Horseshoe Bats
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rhinolophus Hipposideros) Animals of the World: Lesser Horseshoe Bat (Rhinolophus Hipposideros)
the National Bank of Poland ● The National Bank of Poland is putting into circulation coins of the Animals of the World series holds the exclusive right to issue the currency depicting the lesser horseshoe bat: in the Republic of Poland. 2 zł – struck in standard finish in Nordic Gold, In addition to coins and notes for general circulation, on 19 April 2010; the NBP issues collector coins and notes. Issuing collector items is an occasion to commemorate c o i n s 20 zł – struck in proof finish in silver, important historic figures and anniversaries, as well on 21 April 2010. as to develop the interest of the public in Polish culture, science and tradition. Since 1996, the NBP has also been issuing occasional 2 złoty coins, struck in Nordic Gold, for general circulation. All coins and notes issued by the NBP are legal tender in Poland. coins Issued in 2010 coins Issued in 2010 Since 1993, the NBP has been issuing coins of the „Animals of the World” series. the „Lesser horseshoe bat” is the seventeenth theme in the series information on the issue schedule can be found at the www.nbp.pl/monety website. Collector coins issued by the National Bank of Poland are sold exclusively at the internet auctions held in the Kolekcjoner service at the following website: A N i mals O f t h e W O r ld www.kolekcjoner.nbp.pl Lesser horseshoe bat the coins were struck at the Mint of Poland in Warsaw. edited and printed: NBP Printing Office (Rhinolophus hipposideros) Animals of the World: Lesser horseshoe bat (Rhinolophus hipposideros) ● The lesser horseshoe bat (Rhinolophus hipposideros) belongs to the of a frequency of 108-114 kHz through their nostrils, and the flap of skin hunting activity is in the early hours of the night. -
Bird and Bat Conservation Strategy
Searchlight Wind Energy Project FEIS Appendix B 18B Appendix B-4: Bird and Bat Conservation Strategy Page | B Searchlight Bird and Bat Conservation Strategy Searchlight Wind Energy Project Bird and Bat Conservation Strategy Prepared for: Duke Energy Renewables 550 South Tryon Street Charlotte, North Carolina 28202 Prepared by: Tetra Tech EC, Inc. 1750 SW Harbor Way, Suite 400 Portland, OR 97201 November 2012 Searchlight BBCS i October 2012 Searchlight Bird and Bat Conservation Strategy TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................ 6 1.1 Duke Energy Renewables‘ Corporate Policy .......................................................... 6 1.2 Statement of Purpose ............................................................................................ 6 2.0 BACKGROUND AND DESCRIPTION OF THE PROJECT ............................................. 6 3.0 PROJECT-SPECIFIC REGULATORY REQUIREMENTS .............................................11 3.1 Potential Endangered Species Act-Listed Wildlife Species ...................................11 3.2 Migratory Bird Treaty Act ......................................................................................11 3.3 Bald and Golden Eagle Protection Act ..................................................................12 3.4 Nevada State Codes .............................................................................................12 4.0 DECISION FRAMEWORK .............................................................................................12 -
Bat Mitigation Guidelines for Ireland
Bat Mitigation Guidelines for Ireland Irish Wildlife Manuals No. 25 Bat Mitigation Guidelines for Ireland Conor Kelleher and Ferdia Marnell Citation: Kelleher, C. & Marnell, F. (2006) Bat Mitigation Guidelines for Ireland. Irish Wildlife Manuals , No. 25. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover photo : Brown long-eared bat (© Austin Hopkirk) Irish Wildlife Manuals Series Editor: F. Marnell © National Parks and Wildlife Service 2006 ISSN 1393 - 6670 Key messages for developers • Bats and their roosts are protected by Irish and EU law because all species have declined and some are threatened or endangered. • There are 10 known species of bats in Ireland, each with its own lifestyle and habitat requirements. They use a wide variety of roosts, including buildings of all sorts, trees and underground places. • Many bat roosts are used only seasonally as bats have different roosting requirements at different times of the year. During the summer, females of all species gather in colonies to give birth and rear their young; these maternity roosts are often in places warmed by the sun. During the winter bats hibernate, often in places that are sheltered from extremes of temperature. • When planning a development it is advisable to check for the presence of bats as early as possible so that any planning and licensing issues can be addressed before resources are committed. Bat surveys require specialist knowledge and equipment. • Planning authorities are required to take account of the presence of protected species, including bats, when considering applications for planning permission and may refuse applications on the grounds of adverse effects on these species or if an assessment of the impact of the development on protected species is inadequate. -
