Eumicrotremus Fedorovi

Total Page:16

File Type:pdf, Size:1020Kb

Eumicrotremus Fedorovi 33 National Marine Fisheries Service Fishery Bulletin First U.S. Commissioner established in 1881 of Fisheries and founder NOAA of Fishery Bulletin Abstract—A total of 69 specimens of The first data on the diet and reproduction of Fedorov’s lumpsucker (Eumicrotremus fedorovi) caught on the continental Fedorov’s lumpsucker (Eumicrotremus fedorovi) shelf and slope of Simushir Island in the northwest Pacific Ocean were dis- Ilya Gordeev (contact author)1,2 sected and studied for stomach con- 1 tents. The Fedorov’s lumpsucker was Kristina Zhukova found to feed mainly on the young of Svetlana Frenkel1 fish species, including the walleye pol- lock (Gadus chalcogrammus), northern Email address for contact author: [email protected] lampfish (Stenobrachius leucopsarus), and northern smoothtongue (Leuro- 1 Russian Federal Research Institute of Fisheries and Oceanography glossus schmidti), crustaceans, such as 17 V. Kransnoselskaya Street Themisto pacifica, Primno macropa, Moscow 107140, Russia calanoids, gammarids, mysids, and caprellids, and squid. Histological analy- 2 Lomonosov Moscow State University ses of ovaries revealed iteroparity, deter- GSP-1 Leninskije Gory minate fecundity, group-sync hronous Moscow 119991, Russia ovarian development, and total spawn- ing. Testes were of an unrestricted lobu- lar type. Chorion and thick zona radiata of Fedorov’s lumpsucker correspond to the condition of eggs in specimens of other fish species that release demer- sal eggs. Absolute fecundity values The genus Eumicrotremus, 1 of 6 gen- et al., 2009; Berge and Nahrgang, of Fedorov’s lumpsucker in our study era of Cyclopteridae (Scorpaeniformes: 2013), lumpsucker species feed on var- were significantly less than those that Cottoidei), includes 18 valid species ious crustaceans, juveniles of squid have been reported for other species (Froese and Pauly, 2020). This genus species, pteropods, juveniles of fish spe- of Cyclopteridae. The results of this is distributed mostly in the northern cies, and polychaetes. Lumpsucker spe- study provide the first data on this little known species of this family. Pacific Ocean. Four species inhabit cies feed intensively throughout most subarctic and Arctic areas: pimpled of the year and have been reported to lumpsucker (E. andriashevi), leather- make diurnal vertical migrations in fin lumpsucker (E. derjugini), Atlantic the water column to follow their main spiny lumpsucker (E. spinosus), and food item (hyperiids), and this move- Newfoundland spiny lumpsucker ment pattern explains their regular (E. terraenovae). The Fedorov’s lump- presence in open water (Chuchukalo, sucker (E. fedorovi) inhabits the waters 2006; Antonenko et al., 2009). of the northern Kuril Islands off the The reproductive biology of Cyclopte- eastern coast of Russia (Mecklenburg ridae has been previously examined in and Sheiko, 2003) and has been rarely studies of the lumpfish (Cyclopterus recorded as bycatch in the area of the lumpus) and smooth lumpsucker (Apto- Kuril Islands. Lumpsucker species cyclus ventricosus) (Cox and Anderson, spend most of their lives away from 1922; Davenport, 1985; Kennedy, 2018; the shore. They can be found 100 km Zhukova et al., 2018). Information on from shore in the open waters of the the reproductive processes of other Pacific Ocean, before they return to members of Cyclopteridae is scarce and shallow waters (200–300 m) to repro- fragmented. Lumpsucker species pro- Manuscript submitted 12 August 2020. duce (Orlov, 1994; Chuchukalo, 2006). duce clusters of demersal adhesive Manuscript accepted 11 March 2021. No information on the diet of Fedor- eggs and spawn in coastal waters (at Fish. Bull. 119:33–40 (2021). Online publication date: 8 April 2021. ov’s lumpsucker was available prior to depths down to 300 m). After spawning, doi: 10.7755/FB.119.1.5 this study. According to existing records males guard the fertilized eggs on the diet of other Eumicrotremus (Mecklenburg and Sheiko, 2003; The views and opinions expressed or species (Tabunkov and Chernysheva, Panchenko and Balanov, 