin of adaptive immunity has shown that immunoglobulin products. the basic genetic program for the T and B lineages of lymphocytes These findings, which were not consistent with the single lym- is conserved in both jawed and jawless vertebrates and thus phocyte lineage model, led to a revisit of the avian model, but this already existed in a common vertebrate ancestor approximately time with near-lethal whole-body irradiation in addition to thymus 500 million years ago.8 For antigen recognition, however, lympho- or bursa removal at hatching in order to destroy immune cells that cytes in the jawless vertebrates (lampreys and hagfish) use highly might have developed earlier. When the birds that had been thy- variable lymphocyte receptors encoded by leucine-rich-repeat mectomized and irradiated were examined after recovery from ir- gene segments instead of immunoglobulin gene segments.
Recommended publications
  • IFM Innate Immunity Infographic
    UNDERSTANDING INNATE IMMUNITY INTRODUCTION The immune system is comprised of two arms that work together to protect the body – the innate and adaptive immune systems. INNATE ADAPTIVE γδ T Cell Dendritic B Cell Cell Macrophage Antibodies Natural Killer Lymphocites Neutrophil T Cell CD4+ CD8+ T Cell T Cell TIME 6 hours 12 hours 1 week INNATE IMMUNITY ADAPTIVE IMMUNITY Innate immunity is the body’s first The adaptive, or acquired, immune line of immunological response system is activated when the innate and reacts quickly to anything that immune system is not able to fully should not be present. address a threat, but responses are slow, taking up to a week to fully respond. Pathogen evades the innate Dendritic immune system T Cell Cell Through antigen Pathogen presentation, the dendritic cell informs T cells of the pathogen, which informs Macrophage B cells B Cell B cells create antibodies against the pathogen Macrophages engulf and destroy Antibodies label invading pathogens pathogens for destruction Scientists estimate innate immunity comprises approximately: The adaptive immune system develops of the immune memory of pathogen exposures, so that 80% system B and T cells can respond quickly to eliminate repeat invaders. IMMUNE SYSTEM AND DISEASE If the immune system consistently under-responds or over-responds, serious diseases can result. CANCER INFLAMMATION Innate system is TOO ACTIVE Innate system NOT ACTIVE ENOUGH Cancers grow and spread when tumor Certain diseases trigger the innate cells evade detection by the immune immune system to unnecessarily system. The innate immune system is respond and cause excessive inflammation. responsible for detecting cancer cells and This type of chronic inflammation is signaling to the adaptive immune system associated with autoimmune and for the destruction of the cancer cells.
    [Show full text]
  • Innate Immunity in the Lung: How Epithelial Cells Fight Against
    Copyright #ERSJournals Ltd 2004 EurRespir J 2004;23: 327– 333 EuropeanRespiratory Journal DOI: 10.1183/09031936.03.00098803 ISSN0903-1936 Printedin UK –allrights reserved REVIEW Innateimmunity in the lung: how epithelialcells ght against respiratorypathogens R. Bals*,P.S. Hiemstra # Innateimmunity in the lung: how epithelial cells ® ghtagainst respiratory pathogens *Deptof Internal Medicine, Division of R Bals, P S Hiemstra #ERS JournalsLtd 2004 PulmonaryMedicine, Hospital of the Uni- versityof Marburg, Philipps-University, ABSTRACT: Thehuman lung is exposed to a largenumber of airborne pathogens as a # resultof the daily inhalation of 10,000 litres of air Theobservation that respiratory Marburg,Germany; Deptof Pulmonology, LeidenUniversity Medical Center, Leiden, infectionsare nevertheless rare is testimony to the presence of anef®cient host defence TheNetherlands systemat the mucosal surface of the lung Theairway epithelium is strategically positioned at the interface with the Correspondence:P S Hiemstra,Dept of environment,and thus plays a keyrole in this host defence system Recognition Pulmonology,Leiden University Medical systemsemployed by airwayepithelial cells to respond to microbialexposure include the Center, P O Box9600, 2300 RC Leiden, The actionof the toll-like receptors Netherlands Theairway epithelium responds to such exposure by increasing its production of Fax:31 715266927 mediatorssuch as cytokines, chemokines and antimicrobial peptides Recent® ndings E-mail: p s hiemstra@lumc nl indicatethe importance of these peptides