Karyotype Evolution in the Horseshoe Bat Rhinolophus Sedulus by Whole-Arm Reciprocal Translocation (WART)
Original Article Cytogenet Genome Res 2014;143:241–250 Accepted: May 5, 2014 DOI: 10.1159/000365824 by M. Schmid Published online: August 16, 2014 Karyotype Evolution in the Horseshoe Bat Rhinolophus sedulus by Whole-Arm Reciprocal Translocation (WART) a b d c Marianne Volleth Klaus-Gerhard Heller Hoi-Sen Yong Stefan Müller a b Department of Human Genetics, Otto von Guericke University, Magdeburg , Department of Biology, Humboldt c University, Berlin , and Institute of Human Genetics, University Hospital, Ludwig Maximilian University, Munich , d Germany; Institute of Biological Sciences, University of Malaya, Kuala Lumpur , Malaysia Key Words tence of a hybrid zone at the sampling locality is thought to Chiroptera · FISH · Karyotype evolution · Mammalia · be rather improbable, the WART may indicate ongoing Rhinolophidae · WART karyotype evolution in this taxon. © 2014 S. Karger AG, Basel Abstract Robertsonian (centric) fusion or fission is one of the predom- Karyotypes may be shaped by different kinds of rear- inant modes of chromosomal rearrangement in karyotype rangements, such as inversions, translocations, and Rob- evolution among mammals. However, in karyotypes com- ertsonian (centric) fissions and fusions. The last type is posed of only bi-armed chromosomes, creation of new chro- thought to be the most common mode within Mammalia, mosomal arm combinations in one step is possible only via at least among rearrangements detected by conventional whole-arm reciprocal translocation (WART). Although this cytogenetic techniques in the past. A relatively rarely re- type of rearrangement has often been proposed to play an ported type of rearrangement is whole-arm reciprocal important role in chromosomal evolution, direct observa- translocation (WART) by which entire chromosomal tions of WARTs remained rare, and, in most cases, were found arms are reciprocally exchanged between 2 chromo- in hybrids of chromosomal races in the genera Mus and somes. -
Bats (Chiroptera) from the Albertine Rift, Eastern Democratic Republic of Congo, with the Description of Two New Species of the Rhinolophus Maclaudi Group
Bonn zoological Bulletin 62 (2): 186 –202 December 2013 Bats (Chiroptera) from the Albertine Rift, eastern Democratic Republic of Congo, with the description of two new species of the Rhinolophus maclaudi group Julian C. Kerbis Peterhans 1,2 , Jakob Fahr 3, Michael H. Huhndorf 2, Prince Kaleme 4,5 , Andrew J. Plumptre 6, Ben D. Marks 2 & Robert Kizungu 5 1 College of Professional Studies, Roosevelt University, 430 S. Michigan Ave., Chicago, IL, 60605, USA 2 Science and Education, Field Museum of Natural History, Chicago, IL 60605-2496, USA, E-mail: [email protected] 3 Division of Evolutionary Biology, Zoological Institute, TU Braunschweig, Mendelssohnstr. 4, D-38106 Braunschweig, Germany 4 Department of Botany & Zoology, Stellenbosch University, Private Bag XI, Matieland, South Africa 5 Centre de Recherche des Sciences Naturelles, Lwiro, Democratic Republic of Congo 6 Wildlife Conservation Society , Plot 802 Kiwafu Rd, Kansanga, PO Box 7487, Kampala, Uganda Abstract . Horseshoe bats of the Rhinolophus maclaudi species group were recently revised by Fahr et al. (2002). Known members of the group are located in the mountainous region of West Africa and the Albertine Rift, east of the Congo River basin with a major gap (4300 km) between the two recognized sub-groups. Here we describe two additional species within this species group from the Albertine Rift center of endemism in the eastern Democratic Republic of Congo. One derives from the Misotschi-Kabogo highlands, a heretofore poorly documented region half-way down the western shore of Lake Tanganyika. Additional bat records from this locality are also documented. The second new taxon was collect - ed in Kahuzi-Biega National Park, a World Heritage Site adjacent to the shore of Lake Kivu. -
Calculate the Value of Bats