2020). Female implied in this article are those of the 1985; Orlov, 1994; Melnikov, 1995; Pacific spiny lumpsucker (E. orbis) and author (or authors) and do not necessarily reflect the position of the National Kuznetsova, 1997; Chuchukalo et al., spinous lumpfish (E. soldatovi) have Marine Fisheries Service, NOAA. 1999; Roshchin, 2006; Antonenko been reported to have died after a single 34 Fishery Bulletin 119(1) spawning, and males have been observed to guard egg Corp., Tokyo, Japan) equipped with a Leica DC 100 digital clutches and then die when the eggs they were guarding camera (Leica Microsystems, Buffalo Grove, IL) was used complete development or hatch (Orlov, 1994). It is diffi- for imaging. Diameters of oocytes and intracellular struc- cult, therefore, to determine if lumpsucker species feed tures were measured by using the software ImageJ, vers. during their entire life cycles. However, other representa- 1.51 (Rasband, 2018). tives of Cyclopteridae, the Atlantic spiny lumpsucker, The maturity phases of each ovary and testis were clas- smooth lumpsucker, and lumpfish, can spawn several sified on the basis of the most advanced stage of germ cells times during their life cycles (Cox and Anderson, 1922; observed in histological sections, according to the scale Berge and Nahrgang, 2013; Zhukova et al., 2018). described by Guzmán et al. (2017). Ovaries were divided In this paper, we provide the first comprehensive data into 5 phases of development: onset of vitellogenesis, early on the stomach contents, gonadal development, and fecun- vitellogenic, mid- vitellogenic, late vitellogenic, and perio- dity of Fedorov’s lumpsucker and describe the biology and vulatory. Phase of testis maturity was determined on the reproductive processes of this little known species. basis of the presence or absence of male germ cells in a gonad: early recrudescence (spermatogonia and spermato- cytes), mid- recrudescence (spermatogonia, spermatocytes, Materials and methods and spermatids), late recrudescence (spermatogonia, sper- matocytes, spermatids, and spermatozoa), spermiating A total of 69 adult specimens of the Fedorov’s lumpsucker (spermatozoa prevail), and postspawning (spermatogo- were caught on the shelf and slope of Simushir Island, nia and residual spermatozoa). Oocyte development was located near the center of the Kuril Islands in the Sea of determinated by using the following stages and their asso- Okhotsk in the northwest Pacific Ocean, from 19 March ciated indicators: primary growth (PG, absence of cortical through 25 March 2017 during tows of the bottom trawl of alveoli and yolk granules), early developing (Vtg1, cortical the FV Anatoly Torchinov that targeted greenlings (Pleu- alveoli and scattered yolk granules along the outer region rogrammus spp.) at depths of 150–230 m. Specimens were of the cytoplasm), developing (Vtg2, yolk granules partly caught near Simushir Island within the area bounded by occupy the cytoplasm), fully vitellogenic (Vtg3, cytoplasm the following coordinates: 46°46′N and 151°56′E, 46°40′N completely filled with yolk), and maturing (M, yolk globule and 151°52′E, and 46°44′N and 151°46′E (Fig. 1). All 69 fusion and nucleus migration). specimens were frozen at −20°C immediately after cap- Absolute and relative fecundity were estimated by using ture and then transported to the laboratory at the Russian the gravimetric method (Murua and Saborido-Rey, 2003) Federal Research Institute of Fisheries and Oceanography for 5 frozen females (size: 74–95 mm TL and 25.4–60.1 g) in Moscow. The Fedorov’s lumpsucker examined in this study ranged in total length (TL) from 64 to 103 mm and weighed from 12.4 to 64.0 g. The 59 females caught were 64–103 mm TL (mean: 81.3 mm TL [standard deviation (SD) 1.23]) and 12.4–64.0 g (mean: 33.22 g [SD 1.36]), and the 10 males were 73–95 mm TL (mean: 84.7 mm TL [SD 2.50]) and 22.9–60.1 g (mean: 41.85 g [SD 5.00]). After a specimen was thawed, the food items were collected from its stomach, separated under a MicroMed MC-21 stereomicroscope (CIT Nelian, Moscow, Russia), and weighed to the nearest mil- ligram with analytical scales (R160P, Sartorius, Bohemia, New