The Magazine of the Marine Biological Community Sawfish: the Disappearing River Monsters

Total Page:16

File Type:pdf, Size:1020Kb

The Magazine of the Marine Biological Community Sawfish: the Disappearing River Monsters Issue 6. April 2016 ISSN 2052-5273 The Marine The magazine of the Biologistmarine biological community Sawfish: the disappearing river monsters Plus Too hot in paradise! BIO The importance of ‘fish carbon’ INE LO R G A IC M A E L H Climate change and marine vertebrates T A N S O S I Dramatic seascape shifts in the twilight zone O C I A T Est. 1884 Incorporated by Royal Charter Great Barrier Reef polychaete diversity | Farming the bluefin Mysterious mycoplankton | Capturing our Coast Editorial Issue 6. April 2016 In April 2015, a postcard was water CO vent looks at eco-physical Contents 2 returned to The Marine Biological adaptations among seabed organisms Association that had been adrift in the whose life histories mean they cannot North Sea for over 108 years. Last move away from vents, giving some month we learned that the postcard is a indication of how twilight zone new world record for a message in a habitats may change as the seas move 02 Editorial Editorial Office bottle. You can find out more on toward acidity. page 4. As well as being among the largest 04 In brief Editor Guy Baker The Internet has made it so much fish in the sea, sawfish have special [email protected] easier to collect and check data, and to significance in many traditional Science letters +44 (0)1752 633244 establish and maintain standards, and cultures. We find out why these ‘river 06 Worms, glorious worms Pat Hutchings and Elena Kupriyanova there are now many sophisticated and monsters’ are in decline and why their Executive editor Matt Frost engaging ways for the wider public to status as totemic animals is important 08 Molecular insights into plankton diversity Michael Cunliffe [email protected] get involved in scientific research. In in developing conservation strategies. +44 (0)1752 633334 09 Drastic seascape shifts in the twilight zone Cristina Linares this edition we learn about a new We turn from a species in global Editorial Board Guy Baker, citizen science project called CoCoast decline to a discipline suffering the 11 Climate change and marine vertebrates Elvira Poloczanska Kelvin Boot, Matt Frost, Paul which harnesses the enthusiasm of same fate. Taxonomy is vital for Rose, Mike Thorndyke. 06 beach-goers in England, and provides documenting, monitoring and Environment and conservation Membership Alex Street data to inform the Marine Conserva- conserving diversity in a changing 14 Searching for river monsters Ruth H. Leeney [email protected] tion Zone process. world. Pat Hutchings of the Australian +44 (0)1752 633253 Globally, February 2016 was the Museum Research Institute gives a 19 Farming the bluefin Bonnie Waycott www.mba.ac.uk/membership warmest month in recorded history timely account of why the specialist 20 Fish poo and the climate challenge Angela Martin Correspondence and the ramifications of climate change work to provide comprehensive ripple through these pages, from an inventories of invertebrates—in this 24 Rebuilding the Caribbean, one sea urchin at a time Max The Marine Biological Association examination of the role of larger case the surprisingly photogenic worms Bodmer Citadel Hill, Plymouth, PL1 2PB, UK marine animals in carbon cycling (did of the Great Barrier Reef—is so The Marine Biologist is published by 26 Too hot in paradise! Michael White the Marine Biological Association, you know that blue whales in the important. Registered Charity No. 1155893 Southern Ocean transport an estimated It would be hard to find a more 28 Filling in the gaps – turtle conservation Alistair Green ISSN number: 2052-5273 88 tons of nitrogen annually to tropical neglected group of marine organisms, latitudes?), to a new study that assesses but MBA Research Fellow Michael Sharing marine science Submissions 14 the biological responses of vertebrates Cunliffe reveals how marine fungi are 30 Capturing our Coast Jacqui Pocklington and Jane Delany We welcome submissions of original to climate change. We feel the pain of beginning to give up their secrets. and relevant material, letters and 31 Reviews responses to published articles. For sea urchins in the Caribbean and find The Marine Biologistis becoming out why these lowly grazers are so vital more widely recognized for the quality guidance, please see the magazine 33 Bursary winner Giulia Cardoso website at in efforts to restore coral reefs. On a of its content. www.mba.ac.uk/marinebiologist remote atoll in the Cook Islands people Most of the 33 Obituary: Bill Ballantyne Keith Hiscock or contact the Editor. are struggling with the immediate articles in the Mezzotints of exotic marine organisms Debby Mason Disclaimer: Views expressed effects of the current El Niño event, a magazine are 34 in The Marine Biologist are phenomenon that could double in written by those of the authors and do not necessarily represent those of the frequency as a result of climate MBA members Marine