(Lepidoptera: Lycaenidae) Und Ihre Bedeutung Fur¨ Partnerwahl Und Arterkennung

Total Page:16

File Type:pdf, Size:1020Kb

(Lepidoptera: Lycaenidae) Und Ihre Bedeutung Fur¨ Partnerwahl Und Arterkennung Flavonoidinduzierte ph¨anotypische Plastizit¨at in der Flugelf¨ ¨arbung des Bl¨aulings Polyommatus icarus (Lepidoptera: Lycaenidae) und ihre Bedeutung fur¨ Partnerwahl und Arterkennung Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften – Dr. rer. nat – der Fakult¨at fur¨ Biologie, Chemie und Geowissenschaften der Universit¨at Bayreuth vorgelegt von Helge Knuttel¨ Januar 2003 Die experimentellen Arbeiten fur¨ die vorliegende Arbeit wurden in der Zeit von November 1996 bis Dezember 2000 am Lehrstuhl Tier¨okologie I der Universit¨at Bayreuth in der Arbeitsgruppe von Herrn Prof. Dr. Konrad Fiedler angefertigt. Die sehphysiologischen Untersuchungen wurden bei Herrn Prof. Dr. Rudolf Schwind am Lehrstuhl fur¨ Zoologie VI an der Universit¨at Regensburg durchgefuhrt.¨ Vollst¨andiger Abdruck der von der Fakult¨at fur¨ Biologie, Chemie und Geowissenschaf- ten der Universit¨at Bayreuth genehmigten Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat). Tag der Einreichung: 06.02.2003 Tag des Kolloquiums: 16.07.2003 Erstgutachter: Prof. Dr. Konrad Fiedler Zweitgutachter: Prof. Dr. Rudolf Schwind Prufungsvorsitzender:¨ Prof. Dr. Gerhard Rambold Weitere Prufer:¨ Prof. Dr. Konrad Dettner, Prof. Dr. Gerhard Platz Einige Ergebnisse dieser Arbeit wurden bereits ver¨offentlicht: • Knuttel,¨ H. & K. Fiedler (1999) Flavonoids from larval food plants determine UV wing patterns in Polyommatus icarus (Lepidoptera: Lycaenidae). Zoology 102(Suppl. 2 (DZG 92.1)): 83. • Burghardt, F., H. Knuttel,¨ M. Becker & K. Fiedler (2000) Flavonoid wing pigments increase attractiveness of female common blue (Polyommatus icarus) butterflies to mate-searching males. Naturwissenschaften 87(7): 304–307. • Knuttel,¨ H. & K. Fiedler (2000) On the use of ultraviolet photography and ultra- violet wing patterns in butterfly morphology and taxonomy. Journal of the Lepido- pterists’ Society 54(4): 137–144. (erschienen 2001). • Knuttel,¨ H. & K. Fiedler (2001) Host-plant-derived variation in ultraviolet wing patterns influences mate selection by male butterflies. Journal of Experimental Biology 204(14): 2447–2459. Gesetzt mit LATEX 2ε aus der Computer Modern. Fur¨ Susanne, Daniel und Christine iv Inhaltsverzeichnis Inhaltsverzeichnis v Abbildungsverzeichnis ix Tabellenverzeichnis xiii Abkurzungen¨ und Symbole xv 1 Einleitung 1 1.1 Flugelmuster¨ von Schmetterlingen ....................... 1 1.1.1 Ultimate Erkl¨arungen ......................... 1 1.1.2 Proximate Ursachen der Flugelmuster¨ und -farben .......... 3 1.2 Flavonoide .................................... 5 1.2.1 Chemie und Vorkommen ........................ 5 1.2.2 Funktion von Flavonoiden in Pflanzen: Physiologie und chemische Okologie¨ ................................. 7 1.3 Das Versuchstier: Polyommatus icarus .................... 10 1.3.1 Verbreitung ............................... 10 1.3.2 Morphologie und Flugelmuster¨ ..................... 10 1.3.3 Systematik ............................... 13 1.3.4 Entwicklung und Raupennahrung ................... 