Box Turtles Genus Terrapene and Cuora
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Box Turtles July 2017
The HERP Project, Herpetology Education in Rural Places and Spaces In Awe of Nature: Treasuring Terrestrial Turtles By Ann Berry Somers, Catherine Matthews, and Lacey Huffling The Herp Project is supported by the National Science Foundation, Grant No. DRL-1114558. Any opinions, findings, and conclusions or recommendations expressed in this manuscript are those of the authors and do not necessarily reflect the views of the National Science Foundation. Treasuring Terrestrial Turtles Before starting a project like the one described in this curriculum, contact your state wildlife resources commission or state division of fish and game to see what permits you need to work with box turtles. I. Project Description This curriculum was developed by The HERP (Herpetology Education in Rural Places and Spaces) Project to introduce participants to the wonders of nature and science through the study of box turtles (Terrapene spp.). The curriculum was developed over several years of working with high school students in our Herpetological Research Experience (HRE) residential program. Feel free to modify this curriculum as needed. In our program, participants are introduced to turtle biology as well as to The Box Turtle Connection (BTC), our long-term mark/recapture box turtle study in North Carolina. The BTC is designed to follow temporal trends in population size and structure (sex, age class) as well as the health and condition of individual box turtles from numerous sites across North Carolina. The data collected are important to help scientists determine if box turtles need special conservation measures to maintain their populations and thrive in their natural habitat. Our box turtle studies are enhanced by use of Boykin Spaniel dogs to locate and retrieve box turtles and use of radio tracking to determine activity ranges for male and female box turtles. -
AN INTRODUCTION to Texas Turtles
TEXAS PARKS AND WILDLIFE AN INTRODUCTION TO Texas Turtles Mark Klym An Introduction to Texas Turtles Turtle, tortoise or terrapin? Many people get confused by these terms, often using them interchangeably. Texas has a single species of tortoise, the Texas tortoise (Gopherus berlanderi) and a single species of terrapin, the diamondback terrapin (Malaclemys terrapin). All of the remaining 28 species of the order Testudines found in Texas are called “turtles,” although some like the box turtles (Terrapene spp.) are highly terrestrial others are found only in marine (saltwater) settings. In some countries such as Great Britain or Australia, these terms are very specific and relate to the habit or habitat of the animal; in North America they are denoted using these definitions. Turtle: an aquatic or semi-aquatic animal with webbed feet. Tortoise: a terrestrial animal with clubbed feet, domed shell and generally inhabiting warmer regions. Whatever we call them, these animals are a unique tie to a period of earth’s history all but lost in the living world. Turtles are some of the oldest reptilian species on the earth, virtually unchanged in 200 million years or more! These slow-moving, tooth less, egg-laying creatures date back to the dinosaurs and still retain traits they used An Introduction to Texas Turtles | 1 to survive then. Although many turtles spend most of their lives in water, they are air-breathing animals and must come to the surface to breathe. If they spend all this time in water, why do we see them on logs, rocks and the shoreline so often? Unlike birds and mammals, turtles are ectothermic, or cold- blooded, meaning they rely on the temperature around them to regulate their body temperature. -
Dispersal in the Coahuilan Box Turtle
1 Running title: Dispersal in the Coahuilan box turtle In press, Molecular Ecology 2 3 4 CONTRASTING DEMOGRAPHIC AND GENETIC ESTIMATES OF DISPERSAL IN THE 5 6 ENDANGERED COAHUILAN BOX TURTLE: A CONTEMPORARY APPROACH TO 7 8 CONSERVATION 9 10 Jennifer G. Howeth1,4, Suzanne E. McGaugh2, Dean A. Hendrickson1,3 11 12 MEC-08-0399 Final 13 1 Section of Integrative Biology 14 University of Texas at Austin 15 1 University Station C0930 16 Austin, Texas 78712 17 Phone: 512 475 8669 18 Fax: 512 471 3878 19 20 2 Department of Ecology, Evolution, and Organismal Biology 21 Iowa State University 22 251 Bessey Hall 23 Ames, Iowa 50011 24 25 3 Texas Natural Science Center, Texas Natural History Collection 26 University of Texas at Austin 27 PRC 176 / R4000 28 10100 Burnet Road 29 Austin, Texas 78758 30 31 4 Corresponding author: [email protected] 32 Abstract: 249 / 250 words 33 Main text: 7,641 / 8,000 words 34 Figures: 5; Supplementary Figures: 2 35 Tables: 3; Supplementary Tables: 2 36 37 38 Keywords: connectivity, isolation by distance, metapopulation, microsatellite, mark-recapture, 39 habitat fragmentation 40 Abstract 41 42 The evolutionary viability of an endangered species depends upon gene flow among subpopulations 43 and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and 44 evolutionary timescales may provide novel insight into what maintains genetic diversity within 45 threatened species. We employed this integrative approach to evaluating dispersal in the critically 46 endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert- 47 spring ecosystem of Cuatro Ciénegas, Mexico. -