Biological Association. warming1. which I think Copyright statement. Anyone wishing Warming is not the only challenge bodes well for to reproduce material published in facing marine life; rising atmospheric the future of the The Marine Biologist must contact 28 CO2 is driving changes in seawater Association. the Marine Biological Association. chemistry. The first study of a deep- 1 http://www.nature.com/nclimate/journal/v4/ n2/full/nclimate2100.html Front cover: A Bijago Islander wearing a headdress topped with a carved representation of a sawfish rostrum, prepares to take part in a traditional ceremonial dance. Image: Ruth H. Leeney. Image credits: Top: Alexander Semenov Back cover: Coral bleaching showing on the toka (coral heads) in the lagoon of Tongareva www.mba.ac.uk Middle: Matthew McDavitt atoll, Cook Islands. See page 28 for the full story. Image: Michael White. Bottom: Michael White 02 The Marine Biologist | April 2016 April 2016 | The Marine Biologist 03 In brief In brief Fish expected to get dizzier, sooner Welcome to the plastisphere A new study predicts that intoxica- A paper in the Proceedings of the tion caused by high levels of CO2 in National Academy of Sciences of the seawater will affect fish and other marine United States of America (Aug 2015) esti- creatures by the middle of the century, mated that 90% of the world’s seabirds if CO2 emissions continue to rise. are likely to have plastic in their stomachs. High levels of atmospheric CO2 If we keep producing and leak- cause ‘hypercapnia’, a phenomenon ing plastic at current rates, the World causing effects such as disorienta- Economic Forum expects the ocean tion in fish, impairing their sense of will “contain 1 tonne of plastic for every direction and making them more 3 tonnes of fish by 2025, and by 2050, vulnerable to predators. more plastics than fish (by weight).” The University of New South Wales (UNSW) study, published in the journal The rise of the coccolithophores Nature, is the first global analysis of New research published in Science sug- the impact of rising CO2 emissions gests that a long-term, significant increase on dissolved CO2 levels in the world’s in coccolithophores—a major group of oceans. Using existing datasets of marine algae which surround themselves measured seawater CO2 concentrations with calcium carbonate plates—is a from surveys over the past 30 years, the result of increasing atmospheric CO2, Tagged bluefin tuna photographed off the Isle of Harris, the Outer Hebrides, UK. authors used a numerical model which a finding at odds with the expectation Image: Angus Campbell. worked out the natural monthly peaks and that calcifying microalgae will be nega- It’s official: message in a bottle is the world’s oldest troughs of dissolved CO2 concentrations tively affected by ocean acidification. Although not out of the realms of pos- some by 15 - 30% a decade depending on in surface waters across the globe. The The study used data from the Con- sibility, this had never been done before region and pollutant. They compared their A postcard returned to the Plymouth worker from Heiligenhaus, near Dus- outcome was a prediction of areas where tinuous Plankton Recorder survey to in Scotland. Since then, bluefin tuna have findings to US Environmental Protection Laboratory of the Marine Biological seldorf, discovered the bottle while on amplification of natural oscillations of show that between 1965 and 2010 been reported every year from around the Agency (EPA) guidelines and found that Association in April 2015 has been holiday on Amrum. As instructed (and CO2 levels will tip over the critical point the occurrence of coccolithophores UK and Ireland, including a large shoal present concentrations were at or below recognized by Guinness World Records as being unable to remove the cap) she for fish and other marine creatures to in the North Atlantic increased from in Mounts Bay, Cornwall, SW England the thresholds for occasional consump- the oldest message in a bottle ever found! broke the bottle and returned the postcard experience episodes of hypercapnia, around 2% to over 20%. To see which recorded by Duncan and Hannah Jones tion, with present levels of DDT being The bottle containing the postcard to G. P. Bidder. This caused quite a stir Levels of atmospheric CO2 above 650 factors best explained this increase, from Marine Discovery in August 2015. considerably below. These decreasing was released in the southern North Sea in the corridors of the MBA and attracted ppm are predicted to cause hypercapnia. These regular sightings off the UK and levels indicate that mitigation attempts like in 1906 as part of George Parker Bid- worldwide media attention. The MBA hon- Describing the results as “stagger- Ireland suggest bluefin may have recolo- the Stockholm Convention are working. der’s research into ocean currents, and oured the promise on the postcard and ing”, lead author Dr Ben McNeil, of nized highly productive northern latitudes However, they found that the data was picked up 108 years, 4 months, and sent Mrs Winkler a reward of one shilling.