York). Fish specimens and food items were identified with the aid of Tuponogov and Kodolov (2014), Oku et al. (2017), and Voskoboinikova (2015). Gonads of 14 females and 2 males (size: 64–92 mm TL and 30.1–38.5 g) were fixed in 10% formalin, dehydrated, cleared with xylol, embed- ded in paraffin, sliced into sections 5 µm thick, and stained with hematoxylin and Ehrlich’s Figure 1 eosin. An Olympus BX45 microscope (Olympus Map showing the location (outlined with a black circle) where 69 adult Fedorov’s lumpsucker (Eumicrotremus fedorovi) were caught during 19–25 March 2017 off Simushir Island, located near the 1 Mention of trade names or commercial companies is center of the Kuril Islands in the Sea of Okhotsk in the northwest for identification purposes only and does not imply endorsement by the National Marine Fisheries Service, Pacific Ocean. NOAA. Gordeev et al.: The first data on the diet and reproduction ofEumicrotremus fedorovi 35 at the late vitellogenetic and periovulatory macroscopic almost 70% of stomachs and composed over 40% of the phases of gonadal maturity. A piece of ovarian tissue was total weight of boluses collected from the specimens with taken from the median portion of the gonad from each spec- food in their stomachs (65 of 69 specimens). imen. The subsample of each ovary, representing 5–10% of After walleye pollock, crustacean species were the most the gonad weight, was weighed, and all advanced oocytes frequent food items (Table 1). Hyperiids were represented (1.7–2.3 mm in diameter) in the subsample were counted. by only 2 species—Themisto pacifica and Primno macropa. The gonadosomatic index (GSI) and absolute (Fabs) and Copepods were represented by several species of Cala- relative (Frel) fecundity were estimated as follows: noida, including Neocalanus cristatus, Gaetanus minutus, Paraeuchaeta elongata, Onchocalanus magnus, Pseu- GSI = (GW × 100) / BW, (1) dochirella obtusa, Cornucalanus indicus, Scaphocalanus Fabs = (n × GW) / w, and (2) sp., and Neocalanus spp.
Recommended publications
  • Alaska Responsible Fishery Management Certification 3Rd
    Alaska Responsible Fishery Management Certification 3rd Surveillance Report For The Alaska Pacific Sablefish (Black Cod) Commercial Fishery Client ‘Eat on the Wild Side’ (FVOA) Facilitated By Alaska Seafood Marketing Institute (ASMI) Assessors: Dr. Ivan Mateo, Lead Assessor Mr. Vito Romito, Assessor Report Code: AK/SAB/002.3/2019 Published Date: 30th August 2019 SAI Global 3rd Floor, Block 3, Quayside Business Park, Mill Street, Dundalk, Co. Louth, Ireland. T: + 353 42 932 0912 www.saiglobal.com Foreword This report is the 3rd Surveillance Report for the Alaska sablefish federal and state commercial fisheries following initial certification award against this AK RFM Program, awarded on October 11th 2011, and recertification on 9th January 2017. The objective of the Surveillance Assessment and Report is to monitor for any changes/updates in the management regime, regulations and their implementation since the previous assessment; in this case, the Final Report of Full Assessment (re-certification) completed in January 2017. The report determines whether these changes and current practices remain consistent with the overall scorings of the fishery allocated during re- certification. High conformance was demonstrated by the fishery with regards to the Fundamental Clause. No corrective action plans with regards non-conformances were identified. The certification covers the Alaskan sablefish (Anoplopoma fimbria) commercial fishery employing demersal longline, pot and trawl gear within Alaska jurisdiction (200 nautical miles EEZ) under federal [National Marine Fisheries Service (NMFS)/North Pacific Fishery Management Council (NPFMC)] and state [Alaska Department of Fish and Game (ADFG) and Board of Fisheries (BOF)] management. The surveillance assessment was conducted according to the Global Trust Certification ISO 65 accredited procedures for FAO – Based Responsible Fisheries Management Certification using the Alaska FAO – Based RFM Conformance Criteria Version 1.3 fundamental clauses as the assessment framework.
