Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MEGHARAJ-THESIS-2017.Pdf (1.176Mb)
INTGRATING PROCESSING IN-MEMORY (PIM) TECHNOLOGY INTO GENERAL PURPOSE GRAPHICS PROCESSING UNITS (GPGPU) FOR ENERGY EFFICIENT COMPUTING A Thesis Presented to the Faculty of the Department of Electrical Engineering University of Houston In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering by Paraag Ashok Kumar Megharaj August 2017 INTGRATING PROCESSING IN-MEMORY (PIM) TECHNOLOGY INTO GENERAL PURPOSE GRAPHICS PROCESSING UNITS (GPGPU) FOR ENERGY EFFICIENT COMPUTING ________________________________________________ Paraag Ashok Kumar Megharaj Approved: ______________________________ Chair of the Committee Dr. Xin Fu, Assistant Professor, Electrical and Computer Engineering Committee Members: ____________________________ Dr. Jinghong Chen, Associate Professor, Electrical and Computer Engineering _____________________________ Dr. Xuqing Wu, Assistant Professor, Information and Logistics Technology ____________________________ ______________________________ Dr. Suresh K. Khator, Associate Dean, Dr. Badri Roysam, Professor and Cullen College of Engineering Chair of Dept. in Electrical and Computer Engineering Acknowledgements I would like to thank my advisor, Dr. Xin Fu, for providing me an opportunity to study under her guidance and encouragement through my graduate study at University of Houston. I would like to thank Dr. Jinghong Chen and Dr. Xuqing Wu for serving on my thesis committee. Besides, I want to thank my friend, Chenhao Xie, for helping me out and discussing in detail all the problems -
A Taxonomy of Accelerator Architectures and Their
A taxonomy of accelerator C. Cas$caval S. Chatterjee architectures and their H. Franke K. J. Gildea programming models P. Pattnaik As the clock frequency of silicon chips is leveling off, the computer architecture community is looking for different solutions to continue application performance scaling. One such solution is the multicore approach, i.e., using multiple simple cores that enable higher performance than wide superscalar processors, provided that the workload can exploit the parallelism. Another emerging alternative is the use of customized designs (accelerators) at different levels within the system. These are specialized functional units integrated with the core, specialized cores, attached processors, or attached appliances. The design tradeoff is quite compelling because current processor chips have billions of transistors, but they cannot all be activated or switched at the same time at high frequencies. Specialized designs provide increased power efficiency but cannot be used as general-purpose compute engines. Therefore, architects trade area for power efficiency by placing in the design additional units that are known to be active at different times. The resulting system is a heterogeneous architecture, with the potential of specialized execution that accelerates different workloads. While designing and building such hardware systems is attractive, writing and porting software to a heterogeneous platform is even more challenging than parallelism for homogeneous multicore systems. In this paper, we propose a taxonomy that allows us to define classes of accelerators, with the goal of focusing on a small set of programming models for accelerators. We discuss several types of currently popular accelerators and identify challenges to exploiting such accelerators in current software stacks. -
Technical Report TR-2020-10
Simulation-Based Engineering Lab University of Wisconsin-Madison Technical Report TR-2020-10 CryptoEmu: An Instruction Set Emulator for Computation Over Ciphers Xiaoyang Gong and Dan Negrut December 28, 2020 Abstract Fully homomorphic encryption (FHE) allows computations over encrypted data. This technique makes privacy-preserving cloud computing a reality. Users can send their encrypted sensitive data to a cloud server, get encrypted results returned and decrypt them, without worrying about data breaches. This project report presents a homomorphic instruction set emulator, CryptoEmu, that enables fully homomorphic computation over encrypted data. The software-based instruction set emulator is built upon an open-source, state-of-the-art homomorphic encryption library that supports gate-level homomorphic evaluation. The instruction set architecture supports multiple instructions that belong to the subset of ARMv8 instruction set architecture. The instruction set emulator utilizes parallel computing techniques to emulate every functional unit for minimum latency. This project re- port includes details on design considerations, instruction set emulator architecture, and datapath and control unit implementation. We evaluated and demonstrated the instruction set emulator's performance and scalability on a 48-core workstation. Cryp- toEmu shown a significant speed up in homomorphic computation performance when compared with HELib, a state-of-the-art homomorphic encryption library. Keywords: Fully Homomorphic Encryption, Parallel Computing, Homomorphic Instruction Set, Homomorphic Processor, Computer Architecture 1 Contents 1 Introduction 3 2 Background 4 3 TFHE Library 5 4 CryptoEmu Architecture Overview 7 4.1 Data Processing . .8 4.2 Branch and Control Flow . .9 5 Data Processing Units 9 5.1 Load/Store Unit . .9 5.2 Adder . -
