Some Optical Features of the Eyes of Stomatopods I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seeing Through Moving Eyes
bioRxiv preprint doi: https://doi.org/10.1101/083691; this version posted June 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Seeing through moving eyes - microsaccadic information sampling provides 2 Drosophila hyperacute vision 3 4 Mikko Juusola1,2*‡, An Dau2‡, Zhuoyi Song2‡, Narendra Solanki2, Diana Rien1,2, David Jaciuch2, 5 Sidhartha Dongre2, Florence Blanchard2, Gonzalo G. de Polavieja3, Roger C. Hardie4 and Jouni 6 Takalo2 7 8 1National Key laboratory of Cognitive Neuroscience and Learning, Beijing, Beijing Normal 9 University, Beijing 100875, China 10 2Department of Biomedical Science, University of Sheffield, Sheffield S10 T2N, UK 11 3Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, 12 Portugal 13 4Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 14 3EG, UK 15 16 *Correspondence to: [email protected] 17 ‡ Equal contribution 18 19 Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors 20 and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors 21 would be expected to generate blurry and coarse retinal images of the world. Here we 22 demonstrate that Drosophila see the world far better than predicted from the classic theories. 23 By using electrophysiological, optical and behavioral assays, we found that R1-R6 24 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which 25 resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving 26 objects at saccadic speeds beyond the predicted motion-blur-limit. -
Circadian Clocks in Crustaceans: Identified Neuronal and Cellular Systems
Circadian clocks in crustaceans: identified neuronal and cellular systems Johannes Strauss, Heinrich Dircksen Department of Zoology, Stockholm University, Svante Arrhenius vag 18A, S-10691 Stockholm, Sweden TABLE OF CONTENTS 1. Abstract 2. Introduction: crustacean circadian biology 2.1. Rhythms and circadian phenomena 2.2. Chronobiological systems in Crustacea 2.3. Pacemakers in crustacean circadian systems 3. The cellular basis of crustacean circadian rhythms 3.1. The retina of the eye 3.1.1. Eye pigment migration and its adaptive role 3.1.2. Receptor potential changes of retinular cells in the electroretinogram (ERG) 3.2. Eyestalk systems and mediators of circadian rhythmicity 3.2.1. Red pigment concentrating hormone (RPCH) 3.2.2. Crustacean hyperglycaemic hormone (CHH) 3.2.3. Pigment-dispersing hormone (PDH) 3.2.4. Serotonin 3.2.5. Melatonin 3.2.6. Further factors with possible effects on circadian rhythmicity 3.3. The caudal photoreceptor of the crayfish terminal abdominal ganglion (CPR) 3.4. Extraretinal brain photoreceptors 3.5. Integration of distributed circadian clock systems and rhythms 4. Comparative aspects of crustacean clocks 4.1. Evolution of circadian pacemakers in arthropods 4.2. Putative clock neurons conserved in crustaceans and insects 4.3. Clock genes in crustaceans 4.3.1. Current knowledge about insect clock genes 4.3.2. Crustacean clock-gene 4.3.3. Crustacean period-gene 4.3.4. Crustacean cryptochrome-gene 5. Perspective 6. Acknowledgements 7. References 1. ABSTRACT Circadian rhythms are known for locomotory and reproductive behaviours, and the functioning of sensory organs, nervous structures, metabolism and developmental processes. The mechanisms and cellular bases of control are mainly inferred from circadian phenomenologies, ablation experiments and pharmacological approaches. -
Adobe Photoshop
Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 167–336 EDITOR-IN-CHIEF D. Peter Drotman Managing Senior Editor EDITORIAL BOARD Polyxeni Potter, Atlanta, Georgia, USA Dennis Alexander, Addlestone Surrey, United Kingdom Senior Associate Editor Timothy Barrett, Atlanta, GA, USA Brian W.J. Mahy, Bury St. Edmunds, Suffolk, UK Barry J. Beaty, Ft. Collins, Colorado, USA Associate Editors Martin J. Blaser, New York, New York, USA Paul Arguin, Atlanta, Georgia, USA Christopher Braden, Atlanta, GA, USA Charles Ben Beard, Ft. Collins, Colorado, USA Carolyn Bridges, Atlanta, GA, USA Ermias Belay, Atlanta, GA, USA Arturo Casadevall, New York, New York, USA David Bell, Atlanta, Georgia, USA Kenneth C. Castro, Atlanta, Georgia, USA Corrie Brown, Athens, Georgia, USA Louisa Chapman, Atlanta, GA, USA Charles H. Calisher, Ft. Collins, Colorado, USA Thomas Cleary, Houston, Texas, USA Michel Drancourt, Marseille, France Vincent Deubel, Shanghai, China Paul V. Effl er, Perth, Australia Ed Eitzen, Washington, DC, USA David Freedman, Birmingham, AL, USA Daniel Feikin, Baltimore, MD, USA Peter Gerner-Smidt, Atlanta, GA, USA Kathleen Gensheimer, Cambridge, MA, USA Stephen Hadler, Atlanta, GA, USA Duane J. Gubler, Singapore Nina Marano, Atlanta, Georgia, USA Richard L. Guerrant, Charlottesville, Virginia, USA Martin I. Meltzer, Atlanta, Georgia, USA Scott Halstead, Arlington, Virginia, USA David Morens, Bethesda, Maryland, USA David L. Heymann, London, UK J. Glenn Morris, Gainesville, Florida, USA Charles King, Cleveland, Ohio, USA Patrice Nordmann, Paris, France Keith Klugman, Atlanta, Georgia, USA Tanja Popovic, Atlanta, Georgia, USA Takeshi Kurata, Tokyo, Japan Didier Raoult, Marseille, France S.K. Lam, Kuala Lumpur, Malaysia Pierre Rollin, Atlanta, Georgia, USA Stuart Levy, Boston, Massachusetts, USA Ronald M. -
