©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at

Tuexenia 29: 339-351. Göttingen 2009. Succession and management of calcareous dry grasslands in the Northern Franconian Jura, -Joachim Schrautzer, Doris Jansen, Michael Breuer and Oliver Nelle -

Abstract The massive decline of calcareous grasslands in the Franconian Jura is caused mainly by land use abandonment and afforestation. In the district , the northernmost part of the Franconian Alb, management measures were put in action since the middle of the 1980s to conserve or restore those threatened ecosystems. Important actions were removal of trees (mainly Pinus sylvestris) and shrubs as well as reintroduction of sheep grazing. This study analyses the success of restoration measures taken at two Natura 2000 sites. Based on vegetation relevés from 70 sites with different land use histories, we investigate the influence of the successional status of the woodlands prior to clear-cutting and the time period of subsequent grazing on the actual vegetation. The results suggest that both factors influence species composition. On formerly dense pine woodland sites, it takes at least five years of grazing until the number of target species increases. On formerly more sparsely wooded sites, target species establish faster after reintroduction of grazing. Our results show that keeping sites open by tree and shrub removal followed by seasonal grazing are important measures to maintain and restore plant communi­ ties of calcareous grasslands in the Franconian Jura.

Zusammenfassung: Sukzession und Management von Kalkmagerrasen der Nördlichen Fränkischen Alb, Deutschland In der Fränkischen Alb ist der großflächige Rückgang von Kalkmagerrasen vorwiegend auf Nut­ zungsaufgabe und Aufforstung zurückzuführen. Im Landkreis Lichtenfels, dem nördlichsten Teil dieser Region, werden seit Mitte der 1980er Jahre verstärkt Maßnahmen zur Erhaltung und Wiederherstellung dieser gefährdeten Ökosysteme durchgeführt. Wichtigste Maßnahmen sind die Freistellung überwie­ gend mit Kiefern bewachsener Standorte und die Wiedereinführung der Wanderschäferei. Die vor­ liegende Studie analysiert den Erfolg dieser Maßnahmen in zwei Natura-2000-Gebieten. Ziel der Unter­ suchungen ist es, mit Hilfe von Vegetationsaufnahmen an 70 Standorten mit unterschiedlicher Nut­ zungsgeschichte den Einfluss des Entwicklungszustandes der Waldflächen vor der Freistellung und der Zeitspanne der nachfolgenden Beweidung auf die aktuelle Vegetationszusammensetzung zu analysieren. Die Ergebnisse zeigen, dass beide Faktoren sich auf das Renaturierungsergebnis auswirken. In früher dichten Kiefernbeständen muss mit einer Zeitspanne von mindestens fünf Jahren gerechnet werden, bis die Beweidung zu einem deutlichen Anstieg von Zielarten führt. In ehemals lichteren Beständen setzt dieser Prozess früher ein. Fazit der Studie ist, dass die Offenhaltung der Standorte durch Freistellung und nachfolgende kontinuierliche Beweidung wichtige Maßnahmen sind, um die Kalkmagerrasen der nördlichen Frankenalb zu erhalten und weiter zu entwickeln. Keywords: abandonment, indirect analysis of succession, land use history, plant species diversity, semi­ dry grassland, sheep grazing, shrub encroachment, tree removal. 1. Introduction Dry calcareous grasslands on nutrient-poor sites in Central Europe developed in most cases during centuries or even millennia of traditional land use by grazing and/or mowing (ELLENBERG 1996). Outside the Alps, natural formations of these ecosystems are found only on small, isolated sites such as rock outcrops in low mountain ranges. The high species diversity of semi-natural calcareous grasslands originates from a moderate disturbance regime together with a low nutrient availability of the soils and a long history of species immigration (Poschlod & Wallis D eVries 2002). Land use intensification (e.g. change to fertilized grasslands), afforestation and increasing shrub encroachment following the cessation of transhumance are the causes for the drastic decline of species-rich dry calcareous grasslands in Central Europe during recent

339 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at decades (Willems 2001, Poschlod & Wallis De V ries 2002, D ierschke 2006). Since tradi­ tional land use is no longer profitable for farmers in many areas, the maintenance of the remaining, often strongly fragmented areas and the restoration of degraded sites often require the management by conservationists. In view of the increasing loss and fragmenta­ tion of calcareous grasslands, many restoration projects have been started during the last decades in order to stabilize and promote populations of specialised plant and animal species (KlEHL 2009). The réintroduction of management practices depends on former land use of the areas targeted for restoration. On formerly fertilized sites, the nutrient availability of the soil has to be reduced, which can only be achieved by mowing without fertilization or by removing the nutrient-rich topsoil (Ryser et al. 1995, VERHAGEN et al. 2001). However, due to the fact that only about a quarter of the characteristic plant species build up a long-term persistent seed bank, measures of species transfer such as hay transfer from suitable donor sites may be necessary (Jeschke & Kiehl 2006, KlEHL & Wagner 2006, Kiehl 2009). In abandoned or afforested dry grasslands, which often still contain target species and have never been fertilized, clear-cutting and réintroduction of mowing or grazing regimes are adequate management measures to start the restoration process. In the Franconian Jura sheep farming was an important economic factor until the mid of the 19th century (Weid 1995). The development of dry grasslands already started during the Bronze Age (Baumann 2006) or even earlier. Land use was intensified during medieval times, reaching a maximum in the 19th century, when the region was the most sparsely wooded area of (Weisel 1971) and only c. 20% of the area was covered by forests (Rauh 2004, Bender et al. 2005a, 2005b). The subsequent continuous reduction of sheep husbandry resulted in a dramatic decline in the extent of dry grasslands. The change in pre­ dominant land use happened between 1900 and 1960 (Bender et al. 2005a, 2005b). During this period, the proportion of wooded areas nearly doubled. Today less than 1% of the area of the Franconian Jura is covered by species-rich dry grasslands (Rauh 2004). Similar to the Neckar Basin and the Swabian Alb in south-western Germany (BLANCKENHAGEN & POSCHLOD 2005), most of the nutrient-poor pastures of the Franconian Jura were aban­ doned or were afforested with pine or spruce (H agen 1996). Since the mid-1980s, conservationists have tried to restore abandoned dry grasslands and to preserve those that remained. In the northern part of the Franconian Jura (Landkreis Lichtenfels), restoration started with clear-cutting of more or less dense woodlands, which was initially organised by NGOs in cooperation with local farmers. In 1998, the “Land- schaftspflegeverband Lichtenfels” took over the management of large-scale grazing and reintroduced sheep transhumance because traditional sheep-farming was on the brink of collapse. Despite the existence of many sites restored by clear-cutting and subsequent graz­ ing there is a lack of detailed investigations that analyse the resulting changes in vegetation. The aim of our study was to bridge this gap. Therefore, we address the following questions: - Which are the effects of secondary succession after abandonment on plant species richness and species composition? - How do the successional stages of the woodlands before clear-cutting and the duration of the grazing period after clear-cutting influence the restoration process? - Which conclusions can be drawn for a sustainable management of dry calcareous grass­ lands in the Northern Franconian Jura? 2. Study area The study sites are located in the district Lichtenfels (Fig. 1), which includes the north­ ern part of the Franconian Alb (Bavaria, Germany). Geologically, the region is situated at the northern end of the Franconian Late Jurassic (Malm) layer, consisting of calcareous hard sediments. The calcareous soils of the investigated sites are composed of shallow and deeper loam. The altitudinal range is between 430 and 570 m a.s.l. Mean annual temperature of the region (meteorological station Weismain) is about 7.5 °C, and the mean annual sum of pre­ cipitation is about 720 mm.