Recommended publications
  • Sculpt a Sea Urchin
    Copyright © 2017 Dick Blick Art Materials All rights reserved 800-447-8192 DickBlick.com Sculpt a Sea Urchin Upcycled containers are used as molds in this easy and visually striking sea urchin sculpture (art + science) The shells of sea urchins are beautiful natural sculptures with incredible detail and symmetry. In times past, sea urchins were also called sea hedgehogs due to the spines of the animal that protrude through the outer shell or “test” of the creature. Sea urchins are globular animals that belong to the class Echinoidea, just like their cousins, the sand dollar. Around 950 species of echinoids live in the world’s oceans. The shell of the animal is often colored olive green, brown, purple, blue, and red, and usually measures 1–4” in diameter. Like other echinoderms, when sea urchins are babies, they illustrate bilateral symmetry, which means they have two identical halves. As they grow, however, they develop five-fold symmetry. The outer shells are mostly spherical, with five equally sized divisions that radiate out from the center. Some sea urchins, including sand dollars, can be more oval in shape, and usually, the upper portion of the shell is domed while the underside is flat. The “test” of the urchin protects its internal organs. It’s very rigid and made of fused plates of Materials calcium carbonate covered (required) Princeton Hake Brush, by thin dermis and epidermis Blick Pottery Plaster No.1, Size 1” (05415-1001); — just like our skin! Each of 8 lb (33536-1008); share share five across class to one bag across class apply watercolors the five areas consists of rows Plastic of plates that are covered in Blick Liquid Watercolors, Squeeze Bottles, round “tubercles.” These round 118 ml (00369-); share at Optional Materials 4 oz (04916-1003) areas are where the spine of least three colors across Utrecht Plastic Buckets class Paint Pipettes, package the animal is attached while it's with Lids, 128 oz (03332- of 25 (06972-1025) 1009) alive.
    [Show full text]
  • Table 21FBPUB - Poundage and Value of Landings by Port, FORT BRAGG Area During 2018 Date: 07/19/2019
    California Department of Fish and Wildlife Page: 1 Table 21FBPUB - Poundage And Value Of Landings By Port, FORT BRAGG Area During 2018 Date: 07/19/2019 Species Pounds Value FORT BRAGG Crab, Dungeness 1,455,938 $4,742,921 Sablefish 845,431 $1,292,065 Salmon, Chinook 121,637 $840,292 Sea urchin, red 199,598 $220,701 Sole, petrale 172,841 $209,635 Hagfish, unspecified 229,441 $193,768 Sole, Dover 370,978 $174,598 Rockfish, chilipepper 322,517 $149,747 Lingcod 103,654 $135,968 Thornyhead, shortspine 71,931 $125,290 Rockfish, bocaccio 210,762 $106,549 Tuna, albacore 22,837 $46,554 Rockfish, blackgill 68,405 $34,831 Thornyhead, longspine 124,275 $33,204 Rockfish, copper 6,935 $27,169 Rockfish, bank 44,549 $22,275 Cabezon 3,625 $16,629 Rockfish, group slope 27,550 $16,335 Rockfish, quillback 2,339 $13,460 Rockfish, darkblotched 26,721 $13,416 Prawn, spot 639 $10,856 Rockfish, canary 7,450 $10,498 Rockfish, vermilion 4,303 $9,291 Hagfish, Pacific 28,628 $8,588 Rockfish, yellowtail 4,325 $8,209 Rockfish, gopher 946 $7,052 Rockfish, China 930 $6,921 Sole, rex 20,676 $6,585 Rockfish, black-and-yellow 852 $6,515 Skate, longnose 26,252 $6,278 California Department of Fish and Wildlife Page: 2 Table 21FBPUB - Poundage And Value Of Landings By Port, FORT BRAGG Area During 2018 Date: 07/19/2019 Species Pounds Value FORT BRAGG Sea urchin, purple 2,550 $3,431 Sea cucumber, giant red 2,848 $2,848 Sole, English 10,470 $2,577 Greenling, kelp 365 $2,090 Halibut, California 264 $1,794 Crab, rock unspecified 299 $1,536 Rockfish, group shelf 1,148 $1,368 Rockfish,
    [Show full text]
  • Lobster Review
    Seafood Watch Seafood Report American lobster Homarus americanus (Image © Monterey Bay Aquarium) Northeast Region Final Report February 2, 2006 Matthew Elliott Independent Consultant Monterey Bay Aquarium American Lobster About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices,” “Good Alternatives,” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability. Seafood Watch® Fisheries Research Analysts also communicate regularly with ecologists, fisheries and aquaculture scientists, and members of industry and conservation organizations when evaluating fisheries and aquaculture practices.