Suggested Guidelines for Reptiles and Amphibians Used in Outreach
RECOMMENDATIONS FOR REPTILES AND AMPHIBIANS USED IN OUTREACH PROGRAMS Compiled by Diane Barber, Fort Worth Zoo Originally posted September 2003; updated February 2008 INTRODUCTION This document has been created by the AZA Reptile and Amphibian Taxon Advisory Groups to be used as a resource to aid in the development of institutional outreach programs. Within this document are lists of species that are commonly used in reptile and amphibian outreach programs. With over 12,700 species of reptiles and amphibians in existence today, it is obvious that there are numerous combinations of species that could be safely used in outreach programs. It is not the intent of these Taxon Advisory Groups to produce an all-inclusive or restrictive list of species to be used in outreach. Rather, these lists are intended for use as a resource and are some of the more common species that have been safely used in outreach programs. A few species listed as potential outreach animals have been earmarked as controversial by TAG members for various reasons. In each case, we have made an effort to explain debatable issues, enabling staff members to make informed decisions as to whether or not each animal is appropriate for their situation and the messages they wish to convey. It is hoped that during the species selection process for outreach programs, educators, collection managers, and other zoo staff work together, using TAG Outreach Guidelines, TAG Regional Collection Plans, and Institutional Collection Plans as tools. It is well understood that space in zoos is limited and it is important that outreach animals are included in institutional collection plans and incorporated into conservation programs when feasible. -
Batagur Affinis I Northern River Terrapin I Southern River Terrapin
IDENTIFICATION OF COMMONLY TRADED WILDLIFE WITH A FOCUS ON THE GOLDEN TRIANGLE LAO PDR · MYANMAR · THAILAND IDENTIFICATION OF COMMONLY TRADED WILDLIFE WITH A FOCUS ON THE GOLDEN TRIANGLE LAO PDR · MYANMAR · THAILAND WWW.TRAFFIC.ORG TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development. Reproduction of material appearing in this guide requires written permission from the publisher. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. © TRAFFIC 2020. Copyright of material published in this guide is vested in TRAFFIC. Suggested Citation: Beastall, C.A. and Chng, S.C.L. (2020). Identification of Commonly Traded Wildlife with a focus on the Golden Triangle (Lao PDR, Myanmar and Thailand). TRAFFIC, Southeast Asia Regional Office, Petaling Jaya, Selangor, Malaysia. USING THIS GUIDE This guide has been designed to assist identification of wildlife species which are commonly found in trade in the Golden Triangle (Lao PDR, Myanmar and Thailand). It is an update of the Identification Sheets for Wildlife Species Traded in Southeast Asia produced for The Association of Southeast Asian Nations—Wildlife Enforcement Network (ASEAN-WEN) between 2008 and 2013. This version was produced in 2020. This guide provides information on key identification features for the species or taxa, and what it is traded as. -
The Spatial Ecology of the Eastern Box Turtle (Terrapene Carolina Carolina) in a Fragmented Landscape in Southeast Tennessee, Hamilton County
THE SPATIAL ECOLOGY OF THE EASTERN BOX TURTLE (TERRAPENE CAROLINA CAROLINA) IN A FRAGMENTED LANDSCAPE IN SOUTHEAST TENNESSEE, HAMILTON COUNTY By Mark J. Dillard Thomas P. Wilson David A. Aborn UC Foundation Associate Professor of Associate Professor of Biology Biology Committee Member Committee Chair Bradley R. Reynolds Senior Lecturer of Environmental Science Committee Member THE SPATIAL ECOLOGY OF THE EASTERN BOX TURTLE (TERRAPENE CAROLINACAROLINA) IN A FRAGMENTED LANDSCAPE IN SOUTHEAST TENNESSEE, HAMILTON COUNTY By Mark J. Dillard A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of Master of Science: Environmental Science The University of Tennessee at Chattanooga Chattanooga, Tennessee December 2016 ii Copyright © 2016 By Mark John Dillard All Rights Reserved iii ABSTRACT The landscape throughout the range of the Eastern Box turtle (Terrapene carolina carolina) has been altered significantly since the late 1880s by habitat fragmentation. In this study, the spatial ecology and seasonal movement patterns of the Eastern Box turtle in contrasting habitat types are investigated. Eastern Box turtles had home ranges that averaged (mean = 3.77 ± 2.82 ha, minimum convex polygon) in size among individuals. There was no significant difference between mean annual home range size and movement patterns between males and females; however, home range size for male turtles was larger during the summer versus spring activity season (P = 0.02). At the landscape level, turtles used eastern deciduous forest and successional habitats and they selected sites with ample ground and canopy cover. These findings can be used to better conserve the habitats and populations of the Eastern Box turtle. -