13 1.3.5 Verhalten, Balz und Paarung ..................... 14 1.4 Fragestellungen dieser Arbeit ......................... 16 1.4.1 Beeinflussen Flavonoide aus der Raupennahrung die Flugelfarben?¨ . 16 1.4.2 Haben flavonoidbedingte Unterschiede einen Einfluß auf die Part- nerwahl? ................................. 16 1.4.3 Kann das Auge die Fleckenmuster aufl¨osen? ............. 16 2 Material und Methoden 19 2.1 Versuchstiere .................................. 19 2.1.1 Herkunft ................................. 19 2.1.2 Aufzucht der Raupen .......................... 19 2.1.3 Raupenfutter .............................. 20 2.1.4 Haltung der Imagines im Flugk¨afig .................. 23 2.2 Messung von Farben .............................. 26 2.2.1 Messung von Farben im Verhaltenskontext .............. 26 2.2.2 Messung von Reflexionsspektren .................... 27 2.2.3 Hauptkomponentenanalyse von Reflexionsspektren .......... 32 v vi Inhaltsverzeichnis 2.2.4 Statistische Analyse der Hauptkomponenten ............. 34 2.2.5 Andere Vergleichsverfahren fur¨ Spektren ............... 35 2.2.6 Flavonoidnachweis in situ durch Fluoreszenz ............. 37 2.2.7 UV-Photographie ............................ 38 2.3 Verhaltensversuche ............................... 40 2.3.1 Verhaltensversuche im Labor ...................... 40 2.3.2 Verhaltensversuche im Freiland .................... 43 2.4 Messung des Umgebungslichts ......................... 46 2.5 Untersuchung des Sehsystems von Polyommatus icarus ........... 47 2.5.1 Morphologie der Augen ......................... 47 2.5.2 Ommatidiendivergenzwinkel ...................... 47 2.5.3 Sehfeld .................................. 52 3 Ergebnisse 55 3.1 Flugelfarben¨ ................................... 55 3.1.1 Erscheinungsbild und Reflexionsspektren ............... 55 3.1.2 Hauptkomponentenanalyse von Reflexionsspektren .......... 68 3.1.3 Andere Vergleichsverfahren fur¨ Spektren ............... 84 3.1.4 Flavonoidnachweis in situ durch Fluoreszenz ............. 88 3.1.5 Blaue Flugelf¨ ¨arbung der M¨annchen .................. 91 3.2 Verhaltensversuche ............................... 94 3.2.1 Verhaltensversuche im Labor ...................... 94 3.2.2 Verhaltensversuche im Freiland .................... 94 3.3 Umgebungslicht ................................. 98 3.3.1 Spektrale Quantenverteilung ...................... 98 3.3.2 Quantenfang der Photorezeptoren ................... 98 3.4 Das Sehsystem von P.-icarus-M¨annchen ................... 100 3.4.1 Morphologie der Augen ......................... 100 3.4.2 Leuchtende Pseudopupille ....................... 101 3.4.3 Sehfeld .................................. 102 3.4.4 Ommatidiendivergenzwinkel ...................... 104 4 Diskussion 111 4.1 Flugelfarben¨ ................................... 111 4.1.1 Wirkung von Flavonoiden auf die Reflexionsspektren und das Er- scheinungsbild .............................. 111 4.1.2 Hauptkomponentenanalysen vs. Mittelwertspektren ......... 115 4.1.3 Flavonoidnachweis in situ durch Fluoreszenz ............. 118 4.1.4 Blaue Strukturf¨arbung der M¨annchen ................. 118 4.2 Umgebungslicht ................................. 120 4.3 Verhaltensversuche ............................... 