SZENT ISTVÁN EGYETEM Kertészettudományi Kar

Total Page:16

File Type:pdf, Size:1020Kb

SZENT ISTVÁN EGYETEM Kertészettudományi Kar 10.14751/SZIE.2020.010 SZENT ISTVÁN EGYETEM Kertészettudományi Kar SORBUS FAJKELETKEZÉS TRIPARENTÁLIS HIBRIDIZÁCIÓVAL A KELET- ÉS DÉLKELET- EURÓPAI TÉRSÉGBEN (Nothosubgenus Triparens) Doktori (PhD) értekezés Németh Csaba BUDAPEST 2019 10.14751/SZIE.2020.010 A doktori iskola megnevezése: Kertészettudományi Doktori Iskola tudományága: Növénytermesztési és kertészeti tudományok vezetője: Zámboriné Dr. Németh Éva egyetemi tanár, DSc Szent István Egyetem, Kertészettudományi Kar, Gyógy- és Aromanövények Tanszék Témavezető: Dr. Höhn Mária egyetemi docens, CSc Szent István Egyetem, Kertészettudományi Kar, Növénytani Tanszék és Soroksári Botanikus Kert A jelölt a Szent István Egyetem Doktori Szabályzatában előírt valamennyi feltételnek eleget tett, az értekezés műhelyvitájában elhangzott észrevételeket és javaslatokat az értekezés átdolgozásakor figyelembe vette, azért az értekezés védési eljárásra bocsátható. .................................................. .................................................. Az iskolavezető jóváhagyása A témavezető jóváhagyása 2 10.14751/SZIE.2020.010 Édesanyám emlékének. 3 10.14751/SZIE.2020.010 4 10.14751/SZIE.2020.010 TARTALOMJEGYZÉK RÖVIDÍTÉSEK JEGYZÉKE .......................................................................................................... 7 1. BEVEZETÉS ÉS CÉLKITŰZÉS .................................................................................................. 9 2. IRODALMI ÁTTEKINTÉS ..................................................................................................... 11 2.1. A Sorbus nemzetség taxonómiai vonatkozásai ..................................................................... 11 2.2. Az európai Sorbus alnemzetségek növényföldrajzi vonatkozásai ......................................... 13 2.3. A fajkeletkezés mozgatórugói a Sorbus nemzetségen belül .................................................. 15 2.3.1. Hibridizáció .............................................................................................................................................. 16 2.3.1.1. Pollendonáció az endospermium képzés során ............................................................................... 16 2.3.1.2. Pollendonáció a hibridizációs fajkeletkezés során ........................................................................... 17 2.3.2. Poliploidizáció .......................................................................................................................................... 19 2.3.3. Reprodukciós mód ................................................................................................................................... 19 2.4. Hármas hibridizáció a növényvilágban ................................................................................ 20 2.5. Hármas hibridizáció a Sorbus nemzetségben ....................................................................... 20 2.5.1. Nothosubg. Chamsoraria (Subg. Chamaemespilus × Subg. Sorbus × Subg. Aria) .................................... 21 2.5.2. Nothosubg Triparens (Subg. Sorbus × Subg. Aria × Subg. Torminaria). ................................................... 21 2.5.2.1. Bizonyítottan Triparens fajok ........................................................................................................... 21 2.5.2.2. Feltételezett Triparens fajok ............................................................................................................ 23 2.6. Az európai Sorbus alnemzetségek taxonómiai markerei ...................................................... 26 2.6.1. Morfológiai markerek .............................................................................................................................. 26 2.6.2. Többváltozós morfometriai vizsgálatok................................................................................................... 31 2.6.2. Biokémiai markerek ................................................................................................................................. 32 2.6.3. Molekuláris markerek .............................................................................................................................. 33 2.6.3.1. Izoenzim markerek .......................................................................................................................... 33 2.6.3.2. Mitokondriális DNS markerek .......................................................................................................... 34 2.6.3.3. Kloroplasztisz DNS markerek ........................................................................................................... 34 2.6.3.4. Nukleáris DNS markerek .................................................................................................................. 35 2.6.3.5. Egyéb molekuláris markerek ............................................................................................................ 36 2.6.4. Citometriai markerek ............................................................................................................................... 36 3. ANYAG ÉS MÓDSZER ........................................................................................................ 39 3.1. Terepi mintavételezés .......................................................................................................... 39 3.2. Morfológiai vizsgálatok ....................................................................................................... 