(Sarracenia) Provide a 21St-Century Perspective on Infraspecific Ranks and Interspecific Hybrids: a Modest Proposal* for Appropriate Recognition and Usage
Systematic Botany (2014), 39(3) © Copyright 2014 by the American Society of Plant Taxonomists DOI 10.1600/036364414X681473 Date of publication 05/27/2014 Pitcher Plants (Sarracenia) Provide a 21st-Century Perspective on Infraspecific Ranks and Interspecific Hybrids: A Modest Proposal* for Appropriate Recognition and Usage Aaron M. Ellison,1,5 Charles C. Davis,2 Patrick J. Calie,3 and Robert F. C. Naczi4 1Harvard University, Harvard Forest, 324 North Main Street, Petersham, Massachusetts 01366, U. S. A. 2Harvard University Herbaria, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U. S. A. 3Eastern Kentucky University, Department of Biological Sciences, 521 Lancaster Avenue, Richmond, Kentucky 40475, U. S. A. 4The New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York 10458, U. S. A. 5Author for correspondence ([email protected]) Communicating Editor: Chuck Bell Abstract—The taxonomic use of infraspecific ranks (subspecies, variety, subvariety, form, and subform), and the formal recognition of interspecific hybrid taxa, is permitted by the International Code of Nomenclature for algae, fungi, and plants. However, considerable confusion regarding the biological and systematic merits is caused by current practice in the use of infraspecific ranks, which obscures the meaningful variability on which natural selection operates, and by the formal recognition of those interspecific hybrids that lack the potential for inter-lineage gene flow. These issues also may have pragmatic and legal consequences, especially regarding the legal delimitation and management of threatened and endangered species. A detailed comparison of three contemporary floras highlights the degree to which infraspecific and interspecific variation are treated inconsistently. -
Glyptemys Muhlenbergii) and the Need for a Regional Approach to Turtle Conservation Author(S): Kevin T
Genetic Connectivity among Populations of the Threatened Bog Turtle (Glyptemys muhlenbergii) and the Need for a Regional Approach to Turtle Conservation Author(s): Kevin T. Shoemaker and James P. Gibbs Source: Copeia, 2013(2):324-331. Published By: The American Society of Ichthyologists and Herpetologists DOI: http://dx.doi.org/10.1643/OT-12-022 URL: http://www.bioone.org/doi/full/10.1643/OT-12-022 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Copeia 2013, No. 2, 324–331 Genetic Connectivity among Populations of the Threatened Bog Turtle (Glyptemys muhlenbergii) and the Need for a Regional Approach to Turtle Conservation Kevin T. Shoemaker1,2 and James P. Gibbs1 The threatened Bog Turtle (Glyptemys muhlenbergii) is considered among the most sedentary of turtles, yet with population sizes generally below 50 individuals, gene flow among populations is clearly necessary to maintain healthy levels of genetic diversity. -
Care of the Chinese Box Turtle Husbandry & Diet Information
Care of the Chinese Box Turtle Husbandry & Diet Information Quick Facts about Cuora flavomarginata • Lifespan: 20 years • Average weight: 400-750 grams • Shell length: 14-16.5 cm (5.5-6.5 in) Natural History This charming box turtle is native to the rice patty and pond environments of Taiwan and southern China. Reproduction The nesting season ranges from March to August, with up to 3 or 4 clutches laid annually. Clutches averaging 1-3 eggs. Incubation temperatures should be maintained at 28ºC (83ºF), humidity at 90%-100%, with ample aeration. Eggs hatch within 75-90 days. Enclosure The Chinese box turtle is a semi-aquatic species, and an outdoor enclosure with an accessible pond is best. For indoor housing, this species can be set up in a 30-55 gallon (114-208 L) aquarium with wood branches and a rock for basking. The tank should have an aquatic set up which consists of half land with a basking area and half water. 50% Land 50% Water • Maintain humidity between 60%-70% • Provide a shallow panel of water in the during the daytime. tank measuring 7-20 cm (3-8 in) in depth • Provide a basking site at 29-32ºC (85-90ºF) • As this species originates from the tropics, and full-spectrum (UVB) lighting maintain water temperature between 24- • Avoid any substrate that is small enough to 26ºC (75-80ºF) with the use of a be ingested such as bark, sand, millet, or submersible tank heater walnut shells • At night, the temperature SHOULD NOT drop below 24ºC (75ºF). Diet Asian box turtles are omnivorous, with a preference for vegetables. -