340 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at The first period of intensive land use in the area dates to the Hallstatt and La-Tene period (700 BC - 50 BC), when the Celts built a central settlement on top of mount Staffelberg (a so-called “oppidum”) with huge constructions such as walls and ramparts (A bels 1986, ABELS et al. 1996). The historical development of calcareous grasslands in the south-eastern Franconian Jura has been well studied (N e l l e & SCHMIDGALL 2003, B a u m a n n 2006, BAU­ MANN & POSCHLOD 2008), but so far no data were available from the northern Franconian Jura. The investigations were carried out in two areas (Table 1), the project area of the “Trock- enbiotopverbund Staffelberg”, which overlaps with the Natura 2000 area “Albtrauf im Landkreis Lichtenfels”, and the “Weismainalb” (Natura 2000 area “Trockenrasen, Wiesen und Wälder um Weismain”). The “Landschaftspflegeverband Landkreis Lichtenfels” has organised management measures in both areas for about ten years. At many sites, trees and shrubs were removed, and two sheep flocks together with some goats now graze the sites and are rotated between the different pastures during summer. Since 2000, both areas have been grazed at least twice a year from May to August. Within the study area, different land use types occur (Table 1). As reference systems for species-rich dry grasslands, we used the sites “Wallersberg” and “Klein Ziegenfeld”, which have a long history of continuous grazing by sheep. In phytosociological terms, the calcareous grasslands of the investigated areas can be assigned to the Festuco-Brometea Br.-Bl. et Tx. ex Klika et Hadac 1944. The presence of several species, such as Carex flacca, C. caryophyllea, Carlina vulgaris, Cirsium acaule,

Fig. 1: Study area in the Northern Franconian Jura (district Lichtenfels, Upper , Bavaria). Dots mark the locations of the study sites (see also Table 1). Abb. 1: Untersuchungsgebiet Nördliche Fränkische Alb (Landkreis Lichtenfels, Oberfranken, Bayern). Punkte markieren die einzelnen Untersuchungsflächen (vgl. Tab. 1).

341 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at Table 1: Investigated areas and study sites NSG = nature reserve. A = former woodlands, B = long-term (old) pastures. In the last column the quadrants of the German Ordnance Survey maps (“Topographische Karten 1 : 25.000”) are given. Tab. 1: Untersuchungsgebiete und Untersuchungsflächen A = ehemalige Wälder, B = alte Weiden. In der letzten Spalte sind die „Messtischblattquadranten“ ange- geben, auf denen die Flächen liegen. Study site Code Land use type Status of protection Quadrant of Ordnance Survey map

Natura 2000 area Staffelberg („Albtrauf im Landkreis Lichtenfels“) 1 Deisenstein Ds woodlands, pasture (A) - 5932/2 2 Weinhügel Wh woodland, pastures (A) Natura 2000 5932/1 3 Lerchenberg Lb pastures (A) Natura 2000 5932/1 4 Spitzberg Sb woodlands, pastures (A) Natura 2000 5932/1 5 Morgenbühl Mb pastures (A) Natura 2000 5932/1 6 Treppenberg Tb woodlands Natura 2000 5932/3 7 Weißer Lahma W1 woodlands, pastures (A) Natura 2000 5932/3 8 Staffelberg St pastures (A), meadows NSG, Natura 2000 5932/1 Natura 2000 area Weismainalb („Trockenrasen, Wiesen und Wälder um Weismain“) 9 Klein Ziegenfeld Zf pastures (B) NSG, Natura 2000 5933/3 10 Wallersberg Wb pastures (B) NSG, Natura 2000 5933/3 11 Köttel Kt pastures (A) Natura 2000 5933/1 12 Kalkberg Kb woodlands, pastures (A) Natura 2000 5933/1

