Magellan Rx Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endothelin System and Therapeutic Application of Endothelin Receptor
xperim ACCESS Freely available online & E en OPEN l ta a l ic P in h l a C r m f o a c l a o n l o r g u y o J Journal of ISSN: 2161-1459 Clinical & Experimental Pharmacology Research Article Endothelin System and Therapeutic Application of Endothelin Receptor Antagonists Abebe Basazn Mekuria, Zemene Demelash Kifle*, Mohammedbrhan Abdelwuhab Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia ABSTRACT Endothelin is a 21 amino acid molecule endogenous potent vasoconstrictor peptide. Endothelin is synthesized in vascular endothelial and smooth muscle cells, as well as in neural, renal, pulmonic, and inflammatory cells. It acts through a seven transmembrane endothelin receptor A (ETA) and endothelin receptor B (ETB) receptors belongs to G protein-coupled rhodopsin-type receptor superfamily. This peptide involved in pathogenesis of cardiovascular disorder like (heart failure, arterial hypertension, myocardial infraction and atherosclerosis), renal failure, pulmonary arterial hypertension and it also involved in pathogenesis of cancer. Potentially endothelin receptor antagonist helps the treatment of the above disorder. Currently, there are a lot of trails both per-clinical and clinical on endothelin antagonist for various cardiovascular, pulmonary and cancer disorder. Some are approved by FAD for the treatment. These agents are including both selective and non-selective endothelin receptor antagonist (ETA/B). Currently, Bosentan, Ambrisentan, and Macitentan approved -
Effects of Selexipag and Its Active Metabolite in Contrasting The
Cutolo et al. Arthritis Research & Therapy (2018) 20:77 https://doi.org/10.1186/s13075-018-1577-0 RESEARCH ARTICLE Open Access Effects of selexipag and its active metabolite in contrasting the profibrotic myofibroblast activity in cultured scleroderma skin fibroblasts Maurizio Cutolo1*, Barbara Ruaro1, Paola Montagna1, Renata Brizzolara1, Emanuela Stratta2, Amelia Chiara Trombetta1, Stefano Scabini2, Pier Paolo Tavilla3, Aurora Parodi3, Claudio Corallo4, Nicola Giordano4, Sabrina Paolino1, Carmen Pizzorni1, Alberto Sulli1, Vanessa Smith5 and Stefano Soldano1 Abstract Background: Myofibroblasts contribute to fibrosis through the overproduction of extracellular matrix (ECM) proteins, primarily type I collagen (COL-1) and fibronectin (FN), a process which is mediated in systemic sclerosis (SSc) by the activation of fibrogenic intracellular signaling transduction molecules, including extracellular signal-regulated kinases 1 and 2 (Erk1/2) and protein kinase B (Akt). Selexipag is a prostacyclin receptor agonist synthesized for the treatment of pulmonary arterial hypertension. The study investigated the possibility for selexipag and its active metabolite (ACT-333679) to downregulate the profibrotic activity in primary cultures of SSc fibroblasts/myofibroblasts and the fibrogenic signaling molecules involved. Methods: Fibroblasts from skin biopsies obtained with Ethics Committee (EC) approval from patients with SSc, after giving signed informed consent, were cultured until the 3rd culture passage and then either maintained in normal growth medium (untreated cells) or independently treated with different concentrations of selexipag (from 30 μMto 0.3 μM) or ACT-333679 (from 10 μMto0.1μM) for 48 h. Protein and gene expressions of α-smooth muscle actin (α-SMA), fibroblast specific protein-1 (S100A4), COL-1, and FN were investigated by western blotting and quantitative real-time PCR. -
Comparison of Pharmacological Activity of Macitentan and Bosentan in Preclinical Models of Systemic and Pulmonary Hypertension