Calculate the Value of Bats Background One of the best ways to persuade people to protect bats is to explain EXPLORATION QUESTION “Why are bats important to our how many insects bats can eat. Scientists have discovered that economy and to our natural some small bats can catch up to 1,000 or more small insects in a world?” single hour. A nursing mother bat eats the most – sometimes catching more than 4,000 insects in a night. MATERIALS Little brown bats (myotis lucifugus) eat a wide variety of insects, Pencils including pests such as mosquitoes, moths, and beetles. If each little Activity Sheets A and B brown bat in your neighborhood had 500 mosquitoes in its evening Calculator (optional) meal, how many would a colony of 100 bats eat? By multiplying the OVERVIEW average number eaten (500) times the number of bats in the colony There are many reasons for (100), we calculate that this colony would eat 50,000 mosquitoes in students to care about bats. They an evening (500 x 100 = 50,000)! are fascinating and beautiful Using a calculator and multiplying 50,000 mosquitoes times 30 days animals. In this activity, students (the average number of days in a month), you can calculate that will use math skills to learn about these same bats could eat 1.5 million mosquitoes in a month (50,000 the ecological and economic x 30 = 1,500,000), not to mention the many other insects they would impacts of bats. Students will also catch! use communication skills to convey the importance of bats to Do bats really eat billions of bugs? our economy and natural world Bracken Cave, just north of San Antonio, Texas, is home to about 20 and the potential effects of White- million Mexican free-tailed bats. -
Are Megabats Flying Primates? Contrary Evidence from a Mitochondrial DNA Sequence
Aust. J. Bioi. Sci., 1988, 41, 327-32 Are Megabats Flying Primates? Contrary Evidence from a Mitochondrial DNA Sequence S. Bennett,A L. J. Alexander,A R. H. CrozierB,c and A. G. MackinlayA,c A School of Biochemistry, University of New South Wales, P.O. Box 1, Kensington, N.S.W. 2033. B School of Biological Science, University of New South Wales, P.O. Box 1, Kensington, N.S.W. 2033. C To whom reprint requests should be addressed. Abstract Bats (Chiroptera) are divided into the suborders Megachiroptera (fruit bats, 'megabats') and Micro chiroptera (predominantly insectivores, 'microbats'). It had been found that megabats and primates share a connection system between the retina and the midbrain not seen in microbats or other eutherian mammals, and challenging but plausible hypotheses were made that (a) bats are diphyletic and (b) megabats are flying primates. We obtained two DNA sequences from the mitochondrion of the fruit bat Pteropus poliocephalus, and performed phylogenetic analyses using the bat sequences in conjunction with homologous Drosophila, mouse, cow and human sequences. Two trees stand out as significantly more likely than any other; neither of these links the bat and human as the closest sequences. These results cast considerable doubt on the hypothesis that megabats are particularly close to primates. Introduction Various phylogenetic schemes based on morphology have linked bats and primates, such as in McKenna's (1975) grandorder Archonta, which also includes the Dermoptera (flying lemurs) and Scandentia (tree shrews). Molecular systematists, using immunological comparisons and amino acid sequences, have found that bats are not placed particularly close to primates, and that they are not diphyletic (Cronin and Sarich 1980; Dene et al. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
BAT-WATCHING SITES of TEXAS Welcome! Texas Happens to Be the Battiest State in the Country
BAT-WATCHING SITES OF TEXAS Welcome! Texas happens to be the battiest state in the country. It is home to 32 of the 47 species of bats found in the United States. Not only does it hold the distinction of having the most kinds of bats, it also boasts the largest known bat colony in the world, Bracken Cave Preserve, near San Antonio, and the largest urban bat colony, Congress Avenue Bridge, in Austin. Visitors from around the world flock BAT ANATOMY to Texas to enjoy public bat-viewing at several locations throughout the state. This guide offers you a brief summary of what each site has to offer as well as directions and contact information. It also includes a list of the bat species currently known to occur within Texas at the end of this publication. Second Finger We encourage you to visit some of these amazing sites and experience the Third Finger wonder of a Texas bat emergence! Fourth Finger Thumb Fifth Finger A Year in the Life Knee of a Mexican Free-tailed Bat Upper Arm Foot Forearm Mexican free-tailed bats (also in mammary glands found under each Tail known as Brazilian free-tailed bats) of her wings. Wrist are the most common bat found The Mexican free-tailed bats’ milk is throughout Texas. In most parts of so rich that the pups grow fast and are Tail Membrane the state, Mexican free-tailed bats ready to fly within four to five weeks of Ear are migratory and spend the winters birth. It is estimated that baby Mexican in caves in Mexico. -
Night Friendsfriends Bats of the Americas