Peering Over the Memory Wall: Design Space and Performance
Peering Over the Memory Wall: Design Space and Performance Analysis of the Hybrid Memory Cube UniversityDesign of Maryland Space andSystems Performance & Computer Architecture Analysis Group of Technical the Hybrid Report UMD-SCA-2012-10-01 Memory Cube Paul Rosenfeld*, Elliott Cooper-Balis*, Todd Farrell*, Dave Resnick°, and Bruce Jacob† *Micron, Inc. °Sandia National Labs †University of Maryland Abstract the hybrid memory cube which has the potential to address The Hybrid Memory Cube is an emerging main memory all three of these problems at the same time. The HMC tech- technology that leverages advances in 3D fabrication tech- nology leverages advances in fabrication technology to create niques to create a CMOS logic layer with DRAM dies stacked a 3D stack that contains a CMOS logic layer with several on top. The logic layer contains several DRAM memory con- DRAM dies stacked on top. The logic layer contains several trollers that receive requests from high speed serial links from memory controllers, a high speed serial link interface, and an the host processor. Each memory controller is connected to interconnect switch that connects the high speed links to the several memory banks in several DRAM dies with a vertical memory controllers. By stacking memory elements on top of through-silicon via (TSV). Since the TSVs form a dense in- controllers, the HMC can deliver data from memory banks to terconnect with short path lengths, the data bus between the controllers with much higher bandwidth and lower energy per controller and banks can be operated at higher throughput and bit than a traditional memory system. -
X86 Assembly Language Syllabus for Subject: Assembly (Machine) Language
VŠB - Technical University of Ostrava Department of Computer Science, FEECS x86 Assembly Language Syllabus for Subject: Assembly (Machine) Language Ing. Petr Olivka, Ph.D. 2021 e-mail: [email protected] http://poli.cs.vsb.cz Contents 1 Processor Intel i486 and Higher – 32-bit Mode3 1.1 Registers of i486.........................3 1.2 Addressing............................6 1.3 Assembly Language, Machine Code...............6 1.4 Data Types............................6 2 Linking Assembly and C Language Programs7 2.1 Linking C and C Module....................7 2.2 Linking C and ASM Module................... 10 2.3 Variables in Assembly Language................ 11 3 Instruction Set 14 3.1 Moving Instruction........................ 14 3.2 Logical and Bitwise Instruction................. 16 3.3 Arithmetical Instruction..................... 18 3.4 Jump Instructions........................ 20 3.5 String Instructions........................ 21 3.6 Control and Auxiliary Instructions............... 23 3.7 Multiplication and Division Instructions............ 24 4 32-bit Interfacing to C Language 25 4.1 Return Values from Functions.................. 25 4.2 Rules of Registers Usage..................... 25 4.3 Calling Function with Arguments................ 26 4.3.1 Order of Passed Arguments............... 26 4.3.2 Calling the Function and Set Register EBP...... 27 4.3.3 Access to Arguments and Local Variables....... 28 4.3.4 Return from Function, the Stack Cleanup....... 28 4.3.5 Function Example.................... 29 4.4 Typical Examples of Arguments Passed to Functions..... 30 4.5 The Example of Using String Instructions........... 34 5 AMD and Intel x86 Processors – 64-bit Mode 36 5.1 Registers.............................. 36 5.2 Addressing in 64-bit Mode.................... 37 6 64-bit Interfacing to C Language 37 6.1 Return Values.......................... -
Bitwise Operators in C Examples