LFS-13929; No of Pages 7 Life Sciences xxx (2014) xxx–xxx Contents lists available at ScienceDirect Life Sciences journal homepage: www.elsevier.com/locate/lifescie Comparison of pharmacological activity of macitentan and bosentan in preclinical models of systemic and pulmonary hypertension Marc Iglarz ⁎, Alexandre Bossu, Daniel Wanner, Céline Bortolamiol, Markus Rey, Patrick Hess, Martine Clozel Drug Discovery Department, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123 Allschwil, Switzerland article info abstract Article history: Aims: The endothelin (ET) system is a tissular system, as the production of ET isoforms is mostly autocrine or Received 29 October 2013 paracrine. Macitentan is a novel dual ETA/ETB receptor antagonist with enhanced tissue distribution and Accepted 12 February 2014 sustained receptor binding properties designed to achieve a more efficacious ET receptor blockade. To determine Available online xxxx if these features translate into improved efficacy in vivo, a study was designed in which rats with either systemic or pulmonary hypertension and equipped with telemetry were given macitentan on top of maximally effective Keywords: doses of another dual ET /ET receptor antagonist, bosentan, which does not display sustained receptor occupan- Endothelin A B Pharmacology cy and shows less tissue distribution. – Blood pressure Main methods: After establishing dose response curves of both compounds in conscious, hypertensive Dahl salt- Pulmonary hypertension sensitive and pulmonary hypertensive bleomycin-treated rats, macitentan was administered on top of the max- Rat imal effective dose of bosentan. Key findings: In hypertensive rats, macitentan 30 mg/kg further decreased mean arterial blood pressure (MAP) by 19 mm Hg when given on top of bosentan 100 mg/kg (n =9,p b 0.01 vs. -
Opsumit) Reference Number: CP.PHAR.194 Effective Date: 03.16 Last Review Date: 02.21 Line of Business: Medicaid Revision Log
Clinical Policy: Macitentan (Opsumit) Reference Number: CP.PHAR.194 Effective Date: 03.16 Last Review Date: 02.21 Line of Business: Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Macitentan (Opsumit®) is an endothelin receptor antagonist. FDA Approved Indication(s) Opsumit is indicated for treatment of pulmonary arterial hypertension (PAH) (World Health Organization (WHO) Group I) to reduce the risks of disease progression and hospitalization for PAH. Effectiveness was established in a long-term study in PAH patients with predominantly WHO Functional Class II-III symptoms treated for an average of 2 years. Patients had idiopathic and heritable PAH (57%), PAH caused by connective tissue disorders (31%), and PAH caused by congenital heart disease with repaired shunts (8%). Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Opsumit is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Pulmonary Arterial Hypertension (must meet all): 1. Diagnosis of PAH; 2. Prescribed by or in consultation with a cardiologist or pulmonologist; 3. Failure of a calcium channel blocker (see Appendix B), unless member meets one of the following (a or b): a. Inadequate response or contraindication to acute vasodilator testing; b. Contraindication or clinically significant adverse effects to calcium channel blockers are experienced; 4. Failure of generic ambrisentan or bosentan, unless clinically significant adverse effects are experienced or both are contraindicated; 5. -
Effect of Prostanoids on Human Platelet Function: an Overview
International Journal of Molecular Sciences Review Effect of Prostanoids on Human Platelet Function: An Overview Steffen Braune, Jan-Heiner Küpper and Friedrich Jung * Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany; steff[email protected] (S.B.); [email protected] (J.-H.K.) * Correspondence: [email protected] Received: 23 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors. Keywords: prostacyclin; thromboxane; prostaglandin; platelets 1. Introduction Hemostasis is a complex process that requires the interplay of multiple physiological pathways. Cellular and molecular mechanisms interact to stop bleedings of injured blood vessels or to seal denuded sub-endothelium with localized clot formation (Figure1). -
Nanosuspensions of Selexipag: Formulation, Characterization, and in Vitro Evaluation Rusul M