121 4.4 Das visuelle System der M¨annchen von P. icarus .............. 125 4.4.1 Sehfeld .................................. 125 4.4.2 Ommatidienzahl ............................ 126 4.4.3 Ommatidiendivergenzwinkel ...................... 127 4.4.4 Corneanippel .............................. 130 4.4.5 Bedeutung fur¨ das Verhalten ...................... 132 vii 4.5 Arterkennung und Partnerwahl ........................ 136 4.5.1 Flugelfarben¨ als artspezifisches Signal? ................ 136 4.5.2 Signale fur¨ die Arterkennung ...................... 137 4.5.3 Flavonoide als Qualit¨atsindikator? ................... 140 4.5.4 Partnerwahl durch die M¨annchen ................... 141 5 Zusammenfassung / Summary 145 Literaturverzeichnis 149 Anhang 183 AKunstliches¨ Raupenfutter 185 A.1 Zusammensetzung ................................ 185 A.2 Zubereitung ................................... 187 B Reflexionsspektren von Flugelfarben¨ 189 C Hauptkomponentenanalysen 197 C.1 Eigenwerte und erkl¨arte Varianz ........................ 197 C.2 Ordinationsdiagramm: Erste vs. zweite Hauptkomponente .......... 199 D Verhaltensversuche 205 D.1 Ergebnisse der Verhaltensversuche im Labor ................. 205 D.2 Ergebnisse der Verhaltensversuche im Freiland ................ 207 D.3 Flugelfarbe¨ der bespruhten¨ Attrappen ..................... 208 E Ommatidiendivergenzwinkel 209 E.1 Programm zur Berechnung der Ommatidiendivergenzwinkel ........ 209 E.2 Vergleich der Daten zweier M¨annchen ..................... 212 Danksagung 215 Erkl¨arung 217 viii Inhaltsverzeichnis Abbildungsverzeichnis 1.1 Strukturformel von Flavan ........................... 6 1.2 Absorptionsspektren gel¨oster Flavonole .................... 8 1.3 Flugelmuster¨ von Polyommatus icarus .................... 11 1.4 Blau best¨aubtes“ Weibchen von Polyommatus icarus ............ 12 ” 1.5 Kopulation von Polyommatus icarus ..................... 15 2.1 Strukturformeln von Quercetin und Rutin .................. 24 2.2 Flugraum fur¨ die Verhaltensversuche zur Partnerwahl von Polyommatus icarus ...................................... 25 2.3 Versuchsaufbau zur Messung der spektralen Reflexion ............ 29 2.4 Spektrale Absorption von hypothetischen Photorezeptoren und Tageslicht- spektrum CIE D65 ............................... 36 2.5 Spektrale Reflexion der Graustufenskala fur¨ die UV-Photographie ..... 39 2.6 Lokalit¨at der Freilandverhaltensversuche ................... 44 2.7 Weibchenattrappe von Polyommatus icarus im Freilandverhaltensversuch . 45 2.8 Versuchsaufbau fur¨ die Messung von Sehfeld und Ommatidiendivergenz- winkeln ..................................... 50 2.9 Ommatidienraster der Augen von Polyommatus icarus ........... 51 3.1 Unterseiten flavonoidfreier und flavonoidreicher weiblicher Imagines von Polyommatus icarus im Sichtbaren und im UV ................ 56 3.2 Spektrale Reflexion der Flugelfarben¨ von flavonoidreichen und flavonoid- freien Polyommatus icarus ( ) ........................ 59 3.3 Spektrale Reflexion der weißen♀♀ Flecken einzelner Individuen von Polyom- matus icarus ( ), die als Raupenfutter eine kunstliche¨ Nahrung mit Zusatz von 0,98 % Rutin♀♀ und 4,9 % Rutin erhielten ................. 60 3.4 Spektrale Reflexion der weißen Flecken einzelner Individuen von Polyom- matus icarus