Koeleria pyramidata and Scabiosa columbaria suggests a more specific attribution to the order Brachypodietalia pinnati Korneck 1974 (basiphilous semi-dry grasslands) and therein probably to the alliance Bromion erecti W. Koch 1926 (= Meso-Bromion Oberd. 1949; J. Dengler, pers. comm.). Some species can be used according to SCHMIDT (2000) as differen­ tial species of the suballiance Meso-Bromenion Oberd. 1957 against the Seslerio-Meso- Bromenion Oberd. 1957, e.g. Briza media, Bromus erectus, Carex caryophyllea, Plantago media and Ranunculus bulbosus. 3. Methods 3.1. Data collection Vegetation relevés (plot size 25 m2, n = 70) were recorded during early summer (between end of May and end of June) in 2005, 2006 and 2007. We used the method of Braun -Blan - QUET (1964) with the modified cover-abundance scale of REICHELT & WlLMANNS (1973) or a simplified pure cover scale (Table 2), and recorded only vascular plants. Each year, all sites were revisited in mid-July. The phytosociological assignment of the species was made according to Ellenberg et al. (1992). The nomenclature of vascular plants follows WlSS- KIRCHEN and H aeupler (1998). Based on information from the “Landschaftspflegeverband”, the pastures were classified according to the period of grazing after clear-cutting. To reconstruct the approximate date of clear-cutting and the tree coverage before clear-cutting, series of aerial photographs were used. Planar terraces in the landscape were interpreted as signs of former arable fields (Fig. 3). In contrast, steep slopes were assumed never to have been used as fields. We used old pho­ tographs to gain further information on the historical land use of the sites. 342 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at Table 2: Scales used for analysis of dominance and abundance of plant species Tab. 2: Verwendete Schätzskalen für die Dominanz- und Abundanzanalyse der Pflanzenarten REICHELT & WlLMANNS (1973) Simplified scale Cover (%) Number of individuals + 1* 0-5 1-5 1 1* 0-5 6-50 2m 1* 0-5 >50 2a 2 >5-15 any 2b 2 >15-25 any 3 3 >25-50 any 4 4 >50-75 any 5 5 >75 any

3.2. Data analysis Classification of vegetation was based upon a manual sorting of the relevés according to floristic similarities. In addition, a non-metric multidimensional scaling (NMDS) ordination of the vegetation data was performed with the program R, version 2.72 (R DEVELOPMENT C ore T eam 2008). For the correlation of the relevés we used the procedure “dist” with the binary method, and the NMDS itself was calculated by the procedure “isoMDS” The suc­ cessional scheme was derived from an indirect successional analysis for which we compared the investigated sites according to their vegetation structure and their past and current land use (see above). The successional stages were analysed in terms of species richness and the proportion of phytosociological groups with the program STATISTICA 6 (StatSoft 2001). As the data were not normally distributed, we used the Kruskal-Wallis test and non-para- metnc multiple mean comparisons to detect significant differences between the groups. The target species for dry grasslands in this study belong to the classes Festuco-Brometea and Sedo-Sclerantbetea Br.-Bl. 1955 as listed by E llenberg et al. (1992). 4. Results 4.1. Characterisation of the vegetation Based on all relevés, the manual classification of the vegetation relevés resulted in two main groups: woodlands and dry calcareous grasslands (Table 3 in the Supplement). Wood­ lands developed from dry grasslands as a result of abandonment or afforestation (Fig- 2). The most frequent species of the tree layer was Pinus sylvestris, whereas Fagus sylvatica, which indicates a further progression to deciduous forests, was rare and occurred only in two relevés. Older woodlands (Table 3, type 1) were separated from younger woodlands (type 2) by occurrence of some species of the Querco-Fagetea Br.-Bl. & Vlieger in Vlieger 1937 such as Bromus ramosus, Galium odoratum and Sanícula europaea and the almost com­ plete absence of dry grassland species. The species composition of the herb layer of younger woodlands was similar to that of dry grasslands. Thus, the floristic differentiation between these vegetation types was only based on existence or lack of a tree layer. Among dry grasslands, grazed habitats (Table 3 in the Supplement, types 3, 4) represent a typical land use form on nutrient-poor, calcareous soils of southern Germany, the Wacholderheide (NATURA 2000 habitat type 5130: Juniperus communis formations on heaths or calcareous grasslands). Most relevés were recorded on cleared former woodland sites, which had been overgrown by pine previously (Fig. 2). In addition to Juniperus com­ munis, several species differentiated these vegetation types from mown sites, such as Bupleu- rum falcatum, Polygala comosa and Prunella grandiflora. The grazed calcareous grasslands can be further divided into two types that vary in terms of site conditions. Differential 343 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at