Iraqi J Pharm Sci, Vol.30(1) 2021 Selexipag nanosuspension DOI : https://doi.org/10.31351/vol30iss1pp144-153 Nanosuspensions of Selexipag: Formulation, Characterization, and in vitro Evaluation Rusul M. Alwan*,1 and Nawal A. Rajab** * Ministry of Health and Environment, Najaf Health Department, Najaf, Iraq. **Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq. Abstract Selexipag(SLP) is an orally selective long-acting prostacyclin receptor agonist indicated for pulmonary arterial hypertension treatment. It is practically insoluble in water (class II, according to BCS). This work aims to prepare and optimize Selexipag nanosuspensions (SLPNS) to enhance the saturation solubility and in vitro dissolution rate. The solvent antisolvent precipitation method was used for the production of NS, and the effect of formulation parameters (stabilizer type, drug: stabilizer ratio, and use of co-stabilizer) and process parameter (stirring speed) on the particle size (P.S) and polydispersity index (PDI) were studied. The result revealed that the P.S of all prepared SLPNS formulation was in the nanometer range, except for the formulas that stabilized by Poloxamer. The optimal SLPNS (F15), which is stabilized by Soluplus® (SLP: stabilizer ratio 1:2) and prepared at a stirring speed of 1000 rpm, showed the smallest P.S and appropriate PDI, which are 47 nm and 0.073. The formula F5 exhibits 136 folds, an increase in the saturation solubility, and an enhancement in the dissolution rate in phosphate buffer pH 6.8 (100% drug release during 60 min) compared to the pure drug. This result indicates that SLPNS is an efficient way for improving the saturation solubility and the dissolution rate of SLP. -
Formulation and Optimization of Lyophilized Selexipag Nanocrystals to Improve the Saturation Solubility and Dissolution Rate
Sys Rev Pharm 2020;11(11):596-605 A multifaceted review journal in the field of pharmacy Formulation and Optimization of Lyophilized Selexipag Nanocrystals to Improve the Saturation Solubility and Dissolution Rate Rusul M. Alwana*, Nawal A. Rajab, Areej W. Alhagiesac a* b Ministry of Health and Environment, Najaf health department, Najaf, Iraq. c Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq * Department of Pharmaceutics, College of Pharmacy, University of Kufa, Najaf, Iraq Corresponding author Email: [email protected] Phone number: 07831480928 Abstract Selexipag is first in class orally active, selective non- Keywords: Selexipag, Nanocrystal, nanosuspension, prostanoid prostacyclin receptor agonist with a long half- Selexipag nanocrystals. life. It has low oral bioavailability due to a poor dissolution rate, which is considered a rate-limiting step for drug absorption. Nanocrystals (NCs) formulation is an attractive approach for enhancing the poorly soluble drug's saturation solubility and dissolution rate. They offer the advantages of crystalline state, high drug loading capacity, and simple preparation method. This study aims to prepare and characterize Selexipag NCs, filled in hard gelatin capsule in attempt to improve its solubility and dissolution rate. The effect of stabilizer type and preparation methods on the NC particle size and polydispersity index were evaluated to select the most stable formula. The results revealed that the formula (F7) prepared by the solvent antisolvent precipitation with the ultrasonication method (which contain SLX: Soluplus® at a ratio of 1:2) has the smallest mean particle size (38.5 nm) and appropriate polydispersity index (0.12); hence it was selected as the optimal formula. -
Report on Investigation Results
Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material for the convenience of users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Report on Investigation Results March 16, 2020 Pharmaceuticals and Medical Devices Agency I. Summary of drug [Brand name] See Appendix 1 [Non-proprietary name] See Appendix 1 [Approval holder] See Appendix 1 [Indications] See Appendix 1 [Dosage and administration] See Appendix 1 [Investigation office] Office of Pharmacovigilance I II. Investigation background Selexipag, clopidogrel sulfate (hereinafter referred to as “clopidogrel”), and clopidogrel/aspirin are approved for marketing with the indications and dosage and administration stated in Appendix 1. As it was considered appropriate to contraindicate the co-administration of selexipag and preparations containing clopidogrel based on the following information obtained on selexipag and preparations containing clopidogrel after their commercial launch, each package insert contains the precaution for the co-administration of these drugs in the CONTRAINDICATIONS and Contraindications for Co-administration sections. An overseas clinical study (AC-065-113 Study) was conducted to investigate the effects on pharmacokinetics of selexipag and its active metabolite (MRE-269) in healthy adults when selexipag was co-administered with gemfibrozil, a strong CYP2C8 inhibitor. As a result, Cmax and AUC0-∞ of selexipag increased by 1.4-fold and 2.0-fold, respectively, while Cmax and AUC0-∞ of MRE-269 increased by 3.6-fold and 11-fold, respectively when selexipag was co-administered with gemfibrozil compared to those when the drug was administered alone.1 The results exceeded the changes in exposure of selexipag and MRE-269 when CYP2C8 was inhibited estimated at the marketing-approval review 1 Bruderer S, et al. -
AHRQ Healthcare Horizon Scanning System – Status Update
AHRQ Healthcare Horizon Scanning System – Status Update Horizon Scanning Status Update: January 2014 Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. HHSA290201000006C Prepared by: ECRI Institute 5200 Butler Pike Plymouth Meeting, PA 19462 January 2014 Statement of Funding and Purpose This report incorporates data collected during implementation of the Agency for Healthcare Research and Quality (AHRQ) Healthcare Horizon Scanning System by ECRI Institute under contract to AHRQ, Rockville, MD (Contract No. HHSA290201000006C). The findings and conclusions in this document are those of the authors, who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. A novel intervention may not appear in this report simply because the System has not yet detected it. The list of novel interventions in the Horizon Scanning Status Update Report will change over time as new information is collected. This should not be construed as either endorsements or rejections of specific interventions. As topics are entered into the System, individual target technology reports are developed for those that appear to be closer to diffusion into practice in the United States. A representative from AHRQ served as a Contracting Officer’s Technical Representative and provided input during the implementation of the horizon scanning system. AHRQ did not directly participate in the horizon scanning, assessing the leads or topics, or provide opinions regarding potential impact of interventions. -
Doctors Healthcare Plans, Inc. Is an HMO with a Medicare Contract
ACTEMRA IV (S) MEDICATION(S) ACTEMRA 200 MG/10 ML VIAL, ACTEMRA 400 MG/20 ML VIAL, ACTEMRA 80 MG/4 ML VIAL COVERED USES All medically accepted indications not otherwise excluded from Part D. EXCLUSION CRITERIA N/A REQUIRED MEDICAL INFORMATION Rheumatoid Arthritis (RA) (Initial): Diagnosis of moderately to severely active RA. One of the following: Failure, contraindication, or intolerance to both Enbrel (etanercept) and Humira (adalimumab), OR for continuation of prior Actemra therapy. Systemic Juvenile Idiopathic arthritis (SJIA) (Initial): Diagnosis of active SJIA. Failure, contraindication, or intolerance to one NSAID or systemic glucocorticoid. Polyarticular Juvenile Idiopathic Arthritis (PJIA) (Initial): Diagnosis of active PJIA. One of the following: Failure, contraindication, or intolerance to both Enbrel (etanercept) and Humira (adalimumab), OR for continuation of prior Actemra therapy. All indications (Initial, reauth): Patient is not receiving Actemra in combination with a biologic DMARD [eg, Enbrel (etanercept), Humira (adalimumab), Cimzia (certolizumab), Simponi (golimumab)]. AGE RESTRICTION N/A PRESCRIBER RESTRICTION All uses (Initial): Prescribed by or in consultation with a rheumatologist. COVERAGE DURATION All uses (Initial, reauth): 12 months OTHER CRITERIA All uses (Reauth): Documentation of positive clinical response to Actemra therapy. PAGE 1 LAST UPDATED 12/2019 ACTEMRA SC MEDICATION(S) ACTEMRA 162 MG/0.9 ML SYRINGE, ACTEMRA ACTPEN COVERED USES All medically accepted indications not otherwise excluded from Part D. EXCLUSION CRITERIA N/A REQUIRED MEDICAL INFORMATION Rheumatoid Arthritis (RA) (Initial): Diagnosis of moderately to severely active RA. One of the following: Trial and failure, contraindication, or intolerance to both Enbrel (etanercept) and Humira (adalimumab), OR for continuation of prior Actemra therapy. -
Opsumit, INN-Macitentan
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Opsumit 10 mg film-coated tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each film-coated tablet contains 10 mg macitentan. Excipients with known effect Each film-coated tablet contains approximately 37 mg of lactose (as monohydrate) and approximately 0.06 mg of soya bean lecithin (E322). For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet (tablet). 5.5 mm, round, biconvex, white to off-white film-coated tablets, debossed with “10” on both sides. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Opsumit, as monotherapy or in combination, is indicated for the long-term treatment of pulmonary arterial hypertension (PAH) in adult patients of WHO Functional Class (FC) II to III. Efficacy has been shown in a PAH population including idiopathic and heritable PAH, PAH associated with connective tissue disorders, and PAH associated with corrected simple congenital heart disease (see section 5.1). 4.2 Posology and method of administration Treatment should only be initiated and monitored by a physician experienced in the treatment of PAH. Posology The recommended dose is 10 mg once daily. Special populations Elderly No dose adjustment is required in patients over the age of 65 years (see section 5.2). There is limited clinical experience in patients over the age of 75 years.Therefore, Opsumit should be used with caution in this population (see section 4.4). Hepatic impairment Based on pharmacokinetic (PK) data, no dose adjustment is required in patients with mild, moderate or severe hepatic impairment (see sections 4.4 and 5.2). -
Prior Authorization PDL Implementation Schedule
Prior Authorization PDL Implementation Schedule Item Effective Date: Number Descriptive Therapeutic Class Drugs on PDL Drugs which Require PA July 1, 2018 1 ADD/ADHD Amphetamine Salt Combo Tablet (Generic Adderall®) Amphetamine ODT (Adzenys® XR ODT) Stimulants and Related Agents Amphetamine Salt Combo ER (Adderall XR®) Amphetamine ER Suspension (Adzenys ER®) Atomoxetine Capsule (Generic; Authorized Generic) Amphetamine Suspension (Dyanavel XR®) Dexmethylphenidate (Generic; Authorized Generic of Focalin®) Amphetamine/Dextroamphetamine XR Capsule (Mydayis ER®) Dexmethylphenidate ER (Focalin XR®) Amphetamine Salt Combo ER (Generic; Authorized Generic for Adderall XR) Dextroamphetamine Solution (Procentra®) Amphetamine Sulfate Tablet (Evekeo®) Dextroamphetamine Sulfate Tablet (Generic) Armodafinil Tablet (Generic; Authorized Generic; Nuvigil®) Guanfacine ER Tablet (Generic) Atomoxetine Capsule (Strattera®) Lisdexamfetamine Capsule, Chewable Tablet (Vyvanse®) Clonidine ER Tablet (Generic; Kapvay®) Methylphenidate IR (Generic) Dexmethylphenidate (Focalin®) Methylphenidate ER Chew (Quillichew ER®) Dexmethylphenidate XR (Generic; Authorized Generic for Focalin XR) Methylphenidate ER Capsule (Metadate CD®) Dextroamphetamine Sulfate Capsule ER (Generic; Dexedrine®Spansule) Methylphenidate ER Tablet (Generic; Generic Concerta®; Dextroamphetamine IR Tablet (Zenzedi®) Authorized Generic Concerta®) Methylphenidate ER Susp (Quillivant XR®) Dextroamphetamine Solution (Generic for Procentra®) Modafinil Tablet (Generic) Guanfacine ER Tablet (Intuniv®) Methamphetamine