    [Show full text]
  • (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families
    ISSN 0032-9452, Journal of Ichthyology, 2018, Vol. 58, No. 5, pp. 633–661. © Pleiades Publishing, Ltd., 2018. An Annotated List of the Marine and Brackish-Water Ichthyofauna of Aniva Bay (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families Yu. V. Dyldina, *, A. M. Orlova, b, c, d, A. Ya. Velikanove, S. S. Makeevf, V. I. Romanova, and L. Hanel’g aTomsk State University (TSU), Tomsk, Russia bRussian Federal Research Institute of Fishery and Oceanography (VNIRO), Moscow, Russia cInstitute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, Russia d Dagestan State University (DSU), Makhachkala, Russia eSakhalin Research Institute of Fisheries and Oceanography (SakhNIRO), Yuzhno-Sakhalinsk, Russia fSakhalin Basin Administration for Fisheries and Conservation of Aquatic Biological Resources—Sakhalinrybvod, Aniva, Yuzhno-Sakhalinsk, Russia gCharles University in Prague, Prague, Czech Republic *e-mail: [email protected] Received March 1, 2018 Abstract—The second, final part of the work contains a continuation of the annotated list of fish species found in the marine and brackish waters of Aniva Bay (southern part of the Sea of Okhotsk, southern part of Sakhalin Island): 137 species belonging to three orders (Perciformes, Pleuronectiformes, Tetraodon- tiformes), 31 family, and 124 genera. The general characteristics of ichthyofauna and a review of the commer- cial fishery of the bay fish, as well as the final systematic essay, are presented. Keywords: ichthyofauna, annotated list, conservation status, commercial importance, marine and brackish waters, Aniva Bay, southern part of the Sea of Okhotsk, Sakhalin Island DOI: 10.1134/S0032945218050053 INTRODUCTION ANNOTATED LIST OF FISHES OF ANIVA BAY The second part concludes the publication on the 19.
    [Show full text]
  • US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
    U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S.
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • Southwest Guide: Your Use to Word
    BEST CHOICES GOOD ALTERNATIVES AVOID How to Use This Guide Arctic Char (farmed) Clams (US & Canada wild) Bass: Striped (US gillnet, pound net) Bass (US farmed) Cod: Pacific (Canada & US) Basa/Pangasius/Swai Most of our recommendations, Catfish (US) Crab: Southern King (Argentina) Branzino (Mediterranean farmed) including all eco-certifications, Clams (farmed) Lobster: Spiny (US) Cod: Atlantic (gillnet, longline, trawl) aren’t on this guide. Be sure to Cockles Mahi Mahi (Costa Rica, Ecuador, Cod: Pacific (Japan & Russia) Cod: Pacific (AK) Panama & US longlines) Crab (Asia & Russia) check out SeafoodWatch.org Crab: King, Snow & Tanner (AK) Oysters (US wild) Halibut: Atlantic (wild) for the full list. Lobster: Spiny (Belize, Brazil, Lionfish (US) Sablefish/Black Cod (Canada wild) Honduras & Nicaragua) Lobster: Spiny (Mexico) Salmon: Atlantic (BC & ME farmed) Best Choices Mahi Mahi (Peru & Taiwan) Mussels (farmed) Salmon (CA, OR & WA) Octopus Buy first; they’re well managed Oysters (farmed) Shrimp (Canada & US wild, Ecuador, Orange Roughy and caught or farmed responsibly. Rockfish (AK, CA, OR & WA) Honduras & Thailand farmed) Salmon (Canada Atlantic, Chile, Sablefish/Black Cod (AK) Squid (Chile & Peru) Norway & Scotland) Good Alternatives Salmon (New Zealand) Squid: Jumbo (China) Sharks Buy, but be aware there are Scallops (farmed) Swordfish (US, trolls) Shrimp (other imported sources) Seaweed (farmed) Tilapia (Colombia, Honduras Squid (Argentina, China, India, concerns with how they’re Shrimp (US farmed) Indonesia, Mexico & Taiwan) Indonesia,
    [Show full text]
  • Food Habits of Bristol Bay Species Which Might Be
    FOOD HABITS OF BRISTOL BAY SPECIES WHICH MIGHT BE AFFECTED BY OIL DEVELOPMENT A STUDY ON THE VARIABILITY IN DEMERSAL AND PELAGIC FOOD HABITS by P. A. Livingston Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 643 April 1985 753 This report is from a series of processed reports and program documentation produced by the Northwest and Alaska Fisheries Center,” National Marine Fisheries Service, NOAA, in Seattle, Washington, and is individually available as Processed Report 85-12 from that source. This study was funded by Minerals Management Service through an interagency agreement with NOAA. 754 CONTENTS 1. Introduction . 761 2. Sample collection and processing . 762 3. Food habits overview of key predators . 764 3.1 General prey types. 764 3.2 Size related feeding trends . 