39 3.2.1. Herbáriumi kutatások .............................................................................................................................. 39 3.2.2. Morfometriai vizsgálatok (PCA) ............................................................................................................... 42 3.3. Biokémiai vizsgálatok (HPLC-ESI-qTOFMS) ..................................................................... 43 3.3.1. Minta előkészítés ..................................................................................................................................... 43 3.3.2. Kromatográfiás elválasztás ...................................................................................................................... 43 3.3.3. HPLC-ESI-qTOFMS analízis ....................................................................................................................... 43 3.4. Molekuláris vizsgálatok (cpSSR) ......................................................................................... 44 3.4.1. DNS-kivonás ............................................................................................................................................. 44 3.4.2. Fragmens amplifikáció PCR-rel ................................................................................................................ 45 3.5. Áramlási citometriás vizsgálatok (FCM, FCSS) ................................................................... 46 3.5.1. Ploidia szint meghatározás (FCM) ........................................................................................................... 46 3.5.2. Reprodukciós mód meghatározás (FCSS) ................................................................................................ 46 4. EREDMÉNYEK ÉS MEGVITATÁSUK..................................................................................... 48 4.1. Morfológiai vizsgálatok ....................................................................................................... 48 4.1.1. Herbáriumi kutatások .............................................................................................................................. 48 5 10.14751/SZIE.2020.010 4.2. Biokémiai vizsgálatok (HPLC-ESI-qTOFMS) ..................................................................... 49 4.2.1. Flavon O-glükozid (Apigenin O-glükuronsav) .......................................................................................... 49 4.2.2. Flavon C-glükozid (Apigenin-8-C-glükozid, vitexin) .................................................................................. 50 4.3. Molekuláris vizsgálatok (cpSSR) ......................................................................................... 53 4.4. Áramlási citometriás vizsgálatok (FCM, FCSS) ................................................................... 55 4.4.1. Ploidia szint meghatározás (FCM) ........................................................................................................... 55 4.4.2. Reprodukciós mód meghatározás (FCSS) ................................................................................................ 56 4.5. A Sorbus dacica s.l. taxonómiai revíziója ............................................................................. 58 4.5.1. A Sorbus dacica s.l. a szakirodalmi forrásokban ...................................................................................... 58 4.5.2. A Sorbus dacica s.l. a herbáriumi forrásokban ........................................................................................ 60 4.5.3. A Sorbus dacica s.l. a terepen, földrajzi elterjedés .................................................................................. 62 4.5.4. A Sorbus dacica s.l. morfológiai variabilitása ........................................................................................... 63 4.5.5. A Sorbus dacica s.l. kemotaxonómiai variabilitása .................................................................................. 65 4.5.6. A Sorbus dacica s.l. kloroplasztisz variabilitása ......................................................................................
Recommended publications
  • SZENT ISTVÁN EGYETEM Kertészettudományi Kar
    SZENT ISTVÁN EGYETEM Kertészettudományi Kar SORBUS FAJKELETKEZÉS TRIPARENTÁLIS HIBRIDIZÁCIÓVAL A KELET- ÉS DÉLKELET- EURÓPAI TÉRSÉGBEN (Nothosubgenus Triparens) Doktori (PhD) értekezés Németh Csaba BUDAPEST 2019 A doktori iskola megnevezése: Kertészettudományi Doktori Iskola tudományága: Növénytermesztési és kertészeti tudományok vezetője: Zámboriné Dr. Németh Éva egyetemi tanár, DSc Szent István Egyetem, Kertészettudományi Kar, Gyógy- és Aromanövények Tanszék Témavezető: Dr. Höhn Mária egyetemi docens, CSc Szent István Egyetem, Kertészettudományi Kar, Növénytani Tanszék és Soroksári Botanikus Kert A jelölt a Szent István Egyetem Doktori Szabályzatában előírt valamennyi feltételnek eleget tett, az értekezés műhelyvitájában elhangzott észrevételeket és javaslatokat az értekezés átdolgozásakor figyelembe vette, azért az értekezés védési eljárásra bocsátható. .................................................. .................................................. Az iskolavezető jóváhagyása A témavezető jóváhagyása 2 Édesanyám emlékének. 3 4 TARTALOMJEGYZÉK RÖVIDÍTÉSEK JEGYZÉKE .......................................................................................................... 7 1. BEVEZETÉS ÉS CÉLKITŰZÉS .................................................................................................. 9 2. IRODALMI ÁTTEKINTÉS ..................................................................................................... 11 2.1. A Sorbus nemzetség taxonómiai vonatkozásai ....................................................................