    [Show full text]
  • Qnas with Max D. Cooper and Jacques F. A. P. Miller
    QNAS QnAswithMaxD.CooperandJacquesF.A.P.Miller QNAS Brian Doctrow, Science Writer Anyone who has ever contracted chicken pox can thank the adaptive immune system for future pro- tection against the disease. It is also thanks to this system that vaccines prevent diseases. The adaptive immune system provides organisms with a memory of past infections, enabling the body to quickly kill returning infections before they can do significant damage. Immunologists Jacques F. A. P. Miller and Max D. Cooper determined that adaptive immunity requires 2 distinct cell types that perform comple- mentary functions. Miller’s findings, published in the early 1960s in Lancet (1) and Proceedings of the Royal Society (2), showed that the ability to distinguish one’s own cells from foreign cells, a key feature of the adap- tive immune system, depends on lymphocytes, now known as T cells, matured in an organ called the thy- mus. Subsequently, Cooper reported in Nature (3) that Max Dale Cooper. Image courtesy of Georgia Research antibody production depends on a separate set of Alliance/Billy Howard. lymphocytes, dubbed B cells. The division of labor between T and B cells is a fundamental organizing principle of the adaptive immune system, the discov- did cancer research. I started working on leukemia and ery of which laid the groundwork for modern immu- this gave me an interest in lymphocytes. nology and made possible many subsequent medical advances, including monoclonal antibody produc- Cooper: I became interested through patients that I tion, vaccine development, and checkpoint inhibi- was taking care of: Children that had deficient immune tion therapies for cancer.
    [Show full text]
  • The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma
    biology Review The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma Megan R. Gillespie 1, Vikrant Rai 2 , Swati Agrawal 3 and Kalyana C. Nandipati 3,* 1 School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; [email protected] 2 Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; [email protected] 3 Department of Surgery, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-402-280-5292 Simple Summary: Esophageal adenocarcinoma has a poor 5-year survival rate and is among the highest mortality cancers. Changes in the esophageal microbiome have been associated with cancer pathogenesis; however, the molecular mechanism remains obscure. This review article critically analyzes the molecular mechanisms through which microbiota may mediate the development and progression of esophageal adenocarcinoma and its precursors-gastroesophageal reflux disease and Barrett’s esophagus. It summarizes changes in esophageal microbiome composition in normal and pathologic states and subsequently discusses the role of altered microbiota in disease progression. The potential role of esophageal microbiota in protecting against the development of esophageal adenocarcinoma is also discussed. By doing so, this article highlights specific directions for future research developing microbiome-mediated therapeutics for esophageal adenocarcinoma. Abstract: Esophageal adenocarcinoma (EAC) is associated with poor overall five-year survival. The Citation: Gillespie, M.R.; Rai, V.; incidence of esophageal cancer is on the rise, especially in Western societies, and the pathophysiologic Agrawal, S.; Nandipati, K.C. The Role of Microbiota in the Pathogenesis of mechanisms by which EAC develops are of extreme interest.