Recommended publications
  • The First New Zealand Insects Collected on Cook's
    Pacific Science (1989), vol.43, 43, nono.. 1 © 1989 by UniversityUniversity of Hawaii Press.Pres s. All rights reserved TheThe First New Zealand Zealand InsectsInsects CollectedCollectedon Cook'sCook's Endeavour Voyage!Voyage! 2 J. R. H. AANDREWSNDREWS2 AND G.G . W. GIBBSGmBS ABSTRACT:ABSTRACT: The Banks collection of 40 insect species, species, described by J. J. C.C. Fabricius in 1775,1775, is critically examined to explore the possible methods of collection and to document changesto the inseinsectct fauna andto the original collection localities sincsincee 1769.The1769. The aassemblagessemblageof species is is regarded as unusual. unusual. It includes insects that are large large and colorful as well as those that are small and cryptic;cryptic; some species that were probably common were overlooked, but others that are today rare were taken.taken. It is concluded that the Cook naturalists caught about 15species with a butterfly net, but that the majority (all CoColeoptera)leoptera) were discoveredin conjunction with other biobiologicallogical specimens, especially plantsplants.. PossibPossiblele reasons for the omission ofwetwetasas,, stick insects, insects, etc.,etc., are discussed. discussed. This early collection shows that marked changesin abundance may have occurred in some speciespeciess since European colonizationcolonization.. One newrecord is is revealed:revealed: The cicada NotopsaltaNotopsaltasericea sericea (Walker) was found to be among the Fabricius speci­speci­ mens from New Zealand,Zealand, but itsits description evidentlyevidently
    [Show full text]
  • Seeing Through Moving Eyes
    bioRxiv preprint doi: https://doi.org/10.1101/083691; this version posted June 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Seeing through moving eyes - microsaccadic information sampling provides 2 Drosophila hyperacute vision 3 4 Mikko Juusola1,2*‡, An Dau2‡, Zhuoyi Song2‡, Narendra Solanki2, Diana Rien1,2, David Jaciuch2, 5 Sidhartha Dongre2, Florence Blanchard2, Gonzalo G. de Polavieja3, Roger C. Hardie4 and Jouni 6 Takalo2 7 8 1National Key laboratory of Cognitive Neuroscience and Learning, Beijing, Beijing Normal 9 University, Beijing 100875, China 10 2Department of Biomedical Science, University of Sheffield, Sheffield S10 T2N, UK 11 3Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, 12 Portugal 13 4Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 14 3EG, UK 15 16 *Correspondence to: [email protected] 17 ‡ Equal contribution 18 19 Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors 20 and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors 21 would be expected to generate blurry and coarse retinal images of the world. Here we 22 demonstrate that Drosophila see the world far better than predicted from the classic theories. 23 By using electrophysiological, optical and behavioral assays, we found that R1-R6 24 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which 25 resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving 26 objects at saccadic speeds beyond the predicted motion-blur-limit.