derived by indirect successional analysis ------*■ ? uncertain development ...... ► probable long-term development Fig. 2: Secondary progressive and regressive successional pathways of the investigated calcareous grass­ lands. PI = former dense woodland, grazed < 5 years; P2 = former dense woodland, grazed > 5 years; P3 = former open woodland, grazed < 5 years; P4 = former open woodland, grazed > 5 years. P5 = old pastures. Abb. 2: Progressive und regressive Sukzessionspfade für die untersuchten Kalkmagerrasen. PI = früher dichte Wälder, Beweidung < 5 Jahre; P2 = früher dichte Wälder, Beweidung > 5 Jahre; P3 = früher offenere Wälder, Beweidung < 5 Jahre; P4 = früher offenere Wälder, Beweidung > 5 Jahre. P5 = alte Weiden. species such as Carex flacca, Leucanthemum vulgare and Prunella grandiflora (herb layer) indicate relatively planar sites with deeper, loamy soils (Table 3, type 3). Old photographs show that many of these sites were used at least until the end of the 19th century as arable fields (Fig. 3) and were ceased approximately in the middle of the 20th century (Fig. 4). In contrast, grazed dry grasslands on steep slopes with shallow soils were always used as pas­ tures (Table 3, type 4). These pastures are characterized by a group of species that partially were assigned to the Sedo-Scleranthetea (e.g. Helianthemum nummularium, Sedum sexangu- lare, Teucrium botrys). It was not possible to identify differential species for further floristic division of the grazed dry grassland, despite the available information on former land use, the density of the tree layer prior to clear-cutting, and the period of grazing after clear- cutting (see head of Table 3). On the other hand, mown dry grasslands (Table 3, type 5) contained several species typical of mesic grasslands ( Molinio-Arrhenatheretea Tx. 1937) such as Cerastium holosteoides, Festuca rubra, Poa pratensis agg. and Trifolium pratense, which separated them from pastures. Furthermore, in these meadows Bromus erectus reached a higher cover than in the investigated pastures. All relevés of the mown sites were taken on former, more or less planar field terraces of the Staffelberg region (Fig. 5). In addi­ tion, two relevés originated from former arable fields (Table 3, type 6) that had been converted into sheep pastures without fertilization about ten years ago. The occurrence of species like Carex flacca and Leucanthemum vulgare indicated a floristic and edaphic similar­ ity to the dry grassland on deeper loamy soils (Table 3, type 3), but high cover of Taraxacum sect. Ruderalia suggested a still relatively high nutrient availability (OBERDORFER 2001). 344 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at 4.2. Changes in species richness and species composition during secondary succession The manual classification of the vegetation did not allow for an obvious floristic subdivi­ sion of grazed dry grasslands with respect to their former and current land use (see Section 4.1). Thus, for the NMDS ordination, we used only relevés of pastures for which the cover­ age of the tree layer before clear-cutting could be derived from aerial photos, in addition to the relevés of meadows, former agricultural fields and woodlands (n = 56). The NMDS ordination clearly separated long-term (old) pastures, younger woodlands, older woodlands, former arable fields and meadows (Fig. 6). The ordination of the relevés along axis 2 indicated that the floristic composition of the dry grassland type PI (former dense woodland, cleared and grazed for at most 5 years) was still similar to that of old woodlands. The ordination showed no distinct separation between younger woodlands and their status after clear- cutting and subsequent grazing (Fig. 6, P3, P4). There was also a high floristic similarity between these vegetation types and the type P2, indicating that cleared former dense wood­ lands develop to species-rich grasslands after a grazing period of more than 5 years. During the process of secondary succession following abandonment or afforestation from old dry grasslands (P5) via young woodlands (YW) to older woodlands (OW) (Fig. 2), species richness decreased as did the number of dry-grassland species (Fig. 7, 8). As expected, the proportion of forest species increased during secondary succession (Fig. 8). In formerly dense woodlands, species richness and the number of dry grassland species increased after clear-cutting and grazing for not more than five years (Pi, Fig. 7). If restoration sites were grazed longer than 5 years (P2, Fig. 3), a further increase of species richness and number of typical dry grassland species could be expected (Fig. 7, 8). There were no significant differ­ ences between younger woodlands (YW) and cleared young woodland sites (P3, P4) in species richness and proportion of dry grassland species (Fig. 7, 8). Nevertheless, all dry grasslands restored by clear-cutting and grazing (P1-P4) exhibited a significant lower pro­ portion of dry grassland species than old, continuously grazed pastures (P5, Fig. 7 B). At mown sites, species richness was significantly lower than at cleared and grazed sites (Fig. 7 A). 5. Discussion 5.1. Development of dry grasslands during secondary succession Long-term changes of calcareous grassland vegetation in the Northern Franconian Jura were only studied by H agen (1996), who observed an increase of characteristic species of forest edges and tree seedlings in abandoned dry grasslands. However, this author intention­ ally excluded sites with shrub encroachment after abandonment. Therefore, long-term data from permanent plots that describe in detail the vegetation dynamics of the investigated dry grasslands during secondary progressive succession are not available. Consequently, secondary succession can be described only approximately by aspace-for-time substitution” The vegetation structure of the investigated woodlands in our study generally reflects the results of HEINRICH (1998), which are based on 20-year observations of permanent plots in calcareous dry grasslands close to Jena (Thuringia). At sites of the Bromion erecti, the author described a rapid spread of shrubs such as Cornus sanguínea and Crataegus species, which are also common in the rather open woodlands of the study area. However, these stands were relatively species-rich and contained a high number of target species. Although many authors (e.g. SCHREIBER 1997, SCHMIDT 2000, MOOG et al. 2002, KÖHLER et al. 2005, DlERSCHKE 2006) described a decrease in light-demanding dry grassland species after abandonment, we observed this phenomenon only in older woodlands. Nevertheless, if we compare the species composition of the investigated older woodlands to that of beech forests in the vicinity of the study areas (unpublished relevés), the older pine forests are floristically still considerably different from mature stages of deciduous forests. This result corresponds with data of WlLMANNS & BOGENRIEDER (1995), which indicates a low degree of similarity between the developing forests and potential natural vegetation type ( Carici- Fagetum Moor 1952), even after a period of abandonment of 50 to 70 years. 345 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at

5

Staffelberg i] ------Fig. 3: View of the Staffelberg (Scheffelfelsen) at the end of the 19th century. The postcard shows a planar terrace in front of the rocks, which was used for agriculture. Source: Landschaftspflegeverband Lich­ tenfels e. V. Abb. 3: Blick auf den Staffelberg (Scheffelfelsen) am Ende des 19. Jahrhunderts. Die Postkarte zeigt eine ebene Terrasse vor den Felsen, die zu jener Zeit als Acker genutzt wurde. Quelle: Landschaftspfle­ geverband Lichtenfels e. V.

Fig. 4: Staffelberg in 1980 (same view as Fig. 2). Shrub encroachment in front of the rocks indicates abandonment. Source: Landschaftspflegeverband Lichtenfels e. Y. Abb. 4: Der Staffelberg im Jahr 1980 (gleicher Blick wie auf Abb. 2). Die aufkommenden Gehölze auf der Fläche vor den Felsen weisen auf die Brache hin. Quelle: Landschaftspflegeverband Lichtenfels e. V.

346 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at

Fig. 5: Staffelberg in 2006 after implementation of a mowing regime (same view as Fig. 3). (Photo: J. Schrautzer). Abb. 5: Der Staffelberg im Jahr 2006 nach Einführung eines Mahdregimes (gleicher Blick wie auf Abb. 3). (Foto: J. Schrautzer).