    [Show full text]
  • Native Woodland.Indd
    Scottish Borders NATIVE WOODLAND HABITAT ACTION PLAN NATIVE WOODLAND in the Scottish Borders The status and ecology of native Native woodlands have, for the woodland in the Borders purposes of classification and assessment by government agencies The principle aim of the Scottish Borders such as SNH, been divided into a HAP for native woodlands is to maintain, number of different categories: enhance and expand in area the native woodlands of the Scottish Borders. 1. Ancient woodland - woodland present on maps pre 1750 Native woodlands are defined as 2. Long established woodland - ‘woodlands composed wholly or largely woodland present on maps pre 1850 of the tree species which occur naturally 3. Semi-natural woodland - woodland in the Scottish Borders; including both that has developed through self woodlands with a continuous history seeding of natural regeneration and those where either the current or a previous Semi-natural woodland in the Borders generation of trees has been planted is sparse and totals approximately within their natural range’. 6,790ha. The distribution of ancient and semi-natural woodland within Throughout Great Britain there has been the Borders is interesting: Berwickshire a gradual decline in the remaining contains the largest hectarage of native woodland, with a reduction of ancient and semi-natural woodland approximately 30 - 40% over the last 60 with 298ha (0.4% of land area), Ettrick years. This decline has mostly been due and Lauderdale contain 225ha (0.2% of to: land area), Roxburgh has 180ha (0.1%of land area) and Tweeddale has only 1. The conversion of native woodland to 35ha (<0.1% of land area) (Walker & agricultural land Badenoch 1988, 1989 and 1991).
    [Show full text]
  • A Quick Approach to Determine the Optimal Moisture Content For
    AARHUS UNIVERSITET An approach to determine the optimal moisture content for controlled dormancy breakage in new tree and shrub species. Martin Jensen Department of Food Science Aarhus University [email protected] Background • physiological seed dormancy is released after a period of moist chilling • chilling at slightly reduced and controlled moisture content gives: - control of premature germination - ability to prolong the chilling duration - all seeds released from dormancy - ability to germinate at high or low temperatures and fast germination - surface dry seeds with less fungus attack - potential of retaining desiccation tolerance during entire chilling - ’advantage from more precise control’ Applied techniques change – from manual uncontrolled to mechanised controlled prototype to advanced controlled seed treatment CMC chilling Species MC %(f.w.) Duration Acer palmatum 35 – 37 8-12 w Acer platanoides 36 – 40 16-20 Acer pseudoplatanus 44 – 46 16-20 Amelanchier lamarckii 43 – 45 16-24 Berberis thunbergii 38 – 42 12-16 Fagus sylvatica 30 – 32 16-20 Fraxinus excelsior 42 – 44 16-20 Prunus avium 27 – 29 12-16 Quercus rubra 38 – 45 10-14 Sorbus aucuparia 43 – 45 16-20 Syringa vulgaris 45 8-16 Tilia cordata 40 – 43 16-24 Abies nordmanniana 32 – 34 8-10 Abies procera 30 – 34 8-10 Picea sitchensis 27 – 30 12-18 Pinus contorta 35 12-18 Pseudotsuga menziesii 32 – 35 12-18 Traditional investigation: - 5-8 moisture contents - 4-6 chilling durations - full factorial experiments - germination at 2 temperatures - several seed lots/ provenances = precise results, high costs, and long time experiments Problem in expanding the species list - Less economical important species - Some scientific and funding resistance of investigating a known principle on yet another species How can we go from 15 to 100 species with less economical input? Hypothesis: The optimal moisture content for controlled breakage of seed dormancy is always at or just below the critical moisture content for germination.