    [Show full text]
  • Circadian Clocks in Crustaceans: Identified Neuronal and Cellular Systems
    Circadian clocks in crustaceans: identified neuronal and cellular systems Johannes Strauss, Heinrich Dircksen Department of Zoology, Stockholm University, Svante Arrhenius vag 18A, S-10691 Stockholm, Sweden TABLE OF CONTENTS 1. Abstract 2. Introduction: crustacean circadian biology 2.1. Rhythms and circadian phenomena 2.2. Chronobiological systems in Crustacea 2.3. Pacemakers in crustacean circadian systems 3. The cellular basis of crustacean circadian rhythms 3.1. The retina of the eye 3.1.1. Eye pigment migration and its adaptive role 3.1.2. Receptor potential changes of retinular cells in the electroretinogram (ERG) 3.2. Eyestalk systems and mediators of circadian rhythmicity 3.2.1. Red pigment concentrating hormone (RPCH) 3.2.2. Crustacean hyperglycaemic hormone (CHH) 3.2.3. Pigment-dispersing hormone (PDH) 3.2.4. Serotonin 3.2.5. Melatonin 3.2.6. Further factors with possible effects on circadian rhythmicity 3.3. The caudal photoreceptor of the crayfish terminal abdominal ganglion (CPR) 3.4. Extraretinal brain photoreceptors 3.5. Integration of distributed circadian clock systems and rhythms 4. Comparative aspects of crustacean clocks 4.1. Evolution of circadian pacemakers in arthropods 4.2. Putative clock neurons conserved in crustaceans and insects 4.3. Clock genes in crustaceans 4.3.1. Current knowledge about insect clock genes 4.3.2. Crustacean clock-gene 4.3.3. Crustacean period-gene 4.3.4. Crustacean cryptochrome-gene 5. Perspective 6. Acknowledgements 7. References 1. ABSTRACT Circadian rhythms are known for locomotory and reproductive behaviours, and the functioning of sensory organs, nervous structures, metabolism and developmental processes. The mechanisms and cellular bases of control are mainly inferred from circadian phenomenologies, ablation experiments and pharmacological approaches.
    [Show full text]
  • Delayed Colonisation of Acacia by Thrips and the Timing of Host
    McLeish et al. BMC Evolutionary Biology 2013, 13:188 http://www.biomedcentral.com/1471-2148/13/188 RESEARCH ARTICLE Open Access Delayed colonisation of Acacia by thrips and the timing of host-conservatism and behavioural specialisation Michael J McLeish1*, Joseph T Miller2 and Laurence A Mound3 Abstract Background: Repeated colonisation of novel host-plants is believed to be an essential component of the evolutionary success of phytophagous insects. The relative timing between the origin of an insect lineage and the plant clade they eat or reproduce on is important for understanding how host-range expansion can lead to resource specialisation and speciation. Path and stepping-stone sampling are used in a Bayesian approach to test divergence timing between the origin of Acacia and colonisation by thrips. The evolution of host-plant conservatism and ecological specialisation is discussed. Results: Results indicated very strong support for a model describing the origin of the common ancestor of Acacia thrips subsequent to that of Acacia. A current estimate puts the origin of Acacia at approximately 6 million years before the common ancestor of Acacia thrips, and 15 million years before the origin of a gall-inducing clade. The evolution of host conservatism and resource specialisation resulted in a phylogenetically under-dispersed pattern of host-use by several thrips lineages. Conclusions: Thrips colonised a diversity of Acacia species over a protracted period as Australia experienced aridification. Host conservatism evolved on phenotypically and environmentally suitable host lineages. Ecological specialisation resulted from habitat selection and selection on thrips behavior that promoted primary and secondary host associations. These findings suggest that delayed and repeated colonisation is characterised by cycles of oligo- or poly-phagy.
    [Show full text]
  • Attention and Individual Behavioural Variation in Small-Brained Animals – Using Bumblebees and Zebrafish As Model Systems
    Attention and individual behavioural variation in small-brained animals – using bumblebees and zebrafish as model systems Mu-Yun Wang Thesis submitted for the degree of Doctor of Philosophy Queen Mary, University of London 2013 1 Abstract A vital ability for an animal is to filter the constant flow of sensory input from the environment to focus on the most important information. Attention is used to prioritize sensory input for adaptive responses. The role of attention in visual search has been studied extensively in human and non-human primates, but is much less studied in other animals. We looked at attentional mechanisms, especially selective and divided attention where animals focus on multiple cues at the same time, using a visual search paradigm. We targeted bumblebee and zebrafish as model species because they are widely used as tractable models of information processing in comparatively small brains. Bees were required to forage from target and distractor flowers in the presence of predators. We found that bees could selectively attend to certain dimension of the stimuli, and divide their attention to both visual foraging search and predator avoidance tasks simultaneously. Furthermore, bees showed consistent individual differences in foraging strategy; ‘careful’ and ‘impulsive’ strategies exist in individuals of the same colony. From the calculation of foraging rate, it is shown that the best strategy may depend on environmental conditions. We applied a similar behavioural paradigm to zebrafish and found speed-accuracy tradeoffs and consistent individual behavioural differences. We therefore continued to test how individuality influences group choices. In pairs of careful and impulsive fish, the consensus decision is close to the strategy of the careful individual.