    [Show full text]
  • ​Biomimicry Learning Activity
    Biomimicry Learning Activity ​ Grade Level: 5th grade and up. (Activity should be facilitated by an adult.) ​ ​ NGSS Cross-Cutting Concepts: Structure and Function; Patterns. ​ NGSS Practices: Designing Solutions, Communicating Information ​ Goal: Participants become comfortable with the concept of biomimicry by better understanding ​ the relationship between structure and function, both in nature and in the designed world. Resources: - Poster or large sheets of paper. - Markers/Pens/Pencils - Nature’s Secrets Cards (provided with the activity). - Whale and Dolphin Conservation Biomimicry video Vocabulary: Adaptation: a displayed behavior or structure of an organism that helps it become better suited ​ to survive. Biomimicry: A designed product or system that was inspired by the structure and function of a ​ particular organism’s adaptation. Function: the purpose or effect of something (in this case the structure). How or what it is used ​ for. Structure: the physical make-up of something. The way it looks, feels, or is arranged; its ​ observable features. Biomimicry Activity Section One: Watch WDC Biomimicry Video The participants and facilitator should watch the video for an introduction to the concept and key ​ ​ terms. Feel free to stop the video when necessary if participants have questions or need clarification. After the video and before moving to the next section, make sure participants feel more comfortable with the concept of Biomimicry. The facilitator can ask one or all of the following questions: 1. What did you feel was the most interesting example of biomimicry in the video? 2. In your own words, can you explain why companies are looking at humpback whales’ pectoral fins in the field of biomimicry? 3.
    [Show full text]
  • MEESO Survey to the North Atlantic Ocean, 1-30 June 2021
    MEESO survey to the North Atlantic Ocean, 1-30 June 2021 R/V “G.O. Sars”, surveying the North Atlantic Ocean mesopelagic sone during the light summer nights. Photo: Chris Lindemann. As part of the MEESO field campaign, the Norwegian Research Vessel, G. O. Sars, is sur- veying the mesopelagic ecosystem of the North-East Atlantic and the Norwegian Sea. The cruise started in Bergen, Norway, 1 June and ends there 30 June. Scientists from the University of Bergen and the Institute of Marine Research in Bergen, Nor- way, are using new technology, partly developed in MEESO, like non-graded trawls and un- derwater towed systems with optical sensors and broadband multifrequency acoustics to in- vestigate the mesopelagic ecosystem and map the biomass distribution of the mesopelagic community and its possible drivers. So far we have identified more than 90 species of fish and the diversity of crustaceans, gelati- nous plankton and cephalopods has proven to be high as well. A marked fall in diversity and the vertical extent of the mesopelagic deep scattering layers were observed as we moved from the Iceland Basin, south of Iceland and west of the Faroe Islands, into the Norwegian Sea. Download from meeso.org 1 The Common fangtooth Anoplogaster cornuta (127 mm SL) is not only the fish species with the long- est teeth in relation to body length, it also has an amazing pattern of bony ridges on its head. Photo: Rupert Wienerroither. The Mirror lanternfish Lampadena speculigera (97 mm SL) has a large heart-shaped luminous gland on top and an oval luminous gland below its caudal peduncle.