NightNight FriendsFriends Bats of the Americas On-line Activity Guide © Merlin D. Tuttle, Bat Conservation International, www.batcon.org ©David V. / Shutterstock.com © Merlin D. Tuttle, Bat Conservation International, www.batcon.org ©Vilainecrevette / Shutterstock.com © © Merlin D. Tuttle, Bat Conservation International, www.batcon.org www.nwf.org BATS Background Origins and Relatives Did you know that the world’s smallest mammal, the bumblebee bat, weighs less than a penny? Bats play a vital role in the health of our natural world, and are fascinating creatures. They are a group of mammals belong to the mammalian order “Chiroptera” which in Greek means hand-wing. All living bat species fit into one of two sub-groups, the Microchiroptera or the Megachiroptera. Members of the latter group are often called “flying foxes” because of their fox-like faces. Diversity and Distribution The more than 1,260 species of bats make up approximately 20 percent of all mammal species, more than any other mammal group except rodents, and they are found everywhere in the world except in the most extreme desert and polar regions. Some 47 species live in the United States and Canada, but the majority inhabit tropical forests where, in total number of species, they sometimes outnumber all other mammals combined. Bats come in an amazing variety of sizes and appearances. While the bumblebee bat is at one extreme, some flying foxes of the Old World tropics have wingspans of up to six feet. The big-eyed, winsome expressions of flying foxes often surprise people who would never had thought that a bat could be cute. -
VAMPIRE BATS – the Good, the Bad, and the Amazing
Exhibit Dates: May 2014 - January 2015 VAMPIRE BATS – The Good, the Bad, and the Amazing Vampire bats are sanguivores, organisms that feed upon the blood of other animals. They are the only mammals that feed exclusively on blood. Despite horror-movie depictions, vampire bats very rarely bite humans to feed on their blood. They feed primarily on domestic livestock, due to their abundance, and to a lesser degree on wild mammals and birds. They are very small animals, with wingspans of about 12-15 inches, and weigh less than 2 ounces. SPECIES AND DISTRIBUTIONS Three species of vampire bats are recognized. Vampire bats occur in warm climates in both arid and humid regions of Mexico, Central America, and South America. Distribution of the three species of vampire bats. Common Vampire Bat (Desmodus rotundus) This species is the most abundant and most well-known of the vampire bats. Desmodus feeds mainly on mammals, particularly livestock. They occur from northern Mexico southward through Central America and much of South America, to Uruguay, northern Argentina, and central Chile, and on the island of Trinidad in the West Indies. Common vampire bat, Desmodus rotundus. White-winged Vampire Bat (Diaemus youngi) This species feeds mainly on the blood of birds. They occur from Mexico to southern Argentina and are present on the islands of Trinidad and Isla Margarita. White-winged vampire bat, Diaemus youngi. Hairy-legged Vampire Bat (Diphylla ecaudata) This species also feeds mainly on the blood of birds. They occur from Mexico to Venezuela, Peru, Bolivia, and Brazil. One specimen was collected in 1967 from an abandoned railroad tunnel in Val Verde County, Texas. -
Dissertation Christian Dietz 2007
Aspects of ecomorphology in the five European horseshoe bats (Chiroptera: Rhinolophidae) in the area of sympatry der Fakultät für Biologie der EBERHARD KARLS UNIVERSITÄT TÜBINGEN zur Erlangung des Grades eines Doktors der Naturwissenschaften von Christian Dietz aus Tübingen vorgelegte Dissertation 2007 Tag der mündlichen Prüfung: 14.11.2007 Dekan: Prof. Dr. H. Mallot 1. Berichterstatter: Prof. Dr. H.-U. Schnitzler 2. Berichterstatter: PD Dr. B.M. Siemers Table of contents 3 Table of contents Structure of this thesis................................................................................................................ 8 Publication of the results............................................................................................................ 9 Author information and contributions from others .................................................................... 9 References ................................................................................................................................ 10 Chapter 1 - Identification key to the horseshoe bats of Europe ............................................... 15 Chapter 2 - Age classification and assessment of reproductive condition............................... 33 Chapter 3 - Effects of forearm bands on horseshoe bats.......................................................... 62 Chapter 4 - Movements of horseshoe bats in northern Bulgaria.............................................. 84 Chapter 5 - Growth of horseshoe bats and the influence of climate .....................................