The First Complete Mitochondrial Genome Sequences For
* Manuscript The First Complete Mitochondrial Genome Sequences For Stomatopod Crustaceans: Implications for Phylogeny Kirsten Swinstrom1,2, Roy Caldwell1, H. Matthew Fourcade2 and Jeffrey L. Boore1,2 1 Department of Integrative Biology, University of California Berkeley, Berkeley, CA 2 Evolutionary Genomics Department, DOE Joint Genome Institute and Lawrence Berkeley National Lab, Walnut Creek, CA For correspondence: Jeffrey Boore, DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, phone: 925-296-5691, fax: 925-296-5620, [email protected] 1 Abstract We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans. Key words: Stomatopod; mitochondrial genome; Crustacea; Arthropod phylogeny; mitochondrial DNA; Gonodactylus chiragra; Lysiosquillina maculata; Squilla empusa 2 Introduction Mitochondrial DNA (mtDNA) sequences have been used extensively in phylogenetic analyses to examine relationships among populations or higher taxa. Most of these studies are limited because they use only one or a few genes. More recently however, many complete mitochondrial genomes have been sequenced (Boore, 1999). In particular, a number of phylogenetic analyses using gene order or protein-coding sequences from complete mitochondrial genomes have been conducted to examine relationships within the phylum Arthropoda (e.g. Boore et al., 1998; Garcia-Machado et al., 1999; Wilson et al., 2000; Yamauchi et al., 2002; Nardi et al., 2003). -
The Evolution of Social Monogamy and Biparental Care in Stomatopod Crustaceans
The Evolution of Social Monogamy and Biparental Care in Stomatopod Crustaceans By Mary Louisa Wright A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell Professor Eileen Lacey Professor George Roderick Spring 2013 ABSTRACT The Evolution of Social Monogamy and Biparental Care in Stomatopod Crustaceans By Mary Louisa Wright Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair Although social monogamy and biparental care have been extensively studied in birds, mammals, and fish, the evolutionary origins and maintenance of these phenomena are not well- understood, particularly in invertebrate taxa. The evolution of social monogamy is of interest because current theory predicts that both males and females will usually gain more fitness from mating with multiple partners. Furthermore, biparental care should only occur when males and females both gain more fitness benefits from providing parental care than from investing time and energy into mate searching. Given these expectations, under what environmental and social conditions will social monogamy and biparental care arise and do the same conditions maintain monogamy and biparental care on an evolutionary time scale? Long-term social monogamy, which occurs when a male and female pair for longer than a single breeding cycle, has been reported in eight genera of Lysiosquilloid stomatopods. Furthermore, the Lysiosquilloidea also contains the only marine crustacean genus (Pullosquilla) in which biparental care has been systematically studied. This dissertation examines the evolutionary maintenance and origins of both biparental care and long-term social monogamy in the Lysiosquilloidea, using experimental manipulations, ecological surveys, and comparative, phylogenetically-based methods. -
Attention and Individual Behavioural Variation in Small-Brained Animals – Using Bumblebees and Zebrafish As Model Systems
Attention and individual behavioural variation in small-brained animals – using bumblebees and zebrafish as model systems Mu-Yun Wang Thesis submitted for the degree of Doctor of Philosophy Queen Mary, University of London 2013 1 Abstract A vital ability for an animal is to filter the constant flow of sensory input from the environment to focus on the most important information. Attention is used to prioritize sensory input for adaptive responses. The role of attention in visual search has been studied extensively in human and non-human primates, but is much less studied in other animals. We looked at attentional mechanisms, especially selective and divided attention where animals focus on multiple cues at the same time, using a visual search paradigm. We targeted bumblebee and zebrafish as model species because they are widely used as