    [Show full text]
  • A Link to the Report Hv 2021-22
    HV 2021-22 ISSN 2298-9137 HAF- OG VATNARANNSÓKNIR MARINE AND FRESHWATER RESEARCH IN ICELAND Sampling for the MEESO project during the International Ecosystem Summer Survey in Nordic Seas on the R/V Arni Fridriksson in July 2020 Ástþór Gíslason, Klara Jakobsdóttir, Kristinn Guðmundsson, Svanhildur Egilsdóttir, Teresa Silva HAFNARFJÖRÐUR - MAÍ 2021 Sampling for the MEESO project during the International Ecosystem Summer Survey in Nordic Seas on the R/V Arni Fridriksson in July 2020 Ástþór Gíslason, Klara Jakobsdóttir, Kristinn Guðmundsson, Svanhildur Egilsdóttir, Teresa Silva Haf‐ og vatnarannsóknir Marine and Freshwater Research in Iceland Upplýsingablað Titill: Sampling for the MEESO project during the International Ecosystem Summer Survey in Nordic Seas on the R/V Arni Fridriksson in July 2020 Höfundar: Ástþór Gíslason, Klara Jakobsdóttir, Kristinn Guðmundsson, Svanhildur Egilsdóttir, Teresa Silva Skýrsla nr: Verkefnisstjóri: Verknúmer: HV‐2021‐22 Ástþór Gíslason 12471 ISSN Fjöldi síðna: Útgáfudagur: 2298‐9137 26 7. maí 2021 Unnið fyrir: Dreifing: Yfirfarið af: Hafrannsóknastofnun Opin Anna Heiða Ólafsdóttir Ágrip Gagnasöfnun fyrir alþjóðlegt rannsóknaverkefni um lífríki miðsjávarlaga (MEESO), sem styrkt er af Evrópusambandinu, fór fram í rannsóknaleiðangri Hafrannsóknastofnunar á uppsjávarvistkerfi norðurhafa að sumarlagi sumarið 2020. Tilgangurinn var að rannsaka magn, dreifingu og samsetningu miðsjávarfánu í tengslum við umhverfisþætti og vöxt og viðgang plöntsvifs. Meginsvæði rannsóknarinnar fylgdi sniði sem liggur nokkurn veginn eftir 61°50’N‐breiddarbaug, frá 38°49’V og að 16°05’V, þ.e. frá Grænlandshafi yfir Reykjaneshrygg og inn í Suðurdjúp, sem og á stöð í Grindavíkurdýpi. Eftir endilöngu sniðinu var u.þ.b. 50 m þykkt blöndunarlag sem svifgróður virtist dafna í. Samkvæmt bergmálsmælingum voru tvö meginlög miðsjávarlífvera.
    [Show full text]
  • 2014 Field Trials | Downeast Institute
    Menu Home News About Us o Mission & Vision o History of DEI o Board of Directors (2014) o Staff o DEI's Senior Scientist . Lobster Research . Mussel Research . Sea Urchin Research o DEI's Future o Marine Education Center o Pier Project o Shellfish Field Days at DEI Soft Shell Clams o Ordering Soft-Shell Clam Juveniles o Soft-Shell Clam Production at DEI o Illustrated Clam Culture Manual o Clam Predators o Soft-Shell Clam Research . Stockton Springs . Hampton Harbor . Edmunds . Freeport Research o Published Research . Soft-shell clams . Hard clams . European lobsters . American lobsters . Ocean quahogs . Green macroalgae . Green sea urchin . Eelgrass . Other o Scallop Restoration o Scallops NOAA-NMFS o Hard Shell Clams o Lobster Research o Arctic Surfclams - NSF o Blue mussels - NSF Education o Marine Education Summer Camps for Youth o NSF-supported Education Effort . Bay Ridge Elementary . Beals Elementary . Jonesport Elementary . Washington Academy . The Lobster Project o Summer Positions for Students (2014) o K-12 Teacher Resources . The Rocky Shore . Lesson Plans for Teachers . Ascophyllum Seaweed Classroom Experiment . Rearing Microalgae in the Classroom Help Support DEI Directions Contact 2014 FIELD TRIALS With lessons learned about routine monitoring and maintenance of field plots, and the necessity to hire skilled labor, we devised a six-pronged project to investigate green crabs and their effects on soft-shell clams. The brochure that is linked to this page was developed by Sara Randall, local coordinator for the Freeport Project, and explains each of the six independent field projects. In 2014, funding for field work has come from three sources: $200,000 from the Maine Economic Improvement Fund (Small Campus Initiative) - 2 yrs, $348,767 from the National Marine Fisheries Service (Saltonstall-Kennedy fund) - 2 yrs, and $28,000 from Sea Pact - 1 yr.