0.5

CN cn 1 ° -°

-0.5

-0.2 0.0 0.2 0.4 0.6 Axis 1

OW = older woodland YW = younger woodland

Dry grasslands: F = former arable fields, grazed since ten years P1 = former dense woodland, grazed < 5 years P2 = former dense woodland, grazed > 5 years P3 = former open woodland, grazed < 5 years P4 = former open woodland, grazed > 5 years P5 = long-term pastures M = meadows Fig. 6: Result of NMDS ordination (non-metric multidimensional scaling) for the vegetation of the investigated sites. Each point represents one relevé (total no. of relevés: 56). Abb. 6: Ergebnis der NMDS-Ordination für die Vegetation der untersuchten Standorte. Jeder Punkt entspricht einer Vegetationsaufnahme (Gesamtanzahl der Aufnahmen: 56). 347 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at

Fig. 7: Species richness (A) and number of dry grassland species (B) of sites with different vegetation structure and land use history (n = no. of relevés). Medians, Box: 25-75%; range without outlier. Kruskal-Wallis test: (A): H (7,54) = 35.045; p < 0.001. (B): H (7,45) = 27.95; p < 0.001. Different letters show significant differences (p < 0.05). OW = older woodland (n = 5); YW = younger woodland (n = 9); PI = former dense woodland, grazed < 5 years (n = 4); P2 = former dense woodland, grazed > 5 years (n = 5); P3 = former open woodland, grazed < 5 years (n = 7); P4 = former open woodland, grazed > 5 years (n = 8); P5 = old pastures (n = 9); M = meadows (n - 7). Abb. 7: Artenzahl (A) und mittlere Anzahl an Magerrasenarten (B) für Standorte mit unterschiedlicher Vegetationsstruktur und Landnutzungsgeschichte (n = Anzahl der Vegetationsaufnahmen). Mediane, Box: 25-75 %: Bereich ohne Ausreißer. Kruskal-Wallis-Test: (A): H (7;54) = 35,045; p < 0,001. (B): H (7;45) = 27,95; p < 0,001. Unterschiedliche Buchstaben kennzeichnen signifikante Unterschiede (p < 0,05). OW = ältere Wälder (n = 5); YW = jüngere Wälder(n — 9); PI = früher dichte Wälder, Bewei- dung < 5 Jahre (n = 4); P2 = früher dichte Wälder, Beweidung > 5 Jahre(n = 5); P3 = früher offenere Wälder, Beweidung < 5 Jahre (n = 7); P4 = früher offenere Wälder, Beweidung > 5 Jahre (n = 8); P5 = alte Weiden (n = 9); M = gemähte Flächen (n = 7).

5.2, Development of dry grasslands after clear-cutting and subsequent grazing A reasonable evaluation of the restoration success in dry grassland ecosystems requires different prerequisites. After the loss of original vegetation by intensification or abandon­ ment both specialized and euryoecious species could establish. Thus, target species must be defined a priori. In our study, species of the Festuco-Brometea and the Sedo-Scleranthetea were defined as target species for dry calcareous grasslands, which is in accordance with other investigations (BLANCKENHAGEN & POSCHLOD 2005, KlEHL & PFADENHAUER 2007, KlEHL 2009). Furthermore, if possible, reference systems should be identified to evaluate the current status of restored sites. We used old traditionally managed calcareous grassland with Juniperus communis as reference systems, which cover larger areas of the nature reserves “Wallersberg” and “Klein Ziegenfeld”. Finally, the evaluation of restoration success should consider local and regional species pools (ZOBEL 1997). The regional species pool of dry grasslands of the Franconian Jura was not determined in this study. However, a com­ parison of average species numbers in phytosociological relevés between calcareous pastures of this region and comparable areas in Southern Germany showed that the mean number of target species in vegetation relevés from our reference systems (Fig. 7 B, P5) is lower (about 25-30 species on 25 m2) than the number of target species in old calcareous grasslands of the Swabian Alb (about 30-40 species on 20 m2, BLANCKENHAGEN & POSCHLOD 2005). The results of our study clearly demonstrate that restoration success of abandoned calcareous grasslands after clear-cutting and grazing depends on both their developmental status before clear-cutting and the amount of time of subsequent grazing. Successful restoration of a typical species composition of calcareous grasslands following clear-cutting is possible after only a few years of grazing if target species are still present in the current vegetation. This is in accordance with findings in other European countries (PÄRTEL et al. 1998, Barbaro et al. 2001). In contrast, a grazing period of at least 5 years was necessary on

348 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at

Species of:

Forests Forest edges Dry grasslands JJJJ Mesic grasslands Others Fig. 8: Proportion of different phytosociological species groups (according to ELLENBERG et al. 1992) of sites with different vegetation structure and land use history. OW = older woodland (w = 5); YW = younger woodland (n = 9); PI = former dense woodland, grazed < 5 years (n = 4); P2 = former dense woodland, grazed > 5 years (n = 5); P3 = former open woodland, grazed < 5 years (n = 7); P4 = former open woodland, grazed > 5 years (n = 8); P5 = old pastures (n - 9); M = meadows (n = 7); AF = past arable fields, grazed for 10 years (n = 2). Abb. 8: Anteile verschiedener soziologischer Artengruppen (nach E llenberg et al. 1992) von Standor­ ten mit unterschiedlicher Vegetationsstruktur und Landnutzungsgeschichte. OW = ältere Wälder {n = 5); YW = jüngere Wälder(n = 9); Pl = früher dichte Wälder, Beweidung < 5 Jahre(n = 4); P2 = früher dichte Wälder, Beweidung > 5 Jahre (n = 5); P3 = früher offenere Wälder, Beweidung < 5 Jahre (n = 7); P4 = früher offenere Wälder, Beweidung > 5 Jahre (n = 8); P5 = alte Weiden (n = 9); M = Wiesen (n = 7); AF = ehemalige Äcker, seit 10 Jahren beweidet (n = 2). sites with a dense tree layer prior to clear-cutting before a considerable increase of species richness and the number of target species could be observed. This development was compa­ rable to the results of BLANCKENHAGEN & POSCHLOD (2005), who observed the establishment of many dry grassland species 7-8 years after clear-cutting of formerly densely wooded sites of the Swabian Alb. However, the authors also discovered considerable differences between restored sites and reference areas in terms of species composition. The cleared sites were dominated by target species with a long-term persistent seed bank, whereas old pastures contained predominantly target species with a transient seed bank. In contrast to this, the species composition of most restored sites in our study is similar to that of the reference sites, which was confirmed by the results of the manual classification as well as the ordina­ tion. Therefore, we assume that after clear-cutting of previously dense pine forests many dry grassland species could invade from outside by sheep transhumance or by seed rain even though the distances of dispersal by seed rain rarely exceed 25 m for calcareous grassland species (St a m p f li & Z eiter 1999). Finally, it can be concluded that the potential for restoration of species-rich calcareous grasslands is still high in the investigated Natura 2000 areas, where cessation of trans­ humance and afforestation were the main reasons for the decline of these systems. Besides opening of the landscape by clear-cutting and the maintenance of migrating sheep flocks, no further restoration measures such as species introduction (cf. KlEHL 2009) seem to be neces­ sary to maintain the dry grassland species pool of these areas (see also D o l e k & G eyer 2002). 349 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at Acknowledgements We would like to thank Manfred Rauh and Gerhard Hübner (Landschaftspflegeverband Landkreis Lichtenfels) for their continuing excellent collaboration, as well as Reinhard Leutner (Landrat Land­ kreis Lichtenfels) and Renate Halwart and Josef Schröder (Umweltstation Weismain of the Landkreis Lichtenfels). We thank Curtis Björk and Aiko Huckauf for helpful comments and linguistic improve­ ments of the manuscript. Thanks are also due to the reviewers for improving the manuscript consider­ ably.