Bitwise Operators In C Examples Alphonse misworships discommodiously. Epigastric Thorvald perishes changefully while Oliver always intercut accusatively.his anthology plumps bravely, he shown so cheerlessly. Baillie argufying her lashkar coweringly, she mass it Find the program below table which is c operators associate from star from the positive Left shift shifts each bit in its left operand to the left. Tying up some Arduino loose ends before moving on. The next example shows you how to do this. We can understand this better using the following Example. These operators move each bit either left or right a specified number of times. Amazon and the Amazon logo are trademarks of Amazon. Binary form of these values are given below. Shifting the bits of the string of bitwise operators in c examples and does not show the result of this means the truth table for making. Mommy, security and web. When integers are divided, it shifts the bits to the right. Operators are the basic concept of any programming language, subtraction, we are going to see how to use bitwise operators for counting number of trailing zeros in the binary representation of an integer? Adding a negative and positive number together never means the overflow indicates an exception! Not valid for string or complex operands. Les cookies essentiels sont absolument necessaires au bon fonctionnement du site. Like the assembly in C language, unlike other magazines, you may treat this as true. Bitwise OR operator is used to turn bits ON. To me this looks clearer as is. We will talk more about operator overloading in a future section, and the second specifies the number of bit positions by which the first operand is to be shifted. -
WWW 2013 22Nd International World Wide Web Conference
WWW 2013 22nd International World Wide Web Conference General Chairs: Daniel Schwabe (PUC-Rio – Brazil) Virgílio Almeida (UFMG – Brazil) Hartmut Glaser (CGI.br – Brazil) Research Track: Ricardo Baeza-Yates (Yahoo! Labs – Spain & Chile) Sue Moon (KAIST – South Korea) Practice and Experience Track: Alejandro Jaimes (Yahoo! Labs – Spain) Haixun Wang (MSR – China) Developers Track: Denny Vrandečić (Wikimedia – Germany) Marcus Fontoura (Google – USA) Demos Track: Bernadette F. Lóscio (UFPE – Brazil) Irwin King (CUHK – Hong Kong) W3C Track: Marie-Claire Forgue (W3C Training, USA) Workshops Track: Alberto Laender (UFMG – Brazil) Les Carr (U. of Southampton – UK) Posters Track: Erik Wilde (EMC – USA) Fernanda Lima (UNB – Brazil) Tutorials Track: Bebo White (SLAC – USA) Maria Luiza M. Campos (UFRJ – Brazil) Industry Track: Marden S. Neubert (UOL – Brazil) Proceedings and Metadata Chair: Altigran Soares da Silva (UFAM - Brazil) Local Arrangements Committee: Chair – Hartmut Glaser Executive Secretary – Vagner Diniz PCO Liaison – Adriana Góes, Caroline D’Avo, and Renato Costa Conference Organization Assistant – Selma Morais International Relations – Caroline Burle Technology Liaison – Reinaldo Ferraz UX Designer / Web Developer – Yasodara Córdova, Ariadne Mello Internet infrastructure - Marcelo Gardini, Felipe Agnelli Barbosa Administration– Ana Paula Conte, Maria de Lourdes Carvalho, Beatriz Iossi, Carla Christiny de Mello Legal Issues – Kelli Angelini Press Relations and Social Network – Everton T. Rodrigues, S2Publicom and EntreNós PCO – SKL Eventos -
Matrox Imaging Library (MIL) 9.0 Update 58
------------------------------------------------------------------------------- Matrox Imaging Library (MIL) 9.0 Update 58. Release Notes (Whatsnew) September 2012 (c) Copyright Matrox Electronic Systems Ltd., 1992-2012. ------------------------------------------------------------------------------- For more information and what's new in processing, display, drivers, Linux, ActiveMIL, and all MIL 9 updates, consult their respective readme files. Main table of contents Section 1 : What's new in Mil 9.0 Update 58 Section 2 : What's new in MIL 9.0 Release 2. Section 3 : What's new in MIL 9.0. Section 4 : Differences between MIL Lite 8.0 and 7.5 Section 5 : Differences between MIL Lite 7.5 and 7.1 Section 6 : Differences between MIL Lite 7.1 and 7.0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- Section 1: What's new in MIL 9.0 Update 58. Table of Contents for Section 1 1. Overview. 2. Mseq API function definition 2.1 MseqAlloc 2.2 MseqControl 2.3 MseqDefine 2.4 MseqFeed 2.5 MseqFree 2.6 MseqGetHookInfo 2.7 MseqHookFunction 2.8 MseqInquire 2.9 MseqProcess 3. Examples 4. Operating system information 1. Overview. The main goal for MIL 9.0 Update 58 is to add a new module called Mseq, which offers a user-friendly interface for H.264 compression. 2. Mseq API function definition 2.1 MseqAlloc - Synopsis: Allocate a sequence context. - Syntax: MIL_ID MseqAlloc( MIL_ID SystemID, MIL_INT64 SequenceType, MIL_INT64 Operation, MIL_UINT32 OutputFormat, MIL_INT64 InitFlag, MIL_ID* ContextSeqIdPtr) - Parameters: * SystemID: Specifies the identifier of the system on which to allocate the sequence context. This parameter must be given a valid system identifier. * SequenceType: Specifies the type of sequence to allocate: Values: M_DEFAULT - Specifies the sequence as a context in which the related operation should be performed. -