    [Show full text]
  • Anatomy of the Regional Differences in the Eye of the Mantis Ciulfina
    J. exp. Biol. (i979). 80, 165-190 165 With 17 figures Printed in Great Britain ANATOMY OF THE REGIONAL DIFFERENCES IN THE EYE OF THE MANTIS CIULFINA BY G. A. HORRIDGE AND PETER DUELLI Department of Neurobiology, Research School of Biological Sciences, Australian National University, Canberra, A.C.T. 2601, Australia (Received 8 August 1978) SUMMARY 1. In the compound eye of Ciulfina (Mantidae) there are large regional differences in interommatidial angle as measured optically from the pseudo- pupil. Notably there is an acute zone which looks backwards as well as one looking forwards. There are correlated regional differences in the dimensions of the ommatidia. 2. The following anatomical features which influence the optical perform- ance have been measured in different parts of the eye: (a) The facet diameter is greater where the interommatidial angle is smaller. This could influence resolving power, but calculation shows that facet size does not exert a dominant effect on the visual fields of the receptors. (b) The rhabdom tip diameter, which theoretically has a strong influence on the size of visual fields, is narrower in eye regions where the inter- ommatidial angle is smaller. (c) The cone length, from which the focal length can be estimated, is greater where the interommatidial angle is smaller. 3. Estimation of the amount of light reaching the rhabdom suggests that different parts of the eye have similar sensitivity to a point source of light, but differ by a factor of at least 10 in sensitivity to an extended source. 4. There is anatomical evidence that in the acute zone the sensitivity has been sacrificed for the sake of resolution.
    [Show full text]
  • Draft Manuscript for Annual Review of Entomology
    1 MANUSCRIPT FOR ANNUAL REVIEW OF ENTOMOLOGY Volume 62 (2017) 2 3 Habitat Management to Suppress Pest 4 Populations: Progress and Prospects 5 6 AUTHORS 7 Geoff M Gurr, Fujian Agriculture & Forestry University, Fuzhou 350002, China; 8 Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia. 9 [email protected] 10 11 Steve D Wratten, Bio-Protection Research Centre, Lincoln University, Canterbury, 12 New Zealand. [email protected] 13 14 Douglas A Landis, Michigan State University, Michigan, USA. [email protected] 15 16 Minsheng You, Fujian Agriculture & Forestry University, Fuzhou 350002, China. 17 [email protected] 18 19 CORRESPONDING AUTHOR CONTACT INFORMATION 20 Prof Geoff M Gurr, Fujian Agriculture & Forestry University, Fuzhou 350002, China; 21 [email protected]; Tel +61 417 480 375. 22 23 1 24 ARTICLE TABLE OF CONTENTS 25 26 INTRODUCTION 27 TERMINOLOGY AND OVERVIEW OF THE DISCIPLINE 28 ECOLOGICAL THEORY 29 Biodiversity and Ecosystem Services 30 Landscape Structure and Biological Control 31 Chemical Ecology and Non-consumptive Effects 32 MECHANISMS FOR NATURAL ENEMY ENHANCEMENT 33 Shelter (S) 34 Nectar (N) 35 Alternative hosts & prey (A) 36 Pollen (P) 37 Honeydew 38 MULTIPLE ECOSYSTEM SERVICES AND AGRIENVIRONMENTAL 39 PROGRAMS 40 CONSTRAINTS AND OPPOURTUNIES 41 Agronomy 42 Ecosystem Disservices (EDS) 43 Quantitative Analyses of Success and Failure 44 FUTURE PRIORITIES & PROSPECTS 45 46 2 47 Keywords Habitat manipulation, conservation biological control, ecological engineering, ecosystem services, natural enemy, agroecology Abstract Habitat management involving manipulation of farmland vegetation can exert direct suppressive effects on pests and promote natural enemies. Advances in theory and practical techniques have allowed habitat management to become an important sub- discipline of pest management.