    [Show full text]
  • Sea Urchins: These Animals, Which Are Found in All Ocean Temperatures and Habitats, Are Round and Covered with Long, Movable Spines
    Make an urchin Ages 6+ Background info Sea urchins: These animals, which are found in all ocean temperatures and habitats, are round and covered with long, movable spines. They’re part of the echinoderm family, which also includes sea stars and sea cucumbers. Sea urchins have the longest spines of any species in this group. o Spines: Some sea urchin species have solid spines, while others have hollow spines filled with venom. Sea urchins use their spines for movement and protection, as well as to help capture floating particles in the water to eat. o Test: Sea urchins have a calcareous skeleton called a test. Some plates have tiny holes through which sea urchins can wiggle their hollow tube feet. o Tube feet: The tube feet have suckers and can extend beyond the spines to grip objects and the ocean floor. Some sea urchins use their tube feet to pick up items such as small rocks, pieces of shell, and bits of seaweed that they can use to disguise their bodies and blend in with their surroundings. o Artistotle’s lantern: The mouth of the sea urchin is found on the bottom of its body and is made up of five self-sharpening teeth that are replaced every few months. Test Artistotle’s lantern Tube feet Spine ACTIVITY Time: 30 minutes Materials: -modeling clay -pipe cleaners -craft supplies you have available -your imagination Instructions: 1. Use this worksheet to learn about sea urchins and their body parts. The main body of the sea urchin is called the test. Spines and tube feet stick out from the test.
    [Show full text]
  • Marine Region 2016 Year in Review
    MARINE REGION 2016 YEAR IN REVIEW Cavanaugh Gulch, near Elk in northern California photo by K. Joe A Message From Craig Shuman, Marine Region Manager Most of us have experienced déjà vu – that strong feeling on the beach by the hundreds of thousands and reports of familiarity with an experience or event, as though we of sea turtles more at home off the Galapagos. State have already experienced it in the past. For Marine Region record-sized tuna continued to be logged into the books staff, many of the events in 2016 had that same strong by anglers and spear fishermen, besting old records by as feeling of familiarity. much as 80 pounds or more. Elevated levels of domoic acid As the offshore environment continued to impact California’s continued to experience rapid wildlife and fisheries, keeping Marine Region Mission: change, Marine Region staff were commercial crabbers tied to the To protect, maintain, enhance, there monitoring, meeting with the dock for part of the season and public, and developing strategies recreational razor clammers off the and restore California’s to help better understand how beaches of northern California for marine ecosystems for their the changes would affect the much of the year. The commercial ecological values and their marine environment and our sardine fishery remained closed fisheries. Statewide, our biologists for its second year and the use and enjoyment by the and analysts were busy studying, combined effects of drought and public through good science monitoring, and assessing fish and poor ocean conditions impacted and effective communication. shellfish populations, including recreational and commercial abalone, halibut (California and salmon catches.
    [Show full text]
  • NEW SPECIES for MARICULTURE in the EASTERN ADRIATIC Nove Vrste - Marikultura Na Istočnom Jadranu
    Nick Starešinić* Erica A. G. Vidal** Leigh S. Walsh*** ISSN 0469-6255 (24-36) NEW SPECIES FOR MARICULTURE IN THE EASTERN ADRIATIC Nove vrste - marikultura na istočnom Jadranu UDK 639.2 (262.3) Pregledni članak Review Abstract As production of seabass and sea bream has quickest route to sea urchin commercialization is out-of- expanded in the Mediterranean over the past decade, season gonad (roe) enhancement of natural stock, prices for each have fallen dramatically. The lower analogous to the way in which the successful Croatian revenues that have resulted have forced some once- tuna-ranching industry operates. profitable producers out of business and made entry into the market by new producers much more difficult. This The success of this ‘bulking’ process depends upon availability of an effective diet and a containment system reality must be taken into account in formulating any that addresses the peculiarities of sea urchin behavior in successful national or enterprise-level development plan based on production of these “old” species. captivity. Of the three species examined briefly here, cuttlefish Introduction of “new” commercial species is one can be commercialized the fastest. The next step in possible response, and several fish and invertebrates have received attention in this regard. Of the cuttlefish development is to operate pilot-scale production trials to evaluate its economic feasibility under Croatian invertebrates, one echinoderm, the sea urchin conditions. ‘Bulking’ of sea urchin offers the next most Paracentrotus lividus, and two molluscs, the cuttlefish promising new commercial opportunity and merits feed Sepia officinalis and the common octopus Octopus vulgaris, appear to have sufficient potential for Croatian trials using at least one of several published feed formulations, perhaps followed by a diet of local mariculture to warrant closer examination of their macroalgae to ‘polish’ the product’s taste to market advantages and disadvantages, and to invest the capital and effort on applied research to overcome the latter.