References ABELS, B.-U. (1986): Archäologischer Führer Oberfranken. Führer zu archäologischen Denkmälern in Bayern. - Theiss, Stuttgart: 210 pp. -, SAGE, W. & ZüCHNER, C. (1996): Oberfranken in vor- und frühgeschichtlicher Zeit. - Bayerische Verlagsanstalt, Bamberg: 304 pp. BARBARO, L., D utoit , T. & Cozic, R (2001): A six-year experimental restoration of biodiversity by shrub-clearing and grazing in calcareous grasslands of the French Prealps. - Biodiversity Conserv. 10: 119-135. Dordrecht. BAUMANN, A. (2006): On the vegetation history of calcareous grasslands in the Franconian Jura (Ger­ many) since the Bronze Age. - Diss. Bot. 404: 194 pp. Cramer, Berlin. - & POSCHLOD, P. (2008): Did calcareous grasslands exist in prehistoric times? An archaeobotanical research on the surroundings of the prehistoric settlement above Kallmünz (Bavaria, Germany). - In: G. FlORENTlNO & M ag r i , D. [Eds.]: Charcoals from the Past: Cultural and palaeoenvironmental implications - Proceedings of the Third International Meeting of Anthracology, Cavallino - Lecce (Italy) June 28th - July 1st 2004. - Br. Archaeol. Rep. 1807: 25-37. Oxford. B e n d e r , O., B ö h m er , H. J., Jens , D. & Sc h u m ach er , K. P. (2005a): Analysis of land-use change in a sector of (Bavaria, Germany) since 1850 using land register records. - Landscape Ecol. 20: 149-163. The Hague -, (2005b): Using GIS to analyse long-term cultural landscape change in Southern Germany. - Landscape Urban Plann. 70: 111-125. Amsterdam. BLANCKENHAGEN, B. VON & POSCHLOD, P. (2005): Restoration of calcareous grasslands: the role of the soil seed bank and seed dispersal for recolonisation processes. - Biotechnol. Agron. Soc. Environ. 9: 143-149. Gembloux. Braun -Blanquet , J. (1964): Pflanzensoziologie. Grundzüge der Vegetationskunde. 3th ed. - Springer, Berlin: 865 pp. DlERSCHKE, H. (2006): Sekundär-progressive Sukzession eines aufgelassenen Kalkmagerrasens. Dauer­ flächenuntersuchungen 1987-2002. - Hercynia 39: 223-245. Halle (Saale). DOLEK, M. & GEYER, A. (2002): Conserving biodiversity on calcareous grasslands in the Franconian Jura by grazing: a comprehensive approach. - Biol. Conserv. 104: 351-360. Amsterdam. E llenberg , H. (1996): Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5th ed. - Ulmer, Stuttgart: 1095 pp. Weber, H. E., Düll, R., Wirth , V, Werner , W. & Paulissen , D. (1992): Zeigerwerte von Pflanzen in Mitteleuropa. 2nd ed. - Scripta Geobot. 18: 248 pp. Göttingen. H a g e n , T. (1996): Vegetationsveränderungen in Kalkmagerrrasen des Fränkischen Jura. - Laufener For- schungsber. 4: 218 pp. ANL, Laufen. H e in r ic h , W. (1998): Kalkmagerrasen. - In: H ein r ic h , W , M arstaller , R., B ä h r m a n n , R., P erner , J. & Sch äller , G.: Das Naturschutzgebiet „Leutratal“ bei Jena - Struktur- und Sukzessionsfor­ schung in Grasland-Ökosystemen. - Naturschutzreport 14: 58-63. Jena. JANSEN, D. (2008): Vegetationsökologische Untersuchungen zur Sekundärsukzession von Kalkmager­ rasen der Fränkischen Alb. - Diploma thesis, Univ. Kiel: 57 pp. JESCHKE, M. & K iehl, K. (2006): Auswirkung von Renaturierungs- und Pflegemaßnahmen auf die Artenzusammensetzung und Artendiversität von Gefäßpflanzen und Kryptogamen in neu angeleg­ ten Kalkmagerrasen. - Tuexenia 26: 223-242. Göttingen. KlEHL, K. (2009): Renaturierung von Kalkmagerrasen. - In: Z erbe , S. & WlEGLEB, G. [Eds.]: Renaturie- rung von Ökosystemen: 265-282. Spektrum Akademischer Verlag, Heidelberg. - & PFADENHAUER, J. (2007): Establishment and persistence of target species in newly created calca­ reous grasslands on former arable fields. - Plant Ecol. 187: 31-48. Dordrecht. - & WAGNER, C. (2006): Effects of hay transfer on long-term establishment of vegetation and grass­ hoppers on former arable fields. - Restor. Ecol. 14: 157-166. Malden, Mass.