    [Show full text]
  • Diurnal Changes in Angular Sensitivity of Crab Photoreceptors Leggett, L.M.W.; Stavenga, D.G
    University of Groningen Diurnal Changes in Angular Sensitivity of Crab Photoreceptors Leggett, L.M.W.; Stavenga, D.G. Published in: Journal of Comparative Physiology A DOI: 10.1007/BF00612803 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1981 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Leggett, L. M. W., & Stavenga, D. G. (1981). Diurnal Changes in Angular Sensitivity of Crab Photoreceptors. Journal of Comparative Physiology A, 144(1), 99-109. https://doi.org/10.1007/BF00612803 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Measuring Compound Eye Optics with Microscope and Microct Images
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.422154; this version posted December 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title (<120 characters): Measuring Compound Eye Optics with Microscope and MicroCT Images 2 Article Type: Tools and Resources 3 Author Names and Affiliations: John Paul Currea1, Yash Sondhi2, Akito Y. Kawahara3, and Jamie 4 Theobald2 5 1Department of Psychology, Florida International University, Miami, FL 33199, U.S.A. 6 2Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A. 7 3Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, U.S.A. 8 Abstract (<150 words): 9 The arthropod compound eye is the most prevalent eye type in the animal kingdom, with an impressive 10 range of shapes and sizes. Studying its natural range of morphologies provides insight into visual 11 ecology, development, and evolution. In contrast to the camera-type eyes we possess, external 12 structures of compound eyes often reveal resolution, sensitivity, and field of view if the eye is 13 spherical. Non-spherical eyes, however, require measuring internal structures using imaging 14 technology like MicroCT (µCT). Thus far, there is no efficient tool to automate characterizing 15 compound eye optics. We present two open-source programs: (1) the ommatidia detecting algorithm 16 (ODA), which automatically measures ommatidia count and diameter, and (2) a µCT pipeline, which 17 calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA.
    [Show full text]
  • Feller, KD, Wilby, D., Jacucci, G., Vignolini, S., Mantell, J., Wardill, TJ
    Feller, K. D., Wilby, D., Jacucci, G., Vignolini, S., Mantell, J., Wardill, T. J., Cronin, T. W., & Roberts, N. W. (2019). Long-Wavelength Reflecting Filters Found in the Larval Retinas of One Mantis Shrimp Family (Nannosquillidae). Current Biology, 29(18), 3101-3108. https://doi.org/10.1016/j.cub.2019.07.070 Peer reviewed version License (if available): CC BY-NC-ND Link to published version (if available): 10.1016/j.cub.2019.07.070 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0960982219309509 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ 1 Title 2 Long-wavelength reflecting filters found in the larval retinas of one mantis shrimp family 3 (Nannosquillidae) 4 5 Authors 1 ,2,3* 3,4 5 5 6 6 Kathryn D. Feller † , David Wilby †, Gianni Jacucci , Silvia Vignolini , Judith Mantell , 1 ,2 7 3 7 Trevor J. Wardill † , Thomas W. Cronin , Nicholas W. Roberts 8 9 Affiliations 1 10 Ecology, Evolution and Behavior Department, 1479 Gortner Avenue, University of 11 Minnesota, St. Paul, Minnesota, 55108, USA 2 12 Physiology Development and Neuroscience Department, Physiological Laboratories, 13 Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK.