    [Show full text]
  • Tically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2021 doi:10.20944/preprints202106.0526.v1 Review Towards the forest virome: next-generation-sequencing dras- tically expands our understanding on virosphere in temperate forest ecosystems Artemis Rumbou 1,*, Eeva J. Vainio 2 and Carmen Büttner 1 1 Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Ber- lin, Germany; [email protected], [email protected] 2 Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland; [email protected] * Correspondence: [email protected] Abstract: Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont. Symbiotic mi- crobiota and pathogens engage in a permanent interplay, which influences the host. Thanks to the development of NGS technol- ogies, a vast amount of genetic information on the virosphere of temperate forests has been gained the last seven years. To estimate the qualitative/quantitative impact of NGS in forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of NGS methods is ex- tremely significant for forest virology. Reviewed data about viral presence in holobionts, allowed us to address the role of the virome in the holobionts. Genetic variation is a crucial aspect in hologenome, significantly reinforced by horizontal gene transfer among all interacting actors. Through virus-virus interplays synergistic or antagonistic relations may evolve, which may drasti- cally affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protec- tion based on endophytes and mycovirus biocontrol agents.
    [Show full text]
  • Tree Identification Guide
    2048 OPAL guide to deciduous trees_Invertebrates 592 x 210 copy 17/04/2015 18:39 Page 1 Tree Rowan Elder Beech Whitebeam Cherry Willow Identification Guide Sorbus aucuparia Sambucus nigra Fagus sylvatica Sorbus aria Prunus species Salix species This guide can be used for the OPAL Tree Health Survey and OPAL Air Survey Oak Ash Quercus species Fraxinus excelsior Maple Hawthorn Hornbeam Crab apple Birch Poplar Acer species Crataegus monogyna Carpinus betulus Malus sylvatica Betula species Populus species Horse chestnut Sycamore Aesculus hippocastanum Acer pseudoplatanus London Plane Sweet chestnut Hazel Lime Elm Alder Platanus x acerifolia Castanea sativa Corylus avellana Tilia species Ulmus species Alnus species 2048 OPAL guide to deciduous trees_Invertebrates 592 x 210 copy 17/04/2015 18:39 Page 1 Tree Rowan Elder Beech Whitebeam Cherry Willow Identification Guide Sorbus aucuparia Sambucus nigra Fagus sylvatica Sorbus aria Prunus species Salix species This guide can be used for the OPAL Tree Health Survey and OPAL Air Survey Oak Ash Quercus species Fraxinus excelsior Maple Hawthorn Hornbeam Crab apple Birch Poplar Acer species Crataegus montana Carpinus betulus Malus sylvatica Betula species Populus species Horse chestnut Sycamore Aesculus hippocastanum Acer pseudoplatanus London Plane Sweet chestnut Hazel Lime Elm Alder Platanus x acerifolia Castanea sativa Corylus avellana Tilia species Ulmus species Alnus species 2048 OPAL guide to deciduous trees_Invertebrates 592 x 210 copy 17/04/2015 18:39 Page 2 ‹ ‹ Start here Is the leaf at least
    [Show full text]
  • SBCO-Bull41-P295-412