350 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at K ö h ler , B., G ig o n , A., E dw ards , R, K rüsi, J., L a n g e n a u e r , R., Lüsch er , A. & Ryser , R (2005): Changes in the species composition and conservation value of limestone grasslands in Northern Switzerland after 22 years of contrasting managements. - Perspectives Plant Ecol. Evol. Syst. 7: 51-67. Jena. M o o g , D., P o sc h l o d , R, K ä h m e n, S. & Schreiber , K. F. (2002): Comparison of species composition between different grassland management treatments after 25 years. - Appl. Veg. Sei. 5: 99-106. Upp­ sala. N elle, O. & SCHMIDGALL, J. (2003): Der Beitrag der Paläobotanik zur Landschaftsgeschichte von Karstgebieten am Beispiel der vorgeschichtlichen Höhensiedlung auf dem Schloßberg bei Kallmünz (Südöstliche Frankenalb). - Eiszeitalter Gegenwart 53: 55-73. Stuttgart. OBERDÖRFER, E. (2001): Pflanzensoziologische Exkursionsflora. 8th ed. - Ulmer, Stuttgart: 1051 pp. PÄRTEL, M., KALAMEES, R., Z obel, M. & R o se n , E. (1998): Restoration of species-rich limestone grass­ land communities from overgrown land: the importance of propagule availability. - Ecol. Eng. 10: 275-286. Amsterdam. POSCHLOD, P. & W allis D eV ries , M. F. (2002): The historical and socio-economic perspective of cal­ careous grasslands. Lessons learnt from the distant and recent past. - Biol. Consent 104: 361-376. Amsterdam. R a u h , M. (2004): Landschaftspflege im Nördlichen Frankenjura. Tradition und Perspektiven der Schaf- beweidung als Nutzungsform zum Erhalt einer wertvollen Kulturlandschaft im Landkreis Lichten- fels. - Schöne Heimat 2: 137-144. REICHELT, G. & W ilm an ns , O. (1973): Vegetationsgeographie. - Westermann, Braunschweig: 210 pp. R DEVELOPMENT C ore T eam (2008): R: A language and environment for statistical computing. - URL http://www.r-project.org . Vienna. RYSER, R, La n g e n a u e r , R. & G ig o n , A. (1995): Species richness and vegetation structure in a lime­ stone grassland after 15 years management with six biomass removal regimes. - Folia Geobot. Phytotaxon. 30: 157-167. Praha. SCHMIDT, M. (2000): Die Blaugras-Rasen des nördlichen deutschen Mittelgebirgsraumes und ihre Kon­ taktgesellschaften. - Diss. Bot. 328: 294 pp. Berlin. SCHREIBER, K. F. (1997): Sukzessionen - Eine Bilanz der Grünland-Bracheversuche in Baden-Württem­ berg. - Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Karlsruhe: 181 pp. Stam pfli , A. & Z elter , M. (1999): Plant species decline due to abandonment of meadows cannot easily be reversed by mowing. A case study from the Southern Alps. - J. Veg. Sei. 10: 151-164. Uppsala. Stat Soft (2001): STATISTICA for windows, version 6. - Tulsa. V e r h a g e n , R., K lo o k er , J., B arker , J. P. & D ig g elen , R. van (2001): Restoration success of low- production plant communities on former agricultural soils after top-soil removal. - Appl. Veg. Sei. 4: 75-82. Uppsala. W eid , S. (1995): Wachholderheiden, Schäferei und Landschaftspflege in der Fränkischen Schweiz. - Heimatbeilage zum amtlichen Schulanzeiger des Regierungsbezirkes Oberfranken, Bayreuth: 43 pp. W eisel, H. (1971): Die Bewaldung der nördlichen Frankenalb. Ihre Veränderung seit der Mitte des 19. Jahrhunderts. - Erlanger Geograph. Arb. 28, Erlangen: 68 pp. WlLLEMS, J. H. (2001): Problems, approaches and results in restoration of Dutch calcareous grasslands during the last 30 years. - Restor. Ecol. 9: 147-154. WlLMANNS, O. & B o g enr ieder , A. (1995): Die Entwicklung von Flaumeichenwäldern im Kaiserstuhl im Laufe des letzten halben Jahrhunderts. - Forstarchiv 66: 167-174. Hannover. WISSKIRCHEN, R. & H aeupler , H. (1998) [Eds.]: Standardliste der Farn- und Blütenpflanzen Deutsch­ lands. - Ulmer , Stuttgart: 765 pp. Z obel, M. (1997): The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? - Trends Ecol. Evol. 7: 266-269. Joachim Schrautzer, Doris Jansen, Michael Breuer und Oliver Nelle Ökologie-Zentrum der Christian-Albrechts-Universität zu Kiel Olshausenstr. 75, 24118 Kiel, GERMANY [email protected] , [email protected] , [email protected] , [email protected] Managing editor: Kathrin Kiehl Manuscript received 17.11.2008, accepted 05.02.2009.

351 ©Floristisch-soziologische Arbeitsgemeinschft; www.tuexenia.de; download unter www.zobodat.at Zu Schrautzer et al.: Succession and management of calcareous dry grasslands in the Northern Franconian Jura, Germany Table 3: Differentiated vegetation table of recent and former stands of calcareous semi-dry grasslands (Bromion erecti) in the Northern Franconian Jura. Plot size was 25 m2 throughout. The assignment to phytosociological species groups according to ELLENBERG et al. (1992) is given after the species name. Tab. 3: Differenzierte Vegetationstabelle aktueller und ehemaliger Kalkhalbtrockenrasen (Bromion erecti) in der Nördlichen Frankenalb. Die Größe der Aufnahmeflächen betrug einheitlich 25 m2. Die Zugehörigkeit von Arten zu soziologischen Artengruppen gemäßE llenberg et al (1992) ist rechts vo>n den Sippennamen angegeben.