    [Show full text]
  • Insects of the Dansey Ecological District / by B.H
    SCIENCE & RESEARCH SERIES NO.32 INSECTS OF THE DANSEY ECOLOGICAL DISTRICT by B. H. Patrick Published by Head Office, Department of Conservation, P O Box 10-420, Wellington ISSN 0113-3713 ISBN 0-478-01285-3 © 1991, Department of Conservation National Library of New Zealand Cataloguing-in-Publication Data: Patrick, B. H. (Brian H.) Insects of the Dansey ecological district / by B.H. Patrick. Wellington [N.Z.] : Head Office, Dept. of Conservation, c1991. 1 v. (Science & research series, 0113-3713 ; no. 32) ISBN 0-478-01285-3 1. Insects--New Zealand--Kakanui Mountains. 2. Lepidoptera--New Zealand--Kakanui Mountains. 3. Mountain ecology--New Zealand--Kakanui Mountains. I. New Zealand. Dept of Conservation. II. Title. III. Series: Science & research series ; no. 32. 595.7099382 Keywords: Dansey Ecological District, Lepidoptera, Orthoptera, Trichoptera, Coleoptera, Hemiptera, Dictyoptera, Hymenoptera, key sites for conservation, biology, biogeography, new species, insects, 65.02, 65 CONTENTS ABSTRACT 1 1. INTRODUCTION 1 2. METHODS 2 3. RESULTS AND DISCUSSION 2 3.1 Rock bluffs and tors 3 3.2 Short tussock grasslands and shrubland 3 3.3 Alpine grassland 4 3.4 Wetlands 4 3.5 Snowbanks 7 3.6 Upland shrubland 7 3.7 High alpine fellfield and herbfield 7 4. NEW DISTRIBUTIONAL RECORDS 8 5. FEATURES OF THE FAUNA 11 6. CONCLUSIONS AND LIST OF KEY SITES 11 7. ACKNOWLEDGEMENTS 12 8. REERENCES 13 APPENDIX 1 14 Fig. 1 Map of the Dansey Ecological District of the Kakanui Ecological Region INSECTS OF DANSEY ECOLOGICAL DISTRICT by B. H. Patrick Conservancy Advisory Scientist, Otago Conservancy, Department of Conservation, Box 5244, Dunedin ABSTRACT An insect survey of the Dansey Ecological District in the Kakanui Ecological Region produced 295 species in seven insect orders, with primary attention being paid to Lepidoptera.
    [Show full text]
  • Understanding the Structural and Developmental Aspect of Simple
    ell S f C ign l o a a li n n r g u o J Journal of Cell Signaling Sabat et al., J Cell Signal 2016, 1:2 ISSN: 2576-1471 Review Article Open Access Understanding the Structural and Developmental Aspect of Simple Eye of Drosophila: The Ocelli Debabrat Sabat, Subhashree Priyadarsini and Monalisa Mishra* Department of Life Sciences, National Institute of Technology Rourkela, Odisha, India *Corresponding author: Monalisa Mishra, Department of Life Sciences,National Institute of Technology, Rourkela, Odisha, India, Tel: 0661-2462784; E-mail: [email protected] Received date: February 9, 2016; Accepted date: March 14, 2016; Published date: March 21, 2016 Copyright: © 2016 Sabat D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Among various photoreceptors present in arthropods Drosophila eye undergoes certain modification to provide high resolution and sensitivity to the animal. Along with the compound eye Drosophila possess three ocelli for its vision, navigation and locomotion purpose. These ocelli are arranged in a triangular manner in between the compound eye. During third instar larvae, from the eye antenna imaginal disc several conserved genes and complex regulatory genetic network help in ocellar patterning. Like compound eye ocelli possess cornea, corneagenous cell, photoreceptor cells (rhabdom). The visual pigment present in ocelli is Rh2 and is responsible for the functioning of ocelli. Although rhabdomere are the photoreceptor organ of the ocelli the arrangement of the rhabdomere in ocelli differs from the compound eye.
    [Show full text]