Intel ® Atom™ Processor E6xx Series SKU for Different Segments” on Page 30 Updated Table 15
Intel® Atom™ Processor E6xx Series Datasheet July 2011 Revision 004US Document Number: 324208-004US INFORMATIONLegal Lines and Disclaimers IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. -
First Draft of Hybrid Memory Cube Interface Specification Released
First Draft of Hybrid Memory Cube Interface Specification Released August 14, 2012 BOISE, Idaho and SAN JOSE, Calif., Aug. 14, 2012 (GLOBE NEWSWIRE) -- The Hybrid Memory Cube Consortium (HMCC), led by Micron Technology, Inc. (Nasdaq:MU), and Samsung Electronics Co., Ltd., today announced that its developer members have released the initial draft of the Hybrid Memory Cube (HMC) interface specification to a rapidly growing number of industry adopters. Issuance of the draft puts the consortium on schedule to release the final version by the end of this year. The industry specification will enable adopters to fully develop designs that leverage HMC's innovative technology, which has the potential to boost performance in a wide range of applications. The initial specification draft consists of an interface protocol and short-reach interconnection across physical layers (PHYs) targeted for high-performance networking, industrial, and test and measurement applications. The next step in development of the specification calls for the consortium's adopters and developers to refine the specification and define an ultra short-reach PHY for applications requiring tightly coupled or close proximity memory support for FPGAs, ASICs and ASSPs. "With the draft standard now available for final input and modification by adopter members, we're excited to move one step closer to enabling the Hybrid Memory Cube and the latest generation of 28-nanometer (nm) FPGAs to be easily integrated into high-performance systems," said Rob Sturgill, architect, at Altera. "The steady progress among the consortium's member companies for defining a new standard bodes well for businesses who would like to achieve unprecedented system performance and bandwidth by incorporating the Hybrid Memory Cube into their product strategies." The interface specification reflects a focused collaboration among several of the world's leading technology providers. -
Adding Support for Vector Instructions to 8051 Architecture
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 10 | Oct 2018 www.irjet.net p-ISSN: 2395-0072 Adding Support for Vector Instructions to 8051 Architecture Pulkit Gairola1, Akhil Alluri2, Rohan Verma3, Dr. Rajeev Kumar Singh4 1,2,3Student, Dept. of Computer Science, Shiv Nadar University, Uttar, Pradesh, India, 4Assistant Dean & Professor, Dept. of Computer Science, Shiv Nadar University, Uttar, Pradesh, India, ----------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Majority of the IoT (Internet of Things) devices are Some of the features that have made the 8051 popular are: meant to just collect data and sent it to the cloud for processing. They can be provided with such vectorization • 4 KB on chip program memory. capabilities to carry out very specific computation work and • 128 bytes on chip data memory (RAM) thus reducing latency of output. This project is used to demonstrate how to add specialized 1.2 Components of 8051[2] vectorization capabilities to architectures found in micro- controllers. • 4 register banks. • 128 user defined software flags. The datapath of the 8051 is simple enough to be pliable • 8-bit data bus for adding an experimental Vectorization module. We are • 16-bit address bus trying to make changes to an existing scalar processor so • 16 bit timers (usually 2, but may have more, or less). that it use a single instruction to operate on one- dimensional • 3 internal and 2 external interrupts. arrays of data called vectors. The significant reduction in the • Bit as well as byte addressable RAM area of 16 bytes. Instruction fetch overhead for vectorizable operations is useful • Four 8-bit ports, (short models have two 8-bit ports). -
Datasheet, Volume 2
Intel® Core™ i7-900 Desktop Processor Extreme Edition Series and Intel® Core™ i7-900 Desktop Processor Series on 32-nm Process Datasheet, Volume 2 July 2010 Reference Number: 323253-002 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Core™ i7-900 desktop processor Extreme Edition series and Intel® Core™ i7-900 desktop processor series on 32-nm process may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details.