    SESSION ALSACE - VOSGES - FORÊT NOIRE 295 39es Sessions extraordinaires - 2009 29 mai au 5 juin 10 au 17 juillet 2009 Alsace, Vosges et Forêt Noire Organisation scientifique et direction des excursions : Jean-Pierre BERCHTOLD Bulletin de la Société Botanique du Centre-Ouest - Nouvelle Série - Tome 41 - 2010 296 Y. PEYTOUREAU Les sessions de la Société Botanique du Centre-Ouest 1 1974 : Montendre (Charente-Maritime) 2 1975 : Nontron (Dordogne) 3 1976 : Mijanès (Ariège) 4 1977 : Jura 5 1978 : Saint-Junien (Haute-Vienne) 6 1979 : Corrèze 7 1980 : Cantal 8 1981 : Provence occidentale 9 1982 : Causses 10 1983 : Vosges et Alsace 11 1984 : Corse (session 11 bis en 1985) 12 1985 : Limousin 13 1986 : Causse-Comtal, Aubrac et Margeride 14 1987 : Haute-Cerdagne et Capcir 15 1988 : Haute-Normandie 16 1989 : Haute-Savoie 17 1990 : Littoral roussillonnais et audois 18 1991 : Queyras 19 1992 : Sud-Marocain 20 1992 : Marges nord-est de l’Île-de-France 21 1993 : Finistère 22 1994 : Nord - Pas-de-Calais 23 1995 : Charente-Maritime 24 1996 : Morbihan 25 1997 : Sud-est du Bassin Parisien 26 1998 : Hauts Cantons de l’Hérault et Larzac sud 27 1999 : Haut-Verdon 28 2000 : Partie orientale des Pyrénées 29 2001 : Vendée 30 2001 : Ténérife 31 2002 : Cotentin 32 2003 : Nord de la Corse 33 2004 : Provence calcaire et siliceuse 34 2005 : Haute-Marne et Côte-d’Or 35 2006 : Millau - Grands Causses 36 2007 : Jaca - Navarre/Aragon 37 2008 : Ubaye 38 2009 : Alsace, Vosges et Forêt Noire 39 2010 : Aude 40 2010 : Corse Photo au dos : Iris sibirica. Meistratzhiem (cliché Yann KELEN).
    [Show full text]
  • COMMON NAME: European Larch SCIENTIFIC NAME: Larix Decidua FAMILY: Pinaceae
    COMMON NAME: European larch SCIENTIFIC NAME: Larix decidua FAMILY: Pinaceae Mature size: Height: up to 70 feet. Spread: 25 feet wide or wider at maturity. The top three European larches on Colorado’s Champion Tree Registry are all over 70 feet tall and 45 feet wide. This tree in Colorado: The European larch is an under-utilized conversation piece in Colorado. It functions very effectively in larger landscapes as specimens or groupings. Like the majority of trees, it performs best in acidic, established soils. Once established, the larch requires only moderate moisture, making it an easy fit for most manicured landscapes. The European larch should be transplanted when dormant, as planting during the growing season can result in severe shock. There are no significant diseases of larches present in Colorado and few elsewhere. One precautionary note: although the European larch requires a sunny location, it languishes in heat and should not be sited in areas that will receive reflective heat; it is best in established areas with larger trees (a cooler micro-climate). Hardiness: Zones 3A to 6. Quite cold-hardy and needs to be protected from reflective heat. Growth rate, form, and size: Larches grow quickly in comparison to most other conifers and can gain two feet of height in a growing season. This tree will be gracefully pyramidal with drooping branchlets in its youth, and it becomes more rigid and open as it reaches maturity. Foliage: Sprays of single needles cluster along the branches, emerging as a bright green in spring, turning deeper green and finally yellow or orange in fall.