    [Show full text]
  • Human Autoimmunity and Associated Diseases
    Human Autoimmunity and Associated Diseases Human Autoimmunity and Associated Diseases Edited by Kenan Demir and Selim Görgün Human Autoimmunity and Associated Diseases Edited by Kenan Demir and Selim Görgün This book first published 2021 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2021 by Kenan Demir and Selim Görgün and contributors All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-6910-1 ISBN (13): 978-1-5275-6910-2 TABLE OF CONTENTS Preface ...................................................................................................... viii Chapter One ................................................................................................. 1 Introduction to the Immune System Kemal Bilgin Chapter Two .............................................................................................. 10 Immune System Embryology Rümeysa Göç Chapter Three ............................................................................................. 18 Immune System Histology Filiz Yılmaz Chapter Four .............................................................................................. 36 Tolerance Mechanisms and Autoimmunity
    [Show full text]
  • Immunology 101
    Immunology 101 Justin Kline, M.D. Assistant Professor of Medicine Section of Hematology/Oncology Committee on Immunology University of Chicago Medicine Disclosures • I served as a consultant on Advisory Boards for Merck and Seattle Genetics. • I will discuss non-FDA-approved therapies for cancer 2 Outline • Innate and adaptive immune systems – brief intro • How immune responses against cancer are generated • Cancer antigens in the era of cancer exome sequencing • Dendritic cells • T cells • Cancer immune evasion • Cancer immunotherapies – brief intro 3 The immune system • Evolved to provide protection against invasive pathogens • Consists of a variety of cells and proteins whose purpose is to generate immune responses against micro-organisms • The immune system is “educated” to attack foreign invaders, but at the same time, leave healthy, self-tissues unharmed • The immune system can sometimes recognize and kill cancer cells • 2 main branches • Innate immune system – Initial responders • Adaptive immune system – Tailored attack 4 The immune system – a division of labor Innate immune system • Initial recognition of non-self (i.e. infection, cancer) • Comprised of cells (granulocytes, monocytes, dendritic cells and NK cells) and proteins (complement) • Recognizes non-self via receptors that “see” microbial structures (cell wall components, DNA, RNA) • Pattern recognition receptors (PRRs) • Necessary for priming adaptive immune responses 5 The immune system – a division of labor Adaptive immune system • Provides nearly unlimited diversity of receptors to protect the host from infection • B cells and T cells • Have unique receptors generated during development • B cells produce antibodies which help fight infection • T cells patrol for infected or cancerous cells • Recognize “foreign” or abnormal proteins on the cell surface • 100,000,000 unique T cells are present in all of us • Retains “memory” against infections and in some cases, cancer.
    [Show full text]
  • Mind, Brain, Immunity
    Mind, Brain, Immunity st Ann Fink, Ph.D. Bioscience in the 21 Fri 12/07/2018 Century Today’s Plan 1. Immunity: a review 2. Central nervous system (CNS) structure 3. Cellular, molecular and structural features of CNS and Immune function 4. The lymphatic system and beyond 5. Health relevance of mind-brain-immunity connections 2 What happens when foreign tissue is grafted into the body? Into a leg? Into the brain? Into the leg and then into the brain? Is the brain immune privileged? 3 Innate and adaptive immunity Less specific but faster: mediates More specific immunity: “learns” inflammation, can be “called” by about pathogens (bacteria, adaptive immune system. viruses, etc.) through antibodies. 4 Lymph nodes: an structural network mediating immunity and fluid / molecular exchange in tissues 5 The central, peripheral, and autonomic nervous system 6 https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024762/ Meninges cover the central nervous system 3 Layers: 1. Dura mater (outer) 2. Arachnoid: (middle) 3. Pia mater (inner) Saboori & Sadegh (2015). Anatomy research international, 2015, 279814. 7 And cerebrospinal fluid bathes the brain. By © Nevit Dilmen, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=93 Jessen et al. Neurochem Res. 2015, 40(12): 2583–2599. 88427 8 The blood-brain barrier Astrocytes form a gateway between the bloodstream and the brain. Jessen et al. Neurochem Res. 2015, 40(12): 2583–2599. 9 Based on this information, how could the immune system and central nervous system interact? Your answers here: 10 Immune – CNS interactions Areas of overlap? By Volker Brinkmann - (November 2005).