tractable models of information processing in comparatively small brains. Bees were required to forage from target and distractor flowers in the presence of predators. We found that bees could selectively attend to certain dimension of the stimuli, and divide their attention to both visual foraging search and predator avoidance tasks simultaneously. Furthermore, bees showed consistent individual differences in foraging strategy; ‘careful’ and ‘impulsive’ strategies exist in individuals of the same colony. From the calculation of foraging rate, it is shown that the best strategy may depend on environmental conditions. We applied a similar behavioural paradigm to zebrafish and found speed-accuracy tradeoffs and consistent individual behavioural differences. We therefore continued to test how individuality influences group choices. In pairs of careful and impulsive fish, the consensus decision is close to the strategy of the careful individual. -
Anatomy of the Regional Differences in the Eye of the Mantis Ciulfina
J. exp. Biol. (i979). 80, 165-190 165 With 17 figures Printed in Great Britain ANATOMY OF THE REGIONAL DIFFERENCES IN THE EYE OF THE MANTIS CIULFINA BY G. A. HORRIDGE AND PETER DUELLI Department of Neurobiology, Research School of Biological Sciences, Australian National University, Canberra, A.C.T. 2601, Australia (Received 8 August 1978) SUMMARY 1. In the compound eye of Ciulfina (Mantidae) there are large regional differences in interommatidial angle as measured optically from the pseudo- pupil. Notably there is an acute zone which looks backwards as well as one looking forwards. There are correlated regional differences in the dimensions of the ommatidia. 2. The following anatomical features which influence the optical perform- ance have been measured in different parts of the eye: (a) The facet diameter is greater where the interommatidial angle is smaller. This could influence resolving power, but calculation shows that facet size does not exert a dominant effect on the visual fields of the receptors. (b) The rhabdom tip diameter, which theoretically has a strong influence on the size of visual fields, is narrower in eye regions where the inter- ommatidial angle is smaller. (c) The cone length, from which the focal length can be estimated, is greater where the interommatidial angle is smaller. 3. Estimation of the amount of light reaching the rhabdom suggests that different parts of the eye have similar sensitivity to a point source of light, but differ by a factor of at least 10 in sensitivity to an extended source. 4. There is anatomical evidence that in the acute zone the sensitivity has been sacrificed for the sake of resolution. -
Diurnal Changes in Angular Sensitivity of Crab Photoreceptors Leggett, L.M.W.; Stavenga, D.G
University of Groningen Diurnal Changes in Angular Sensitivity of Crab Photoreceptors Leggett, L.M.W.; Stavenga, D.G. Published in: Journal of Comparative Physiology A DOI: 10.1007/BF00612803 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1981 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Leggett, L. M. W., & Stavenga, D. G. (1981). Diurnal Changes in Angular Sensitivity of Crab Photoreceptors. Journal of Comparative Physiology A, 144(1), 99-109. https://doi.org/10.1007/BF00612803 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. -
Measuring Compound Eye Optics with Microscope and Microct Images
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.422154; this version posted December 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title (<120 characters): Measuring Compound Eye Optics with Microscope and MicroCT Images 2 Article Type: Tools and Resources 3 Author Names and Affiliations: John Paul Currea1, Yash Sondhi2, Akito Y. Kawahara3, and Jamie 4 Theobald2 5 1Department of Psychology, Florida International University, Miami, FL 33199, U.S.A. 6 2Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A. 7 3Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, U.S.A. 8 Abstract (<150 words): 9 The arthropod compound eye is the most prevalent eye type in the animal kingdom, with an impressive 10 range of shapes and sizes. Studying its natural range of morphologies provides insight into visual 11 ecology, development, and evolution. In contrast to the camera-type eyes we possess, external 12 structures of compound eyes often reveal resolution, sensitivity, and field of view if the eye is 13 spherical. Non-spherical eyes, however, require measuring internal structures using imaging 14 technology like MicroCT (µCT). Thus far, there is no efficient tool to automate characterizing 15 compound eye optics. We present two open-source programs: (1) the ommatidia detecting algorithm 16 (ODA), which automatically measures ommatidia count and diameter, and (2) a µCT pipeline, which 17 calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA. -