775 4* Eastern Bering Sea food habits . 783 401 Area and season trends . 783 5. Discussion . 789 6. Literature cited . 793 NWAFC PROCESSED REPORT 85-12 This report does not constitute a publication and is for information only. All data herein are to be considered provisional. 755 LIST OF FIGURES Figure 1. --Percentages by weight of main food items consumed by cod sampled in autumn and winter in the eastern Bering Sea. Figure 2. --Percentages by weight of main food items consumed by arrowtooth flounder sampled in spring, summer, and autumn in the eastern Bering Sea. Figure 3. --Percentages by weight of main food items consumed by flathead sole sampled in summer in the eastern Bering Sea. Figure 4. --Percent by weight of major prey categories in the diet of pollock by fish size.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Factors Affecting Sablefish Recruitment in Alaska Marine Ecology and Stock Assessment Program Auke Bay Laboratories, Alaska Fisheries Science Center November 2010
    Factors Affecting Sablefish Recruitment in Alaska Marine Ecology and Stock Assessment Program Auke Bay Laboratories, Alaska Fisheries Science Center November 2010 Executive Summary Amendments to the EFH FMP text of Alaska sablefish included suggestions for future consideration of small, unobtrusive research closures in areas of intense fishing. This prompted a Council request to provide information regarding all factors influencing sablefish recruitment. This document responds to that request in the form of a review paper on a variety of aspects revolving around sablefish recruitment. The first two sections include a general overview of sablefish early life history and issues surrounding the estimation of recruitment in the stock assessment model. We follow this with a three stage rationale for defining sablefish recruitment, summaries of available data for each stage, and an evaluation of factors influencing the three stages. The document concludes with a discussion section that introduces three current research projects, identifies data gaps and research priorities, and considers implications for conservation efforts. We believe it is premature at this juncture to recommend habitat conservation measures specifically for sablefish. However, we continue to suggest that research closures are one effective tool for understanding effects of fishing, and we recommend that any new conservation measures be designed within a multi-species context as an effort by management to seek a better understanding of changes to the ecosystem and EFH. Introduction In 2009, stock assessment authors were requested to review current FMP text regarding Essential Fish Habitat (EFH) for each species or species complex and report any updates or changes since the 2005 EFH Environmental Impact Statement (EIS).
    [Show full text]
  • Glenn, I Am Petitioning the State for an Emergency Regulation. to Be Able
    From: Bill Connor To: Haight, Glenn E (DFG) Subject: Clarence sablefish Date: Friday, June 10, 2016 5:30:11 PM Glenn, I am petitioning the state for an emergency regulation. To be able to change at our option the ability to fish our southern southeast long line sablefish permits eqs with pots. I believe that we meet both criteria under section 5 AAC 96.625 (f) First being the threat to the unexpected extra removal of the sablefish biomass in Southern Southeast by killer whale predation. Second by the unforseen ability to harvest our eqs by whale predation because of season structure. My name is Bill Connor, I am a permit holder and active participant in the c61c southern southeast sable fish fishery. Since 2009 I have had encounters with killer whale predation on my sablefish catch. Since then it has become a serious problem causing the inability to harvest our eqs in a reasonable amount of time and with reasonable expenses, fuel, bait, groceris, and gear cost. In February of 2015 I submitted proposal 134 at the board of fish in Sitka testifying to the issues of whale predation, excess byctach, and halibut mortality. Some of the issues the npfmc and halibut commission, state are a problem gulf wide. So far this year the Department of fish and game has experienced depradation of the Clarence sablefish survey, and this is not the first year it has occurred to the survey. Second as the commercial fishery has opened on June 1 of this year there are several vessels being predated on by killer whales greatly increasing our biomass removal and expenses to harvest our eqs, with some vessels droping out because of these cost.