    [Show full text]
  • Visualizing the Dynamics of Immune Surveillance in Brain Tumors by Intravital Multiphoton Microscopy
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2017 VISUALIZING THE DYNAMICS OF IMMUNE SURVEILLANCE IN BRAIN TUMORS BY INTRAVITAL MULTIPHOTON MICROSCOPY Felix Nwajei Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Medicine and Health Sciences Commons Recommended Citation Nwajei, Felix, "VISUALIZING THE DYNAMICS OF IMMUNE SURVEILLANCE IN BRAIN TUMORS BY INTRAVITAL MULTIPHOTON MICROSCOPY" (2017). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 735. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/735 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. Visualizing the dynamics of immune surveillance in brain tumors by intravital multiphoton microscopy by Felix I. Nwajei, MD APPROVED: ______________________________
    [Show full text]
  • The Role of Intestinal Microbiota and the Immune System
    European Review for Medical and Pharmacological Sciences 2013; 17: 323-333 The role of intestinal microbiota and the immune system F. PURCHIARONI, A. TORTORA, M. GABRIELLI, F. BERTUCCI, G. GIGANTE, G. IANIRO, V. OJETTI, E. SCARPELLINI, A. GASBARRINI Department of Internal Medicine, School of Medicine, Catholic University of the Sacred Heart, Gemelli Hospital, Rome, Italy Abstract. – BACKGROUND: The human gut Introduction is an ecosystem consisting of a great number of commensal bacteria living in symbiosis with the The intestinal microbiota is composed of 1013-14 host. Several data confirm that gut microbiota is engaged in a dynamic interaction with the in- microorganisms (Figure 1), with at least 100 testinal innate and adaptive immune system, af- times as many genes as our genome, the micro- fecting different aspects of its development and biome. Its composition is individual-specific, function. ranges among individuals and also within the AIM: To review the immunological functions same individual during life. Many factors can in- of gut microbiota and improve knowledge of its fluence the gut flora composition, as diet, age, therapeutic implications for several intestinal medications, illness, stress and lifestyle. The gas- and extra-intestinal diseases associated to dys- regulation of the immune system. trointestinal (GI) tract contains both “friendly” METHODS: Significant articles were identified bugs, such as Gram-positive Lactobacilli and Bi- by literature search and selected based on con- fidobacteria dominate (> 85% of total bacteria), tent, including atopic diseases, inflammatory and potential pathogenic bacteria, coexisting in a bowel diseases and treatment of these condi- complex symbiosis. Several evidences show that tions with probiotics.
    [Show full text]
  • I M M U N O L O G Y Core Notes
    II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111
    [Show full text]
  • The Known Unknowns of the Immune Response to Coccidioides
    Journal of Fungi Review The Known Unknowns of the Immune Response to Coccidioides Rebecca A. Ward 1 , George R. Thompson 3rd 2 , Alexandra-Chloé Villani 3,4,5, Bo Li 3,4,5, Michael K. Mansour 1,5, Marcel Wuethrich 6, Jenny M. Tam 5,7, Bruce S. Klein 6,8,9 and Jatin M. Vyas 1,5,* 1 Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; [email protected] (R.A.W.); [email protected] (M.K.M.) 2 Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 96817, USA; [email protected] 3 Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; [email protected] (A.-C.V.); [email protected] (B.L.) 4 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 5 Harvard Medical School, Boston, MA 02115, USA; [email protected] 6 Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] (M.W.); [email protected] (B.S.K.) 7 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA 8 Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA 9 Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA * Correspondence: [email protected]; Tel.: +1-617-643-6444 Abstract: Coccidioidomycosis, otherwise known as Valley Fever, is caused by the dimorphic fungi Coccidioides immitis and C.
    [Show full text]
  • Thymus the Site for Development of Cellular Immunity
    GENERAL ARTICLE Thymus The Site for Development of Cellular Immunity Shamik Majumdar, Sanmoy Pathak and Dipankar Nandi The immune system protects our bodies against infections and cancers. This review introduce readers to the thymus – a primary lymphoid organ – which is the site of develop- ment and maturation of functional T lymphocytes. Progen- itor stem cells arise from the bone marrow and undergo se- quential development in the thymus where non-self-reactive 12 T cells are selected. Subsequently, post selection and matura- 1 Shamik and 2 Sanmoy are tion, the mature T cells exit the thymus as na¨ıve T cells into research scholars studying T the peripheral lymph nodes. Studies on the thymus are likely cell immunity. to enhance our understanding of T cell development and re- Dipankar Nandi is a duce disease burdens by improving the cellular immune re- Professor in the Biochemistry sponse. Department of the Indian Institute of Science, Bangalore. 1. Introduction The immune system is one of the most complex and evolution- arily developed systems in our body. It functions to eliminate foreign components and pathogens that invade our body through- out life and thus maintains good health. Diverse cells make up the immune system and act synergistically to fight infections. There are two chief arms of the immune system – innate and adap- tive (Box 1). Innate means inborn and refers to the components of the immune system present before the pathogen has invaded the body. This system includes physical, chemical, and cellu- lar components. The physical components comprise the skin and mucosal linings. The chemical barriers include acids present in the stomach and antimicrobial molecules like defensins and cy- Keywords tokines such as interferons.
    [Show full text]