    [Show full text]
  • Pacific Coast Fishery Review Reports
    47th Annual Report of the PACIFIC STATES MARINE FISHERIES COMMISSION FOR THE YEAR 1994 TO THE CONGRESS OF THE UNITED STATES AND TO THE GOVERNORS AND LEGISLATURES OF WASHINGTON OREGON, CALIFORNIA, IDAHO AND ALASKA PSMFC COMMISSIONERS 1994 Harriet Spanel, Chair ALASKA LOREN LEMAN CHUCK MEACHAM, JR. DALE KELLEY Alaska State Senate Alaska Dept. Fish & Game Governor's Appointee CALIFORNIA NAO TAKASUGI AL PETROVICH DAVID PTAK California State Assembly California Dept. Fish & Governor's Appointee Game IDAHO BRUCE SWEENEY JERRY CONLEY NORMAN GUTH Idaho State Senate Idaho Dept. Fish & Game Governor's Appointee OREGON BILL BRADBURY RUDOLPH ROSEN PAUL HEIKKILA Oregon State Senate Oregon Dept. Fish & Governor's Appointee Wildlife WASHINGTON DEAN SUTHERLAND ED MANARY HARRIET SPANEL Washington State Senate Washington Dept. Fish & Governor's Appointee & Wildlife Washington State Senate Our goal, as stated in the bylaws, is "to promote and support policies and actions directed at the conservation, development and management of fishery resources of mutual concern to member states through a coordinated regional approach to research, monitoring and utilization". 47th Annual Report of the PACIFIC STATES MARINE FISHERIES COMMISSION FOR THE YEAR 1994 To the Congress of the United States and the Governors and Legislatures of the Five Compacting States, Washington, Oregon, California, Idaho, and Alaska, by the Commissioners of the Pacific States Marine Fisheries Commission in Compliance with the State Enabling Acts Creating the Commission and Public Laws 232; 766; and 315 of the 80th; 87th; and 91st Congresses of the United States Assenting Thereto. Respectfully submitted, PACIFIC STATES MARINE FISHERIES COMMISSION RANDY FISHER, Executive Director Headquarters 45 SE 82nd Drive, Suite 100 Gladstone, Oregon 97027-2522 Al J.
    [Show full text]
  • Deep Ocean Dive
    Start Dive Here DDeepeep OceanOcean DiveDive UNIVERSITY OF OTAGO Photos Courtesy of 1 Comb Jelly (Pleurobrachia sp.) 2 Comb jellies take their name from the bands of cilia or combs that (Physalia physalis) beat in waves, shimmering all colours of the rainbow and propelling Bluebottle the animal forward. Bluebottle jellyfish, an oceanic creature, is often found 3 Problems with submarine. washed ashore on New Zealand’s exposed beaches, Miss a turn while it is fixed. following stormy weather. The deep ocean is a similar You see a lot of new deep-sea temperature to 4 creatures. Miss a turn while you your fridge, photograph them. ~3 C Object of the Game 7 To find the elusive Colossal Squid! 5 8 6 9 Take turns throwing the die and 1. moving your submarine forward. Follow the instructions on the square Something swimming where you land. past the window. 10 Follow it and move When approaching the bottom, you may 4 spaces. 2. only move if you have the exact number or less required to reach the squid. 3. Once you have found the squid, 11 80-90% of midwater throw the die one more time to discover deep sea animals can your fate as a Deep Sea Explorer! make their own light. 12 13 You forgot to go to the toilet before you left. You must now use the bottle. Googly Eyed Squid (Teuthowenia pellucida) 14 This transparent squid is probably the most common of the small oceanic squid found in New Zealand waters but is rarely seen alive. 15 Low oxygen levels! Speed up to save air.
    [Show full text]