    [Show full text]
  • Apró Közlemények / Short Communications
    http://kitaibelia.unideb.hu/ ISSN 2064-4507 (Online) ● ISSN 1219-9672 (Print) © Department of Botany, University of Debrecen, Hungary 23 (1): 103–105.; 2018 DOI: 10.17542/kit.23.103 Apró közlemények / Short communications 1. Thelypteris palustris Schott a Börzsöny hegységben / Thelypteris palustris Schott in Börzsöny Mts (N Hungary) 2017. május 20-án a védett Thelypteris palustris Schott ismeretlen állományát fedezte fel Ferenczi Balázs a hegység forrásainak térképezése során Nagybörzsöny határában, a Lóhegyi- patak völgyében (N 47.89741°, E 18.90516°, tszf.: 425 m; KEF: 8179/1). A Börzsöny hegységből a tőzegpáfrányt NAGY (2007) nem említi. A szomszédos Ipoly- völgyből (SCHMOTZER 2008) és a Közép-Duna-völgyből ismertek előfordulásai, ugyanakkor középhegységeinkben ritka (BARTHA et al. 2015). 2017. november 1-én közös terepbejáráson mértük fel a populációt és a termőhelyéül szolgáló lápszemet. A gyertyános kocsánytalan tölgyesbe ágyazódó lápszem a délkeleti irányú völgy bal oldalán, egy, a talajból fakadó forrásnál helyezkedik el, feltételezhetően természetes eredetű vízállásos mélyedésben. Kiterjedése mintegy 300 négyzetméter (25 m × 10–15 m). Területének közel harmadát 1–8 m magas cserjék borítják (Cornus sanguinea, Salix cinerea, Sambucus nigra, Rubus fruticosus agg., Viburnum opulus). A Thelypteris palustris állomány összesen mintegy 40–50 négyzetmétert borít. A lápszem gyepszintje fejlett. A benne megfigyelt fajok a következők voltak: Aegopodium podagraria, Athyrium filix-femina, Callitriche sp., Caltha palustris subsp. laeta, Carex
    [Show full text]
  • Dundee's Tree & Woodland Heritage
    Dundee’s Tree Woodland Heritage& 1 A Green City Introduction This short publication aims to make residents and visitors more aware of Dundee’s rich arboricultural heritage. s Trees and woods provide a unique living t s e r legacy, reflecting the evolution of the City o l f a i c over the centuries. r e m m o e c l A visit to some of the sites listed will b a n i a provide glimpses into the history t s u of Dundee, and an introduction to d s n d a some colourful characters from the e g a n past; merchants, heroes, explorers, a y m l b revolutionaries, industrialists and i s n o everyday people. Every location has its p s e own part to play in making Dundee’s m r o r d f special sense of place. e c r u o l s a i r There can be few cities in the world e t a which can boast their own unique form s m n i a t of tree. Dundee is privileged in this n o n c respect to have the Camperdown Elm, o i t a c i now widely grown around the world as l b u a cultivar. This, along with the rest of s p i h n t Dundee’s rich green legacy, is something i r e p of which Dundonians should be a e p h justifiably proud. T The banks of the Dighty Burn 2 Contents A Brief History of Dundee’s Trees and Woods 4 Early History 6 The Growth of Dundee Western City and Approaches 8 Liff and Ninewells 9 University of Dundee Botanic Garden 10 Balgay Hill Woods 11 Menzieshill and South Road Park Camperdown and Clatto Area 12 Camperdown Country Park 13 Templeton Woods 14 Clatto Country Park 15 Lansdowne and Foggyley Aconites Perth Road Around the City Centre 16 City Centre and
    [Show full text]
  • Design & Drawings by Megan J Seiter
    of 1 18 1 2 H He halder orange 2 13 14 15 16 17 3 4 5 6 7 8 9 10 Li Be omes are a type of fleshy fruit produced by the flowering plants apple pie order, or it’s all gone pear-shaped. We polish apples for the “teach,” B C N O F Ne in the Malinae subtribe of the family, Rosaceae, the hipper, hippier I look most fondly upon the apple of my eye. Eve proposed an “apple” (though cousins of rose-hips. But pomes are also poems, infinitely varied, of diverse many Biblical scholars believe it was a quince) to Adam to non-salubrious effect limelight brussels plain reinette hue, texture, shape and size — sweet too (like poems), though sometimes — the Eve of Destruction! Pomes have been successfully cultivated for millennia bartlett concorde napoleons butterbirne oliver de serres french pineapple gamboa (unfortunately) bordering on sappy. The pome meme has crept — in a most throughout Europe and Asia, and lately are doing very well in Cupertino, CA. At 11 12 13 14 15 16 17 18 Na Mg serpentine manner, I might add — into our psyche. The shape of the pome least one of the mysteries of the physical universe was illuminated to Sir Isaac Al Si P S Cl Ar reflects the shape of our own world at any given moment. Everything is in through the agency of pomeboinkage. (Applesauce!) newton pippin mcclintock grimes alexandrine douillard sunsprite passe colmar schonlins Winterbutterbirne colomas autumn pear bereczcki 3 4 5 6 7 8 9 10 11 12 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr keukelaar canterbury