    [Show full text]
  • Species Fact Sheets Cyclopterus Lumpus (Linnaeus, 1758)
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Species Fact Sheets Cyclopterus lumpus (Linnaeus, 1758) Cyclopterus lumpus: (click for more) Cyclopterus lumpus: (click for more) Synonyms Lumpus vulgaris McMurtrie, 1831, (Anim. King. Cuvier). Cyclopterus lumpus forma baltica Smitt, 1892: 294. Cyclopterus lumpus var. hudsonius Cox, 1920: 214. FAO Names En - Lumpfish(=Lumpsucker), Fr - Lompe, Sp - Liebre de mar. 3Alpha Code: LUM Taxonomic Code: 1782000301 Diagnostic Features Body compressed, deep anteriorly. Head relatively small, less than 5 in standard length. Gill openings large, extending below level of upper pectoral finray. Disc 6-7 in standard length. First dorsal fin with 6-8 spines, completely covered by thick skin forming a characteristic hig crest; no spines visible; second dorsal fin with 9- 11 rays. Body depth varies from 2.0 times in standard length in large specimens (>200 mm SL) to 3.0 times in individuals less than 30 mm SL. Bony tubercles well developed on head and body. Usually there are 3 distinct rows of large tubercles laterally, with much smaller tubercles scattered between the rows. Colour variable, usually bluish-grey, yellow-green or yellow-brown. Spawning males are reddish on sides, fins and ventral surface. Geographical Distribution FAO Fisheries and Aquaculture Department Launch the Aquatic Species Distribution map viewer Throughout the north of 45º N latitude (Portugal and southern Bay of Biscay) in appropriate habitats to Spitsbergen, including Iceland. Elsewhere, know from western Greenland, Hudson Bay, and the coasts of North America as far south as Maryland. Habitat and Biology Benthic on rocky bottomsusually between 50 and 150 m, but occasionally to 400 m;may occur in floating seaweed; basically solitary rather than a schooling fish.Feeding more intensive in the winter; favoured are ctenophores, medusae, small crustaceans, polychaetes worms and small fishes.
    [Show full text]
  • The Morphology and Sculpture of Ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea
    Estonian Journal of Earth Sciences, 2010, 59, 4, 263–276 doi: 10.3176/earth.2010.4.03 The morphology and sculpture of ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea Tiiu Märssa, Janek Leesb, Mark V. H. Wilsonc, Toomas Saatb and Heli Špilevb a Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] b Estonian Marine Institute, University of Tartu, Mäealuse Street 14, 12618 Tallinn, Estonia; [email protected], [email protected], [email protected] c Department of Biological Sciences and Laboratory for Vertebrate Paleontology, University of Alberta, Edmonton, Alberta T6G 2E9 Canada; [email protected] Received 31 August 2009, accepted 28 June 2010 Abstract. Small to very small bones (ossicles) in one species each of the families Cyclopteridae and Liparidae (Cottiformes) of the Baltic Sea are described and for the first time illustrated with SEM images. These ossicles, mostly of dermal origin, include dermal platelets, scutes, tubercles, prickles and sensory line segments. This work was undertaken to reveal characteristics of the morphology, sculpture and ultrasculpture of these small ossicles that could be useful as additional features in taxonomy and systematics, in a manner similar to their use in fossil material. The scutes and tubercles of the cyclopterid Cyclopterus lumpus Linnaeus are built of small denticles, each having its own cavity viscerally. The thumbtack prickles of the liparid Liparis liparis (Linnaeus) have a tiny spinule on a porous basal plate; the small size of the prickles seems to be related to their occurrence in the exceptionally thin skin, to an adaptation for minimizing weight and/or metabolic cost and possibly to their evolution from isolated ctenii no longer attached to the scale plates of ctenoid scales.
    [Show full text]
  • Marine Fishes of the Azores: an Annotated Checklist and Bibliography
    MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores.
    [Show full text]