Feller, KD, Wilby, D., Jacucci, G., Vignolini, S., Mantell, J., Wardill, TJ
Feller, K. D., Wilby, D., Jacucci, G., Vignolini, S., Mantell, J., Wardill, T. J., Cronin, T. W., & Roberts, N. W. (2019). Long-Wavelength Reflecting Filters Found in the Larval Retinas of One Mantis Shrimp Family (Nannosquillidae). Current Biology, 29(18), 3101-3108. https://doi.org/10.1016/j.cub.2019.07.070 Peer reviewed version License (if available): CC BY-NC-ND Link to published version (if available): 10.1016/j.cub.2019.07.070 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0960982219309509 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ 1 Title 2 Long-wavelength reflecting filters found in the larval retinas of one mantis shrimp family 3 (Nannosquillidae) 4 5 Authors 1 ,2,3* 3,4 5 5 6 6 Kathryn D. Feller † , David Wilby †, Gianni Jacucci , Silvia Vignolini , Judith Mantell , 1 ,2 7 3 7 Trevor J. Wardill † , Thomas W. Cronin , Nicholas W. Roberts 8 9 Affiliations 1 10 Ecology, Evolution and Behavior Department, 1479 Gortner Avenue, University of 11 Minnesota, St. Paul, Minnesota, 55108, USA 2 12 Physiology Development and Neuroscience Department, Physiological Laboratories, 13 Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK. -
(Lepidoptera: Lycaenidae) Und Ihre Bedeutung Fur¨ Partnerwahl Und Arterkennung
Flavonoidinduzierte ph¨anotypische Plastizit¨at in der Flugelf¨ ¨arbung des Bl¨aulings Polyommatus icarus (Lepidoptera: Lycaenidae) und ihre Bedeutung fur¨ Partnerwahl und Arterkennung Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften – Dr. rer. nat – der Fakult¨at fur¨ Biologie, Chemie und Geowissenschaften der Universit¨at Bayreuth vorgelegt von Helge Knuttel¨ Januar 2003 Die experimentellen Arbeiten fur¨ die vorliegende Arbeit wurden in der Zeit von November 1996 bis Dezember 2000 am Lehrstuhl Tier¨okologie I der Universit¨at Bayreuth in der Arbeitsgruppe von Herrn Prof. Dr. Konrad Fiedler angefertigt. Die sehphysiologischen Untersuchungen wurden bei Herrn Prof. Dr. Rudolf Schwind am Lehrstuhl fur¨ Zoologie VI an der Universit¨at Regensburg durchgefuhrt.¨ Vollst¨andiger Abdruck der von der Fakult¨at fur¨ Biologie, Chemie und Geowissenschaf- ten der Universit¨at Bayreuth genehmigten Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat). Tag der Einreichung: 06.02.2003 Tag des Kolloquiums: 16.07.2003 Erstgutachter: Prof. Dr. Konrad Fiedler Zweitgutachter: Prof. Dr. Rudolf Schwind Prufungsvorsitzender:¨ Prof. Dr. Gerhard Rambold Weitere Prufer:¨ Prof. Dr. Konrad Dettner, Prof. Dr. Gerhard Platz Einige Ergebnisse dieser Arbeit wurden bereits ver¨offentlicht: • Knuttel,¨ H. & K. Fiedler (1999) Flavonoids from larval food plants determine UV wing patterns in Polyommatus icarus (Lepidoptera: Lycaenidae). Zoology 102(Suppl. 2 (DZG 92.1)): 83. • Burghardt, F., H. Knuttel,¨ M. Becker & K. Fiedler (2000) Flavonoid wing pigments increase attractiveness of female common blue (Polyommatus icarus) butterflies to mate-searching males. Naturwissenschaften 87(7): 304–307. • Knuttel,¨ H. & K. Fiedler (2000) On the use of ultraviolet photography and ultra- violet wing patterns in butterfly morphology and taxonomy. -
Understanding the Structural and Developmental Aspect of Simple
ell S f C ign l o a a li n n r g u o J Journal of Cell Signaling Sabat et al., J Cell Signal 2016, 1:2 ISSN: 2576-1471 Review Article Open Access Understanding the Structural and Developmental Aspect of Simple Eye of Drosophila: The Ocelli Debabrat Sabat, Subhashree Priyadarsini and Monalisa Mishra* Department of Life Sciences, National Institute of Technology Rourkela, Odisha, India *Corresponding author: Monalisa Mishra, Department of Life Sciences,National Institute of Technology, Rourkela, Odisha, India, Tel: 0661-2462784; E-mail: [email protected] Received date: February 9, 2016; Accepted date: March 14, 2016; Published date: March 21, 2016 Copyright: © 2016 Sabat D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Among various photoreceptors present in arthropods Drosophila eye undergoes certain modification to provide high resolution and sensitivity to the animal. Along with the compound eye Drosophila possess three ocelli for its vision, navigation and locomotion purpose. These ocelli are arranged in a triangular manner in between the compound eye. During third instar larvae, from the eye antenna imaginal disc several conserved genes and complex regulatory genetic network help in ocellar patterning. Like compound eye ocelli possess cornea, corneagenous cell, photoreceptor cells (rhabdom). The visual pigment present in ocelli is Rh2 and is responsible for the functioning of ocelli. Although rhabdomere are the photoreceptor organ of the ocelli the arrangement of the rhabdomere in ocelli differs from the compound eye.