    [Show full text]
  • The Reaction of Different Sorbus L. Species to Low Temperatures During Thaw in the Orel Region
    Original Paper Journal of Forest Science, 65, 2019 (6): 218–225 https://doi.org/10.17221/8/2019-JFS The reaction of different Sorbus L. species to low temperatures during thaw in the Orel region Zoya Ozherelieva*, Olga Emelianova Russian Research Institute of Fruit Crop Breeding (VNIISPK), Orel, Russia Corresponding author: [email protected] *Citation: Ozherelieva Z., Emelianova O. (2019): The reaction of different Sorbus L. species to low temperatures during thaw in the Orel region. J. For. Sci., 65: 218–225. Abstract: Five Sorbus L. species of different ecological and geographical origin growing in the VNIISPK arboretum were studied. The Institute is located 368 km southwest of Moscow, on the Central Russian upland in the European part of Russia. The studies were carried out in 2014–2016. The reaction of different Sorbus L. species to a three-day thaw +2°C with a subsequent decrease in temperature to –25°C in February and –30°C in March was studied in or- der to identify adapted species to the climatic conditions of the Orel region for use in ornamental horticulture. As a result of the experiment, we recommend Sorbus aria (L.) Crantz, Sorbus aucuparia L. and Sorbus alnifolia (Siebold. et Zucc.) K. Koch. as adapted species for the Orel region to create sustainable landscape compositions. Keywords: artificial freezing; adaptation; frost hardiness Low temperature is a key environmental fac- es (Groffman et al. 2001; Schaberg et al. 2008; tor determining the evolution and distribution of Ozherelieva, Sedov 2017). Thus in nature, slight plants (Hawkins et al. 2014). Frost can damage freezing or death of trees is observed as a conse- plants through xylem embolism and the forma- quence of sharp temperature declines during thaws tion of extracellular ice, which causes cell dehydra- in February and March which cause trees to break tion and disruption of cell membranes (Zwiazek deep dormancy.
    [Show full text]
  • L'alisier HYBRIDE SORBUS ARIA X AUCUPARIA (ROSACEAE) EN HAUTE MAURIENNE
    L'ALISIER HYBRIDE SORBUS ARIA x AUCUPARIA (ROSACEAE) EN HAUTE MAURIENNE Par Félix Benoît RÉSUMÉ : cet article relate la présence de quelques exemplaires d’alisiers hybrides de type Sorbus aria × aucuparia à Termignon, en Haute Maurienne ; avec deux tableaux et une figure. MOTS-CLÉS : flore alpine, Savoie, Hybride, Sorbus, Sorbus mougeotii, Sorbus x thuringiaca. INTRODUCTION Durant l’été 2014, j’ai découvert à Termignon plusieurs représentants du genre Sorbus L. (Rosaceae) à morphologie foliaire assez singulière, bien distincte des espèces connues en Savoie. En effet, si la partie supérieure de la feuille est simplement lobée, la partie inférieure présente une ou plusieurs paires de folioles indépendantes. Il s’agit d’hybrides entre Sorbus aria (L.) Crantz et Sorbus aucuparia L. [= Sorbus x thuringiaca (Ilse) Fritsch] (Cornier & Timbal, 2014). PRÉSENTATION DU GENRE SORBUS Comme d’autres rosacées, le genre Sorbus est très complexe puisqu’à côté d’espèces "vraies", diploïdes (à 2n = 34 chromosomes) et à reproduction sexuée, existent non seulement des hybrides occasionnels, plus ou moins fertiles, mais aussi des espèces "hybridogènes". Ces dernières sont généralement tétraploïdes (à 2n = 68 chromosomes), à reproduction asexuée et sont abondantes sur une vaste aire géographique. Des hybrides occasionnels, partiellement fertiles, forment parfois de petites populations isolées. Leur attribuer le statut d’espèce hybridogène peut paraître exagéré en raison de leur faible valeur évolutive (Jauzein & Nawrot, 2013). En Europe, le genre Sorbus est représenté par dix-huit espèces (Warburg & Kárpáti, 1968), sept d’entre elles sont reconnues en France (voir Tableau 1). La présence de deux espèces supplémentaires, S. hybrida L. (Alisier de Finlande, à répartition centre et nord-européenne), issue de croisements entre S.
    [Show full text]