Invasion of the Turtles? Wageningen Approach
Alterra is part of the international expertise organisation Wageningen UR (University & Research centre). Our mission is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University and Van Hall Larenstein University of Applied Sciences to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6,500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Invasion of the turtles? Wageningen Approach. Alterra is the research institute for our green living environment. We offer a combination of practical and scientific Exotic turtles in the Netherlands: a risk assessment research in a multitude of disciplines related to the green world around us and the sustainable use of our living environment, such as flora and fauna, soil, water, the environment, geo-information and remote sensing, landscape and spatial planning, man and society. Alterra report 2186 ISSN 1566-7197 More information: www.alterra.wur.nl/uk R.J.F. Bugter, F.G.W.A. Ottburg, I. Roessink, H.A.H. Jansman, E.A. van der Grift and A.J. Griffioen Invasion of the turtles? Commissioned by the Invasive Alien Species Team of the Food and Consumer Product Safety Authority Invasion of the turtles? Exotic turtles in the Netherlands: a risk assessment R.J.F. -
Sequence-Based Molecular Phylogenetics and Phylogeography of the American Box Turtles (Terrapene Spp.) with Support from DNA Barcoding ⇑ Bradley T
Molecular Phylogenetics and Evolution 68 (2013) 119–134 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Sequence-based molecular phylogenetics and phylogeography of the American box turtles (Terrapene spp.) with support from DNA barcoding ⇑ Bradley T. Martin a, , Neil P. Bernstein b, Roger D. Birkhead c, Jim F. Koukl a, Steven M. Mussmann d, John S. Placyk Jr. a a Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA b Deptartment of Natural and Applied Sciences, Mount Mercy University, Cedar Rapids, IA 52402, USA c Alabama Science in Motion, Auburn University, Auburn, AL 36849, USA d Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA article info abstract Article history: The classification of the American box turtles (Terrapene spp.) has remained enigmatic to systematis ts. Received 31 December 2012 Previous comp rehensive phylogenetic studies focused primarily on morphology. The goal of this study Accepted 8 March 2013 was to re-assess the classification of Terrapene spp. by obtaining DNA sequence data from a broad geo- Available online 20 March 2013 graphic range and from all four recogni zed species and 11subspecies within the genus. Tissue samples were obtained for all taxa except for Terrapene nelsoni klauberi . DNA was extracted, and the mitochondrial Keywords: DNA (mtDNA) cytochrome b (Cytb) and nuclear DNA (nucDNA) glyceraldehyde-3-phosph ate-dehydrogenase Box turtle (GAPD) genes were amplified via polymera sechain reaction and sequenced. In addition, the mtDNA gene DNA barcoding commonly used for DNA barcoding (cytochrome oxidase c subunit I; COI) was amplified and sequenced to Molecular phylogenetics Phylogeography calculate pairwise percent DNA sequence divergen cecompariso nsfor each Terrapene taxon. -
Life History Variation Between High and Low Elevation Subspecies of Horned Larks Eremophila Spp
J. Avian Biol. 41: 273Á281, 2010 doi: 10.1111/j.1600-048X.2009.04816.x # 2010 The Authors. J. Compilation # 2010 J. Avian Biol. Received 29 January 2009, accepted 10 August 2009 Life history variation between high and low elevation subspecies of horned larks Eremophila spp. Alaine F. Camfield, Scott F. Pearson and Kathy Martin A. F. Camfield ([email protected]) and K. Martin, Centr. for Appl. Conserv. Res., Fac. of Forestry, Univ. of British Columbia, 2424 Main Mall, Vancouver, B.C., Canada, V6T 1Z4. AFC and KM also at: Canadian Wildlife Service, Environment Canada, 351 St. Joseph Blvd., Gatineau, QC K1A 0H3. Á S. F. Pearson, Wildl. Sci. Div., Washington Dept. of Fish and Wildl., 1111 Washington St. SE, Olympia, WA, USA, 98501-1091. Environmental variation along elevational gradients can strongly influence life history strategies in vertebrates. We investigated variation in life history patterns between a horned lark subspecies nesting in high elevation alpine habitat Eremophila alpestris articola and a second subspecies in lower elevation grassland and sandy shoreline habitats E. a. strigata. Given the shorter breeding season and colder climate at the northern alpine site we expected E. a. articola to be larger, have lower fecundity and higher apparent survival than E. a. strigata. As predicted, E. a. articola was larger and the trend was toward higher apparent adult survival for E. a. articola than E. a. strigata (0.69 vs 0.51). Contrary to our predictions, however, there was a trend toward higher fecundity for E. a. articola (1.75 female fledglings/female/year vs 0.91).