I 1 2 I 3 I 4 n n 5 ~ I 6 I Relevé number 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3b 36 3/ 38 39 40 41 42 43 44 4b 46 47 48 49 50 51 52 53 54 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Location Sb Sb Wl Ds Wl Tb Kb Ds Ds Sb Tb Tb Wb Kb Lb Sb Kb Wl Lb Lb Sb Lb Wl Wl Wb Wl Lb Kb Kb Kb St Lb Ds Ds Ds Wh Wh Wh Wh Wh Wh Ds Wl Sb Lb Lb Wh Mb Mb Mb Mb Mb Mb Mb Kl Kt Kt Zf Wb Wb Wb St St St St St St St Lb I Date (month/year) 6/07 6/07 6/07 6/07 6/07 6/07 6/06 6/07 6/07 6/07 6/07 6/07 6/07 6/06 6/07 6/07 6/06 6/07 6/06 6/07 6/07 6/06 6/07 6/07 6/07 6/07 6/07 5/05 5/05 5/05 6 30 6/06 6/07 6/07 6/07 6/07 6/07 5/05 5/05 6/07 5/05 6/07 6/07 6/07 6/07 6/07 6/07 6/07 6/07 807 6/07 6/07 6/07 6/07 5/05 505 5/05 606 505 505 MB 505 505 606 505 606 606 606 607 607 Slope H 7 22 10 27 7 7 5-10 25 20 19 8 10 15 8 6 22 5-10 5 0 0 9 <5 6 5 22 9 4 >20 >20 >20 <5 0 14 13 15 15 21 >20 >20 28 >20 16 4 9 0 0 2 19 19 17 19 1 15 23 >20 >20 vm >20 >20 >20 >20 <5 <5 <5 <5 <5 <5 <5 0 0 Aspect [*] 15 13 r i 211 326 307 300 213 210 152 294 300 279 300 250 284 160 255 109 270 224 220 92 143 301 330 330 330 125 204 222 240 137 285 270 90 94 270 240 172 172 15 211 192 198 208 180 208 179 250 250 250 918 225 225 225 180 180 210 180 120 210 210 Historical land use AF PA AF PA AF AF AF PA PA PA AF AF PA AF AF PA PA AF AF AF AF AF AF AF PA AF AF PA PA PA AF AF PA PA PA PA PA PA PA PA PA PA AF AF AF AF AF PA PA PA PA PA PA PA PA PA PA PA PA PA PA AF AF AF AF AF AF AF AF AF Land use before deforestation FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO FO PA PA PA PA PA FO FO FO FO M PO FO FO FO PA PA PA PA M M M M M M M AF AF Current land use FO FO FO FO FO FO FO FO FO FO FO FO FO FO PA PA PA PA PA RA PA PA PA PA WA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA RA PA PA PA PA PA PA PA PA PA PA PA M M M M M M PA PA Time (years) after clear-cutting <2 <5 <5 <2 <2 <2 <5 <5 <5 <2 <2 <5 <5 <5 <5 <5 >5 >5 >10 >10 >10 >5 >10 >10 >10 >10 >10 >10 <2 <5 >5 >5 >10 >10 >10 >10 >10 >10 >5 >5 >5 >5 Cover of tree layer before clear-cutting (cover scale 2) Vascular plant species richness 34 29 18 31 28 35 42 38 37 47 53 55 51 63 32 35 44 56 60 57 55 52 54 48 53 57 53 46 39 45 48 44 51 52 55 63 40 48 41 50 44 54 48 43 62 48 50 41 43 43 43 41 50 40 47 38 41 50 47 50 41 33 36 39 34 41 44 35 39 Cover scale (1 = Reichelt & Wilmanns 1973, 2 = simplified) 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 Cover (%) tree layer 50 50 50 40 70 50 50 50 20 30 50 40 20 30 Cover (%) shrub layer 10 5 5 5 15 35 50 20 30 5 30 10 20 50 15 10 5 20 10 10 5 20 15 20 5 25 5 5 2 5 2 2 15 5 20 10 15 30 25 15 20 15 10 25 5 25 10 25 2 5 •i 5 10 2 2 10 10 2 Cover (%) herb layer 25 60 90 80 95 65 85 65 85 80 90 95 90 70 70 100 70 80 90 80 95 85 95 100 80 100 100 70 65 60 80 85 100 100 100 100 90 90 90 55 70 100 70 85 90 100 70 100 5 80 80 95 60 70 65 80 50 55 65 95 90 100 100 95 95 100 100 85 Cover (%) litter layer 95 30 50 90 70 85 20 5 10 90 30 5 10 85 85 30 15 10 5 10 10 10 95 5 20 30 5 5 5 5 25 30 30 25 25 5 5 2 10 5 30 2 10 5 10 35 5 5 15 15 15 2 2 10 5 10 5 2 5 2 2 2 Cover (%) bare soil______2 40 2 10 15 25 2 2 2 2 5 5 2 5 25 5 5 30 35 25 10 2 2 2 2 15 2 5 30 5 50 30 10 10 25 5 10 30 25 2 5 10 25 20 30 25 40 35 20 5 2 2 5 2 5 5 2 30 d 1/2 Pinus sylvestris (tree layer) 3 2a 3 2b 2a 2b 3 3 2a 2b Picea abies (tree layer) VP 3 ...... 1* Fagus sytvatica (tree layer) QF 2a 2 a ......

d 1 Bromus ramosus QF 1 1 2a 2a Galium odoratum QF I 2m + Daphne mezereum QF Sanicula europaea QF II 1 1 Viola mirabilis QF 1 2b .

d 2*6 against 1 Linum catharticum MOL Thymus pulegioides FB Cariina vulgaris FB (Mes) Hippocrepis comosa FB (Mes) Cirsium acaule FB (Mes) Scabiosa columbaria FB (Mes) Gymnadenia conopsea MOL

d 2/3 against 4 Carex fíacca Leucanthemum vulgare agg. MA Anthericum ramosum TG Prunella grandiflora FB 2m 2a 2a 2a 2a 2a 1 2m 2b Fraxinus excelsior QF Leontodón autumnalis MA Acer campestre QF Tanacetum corymbosum QF Gentiana cruciata FB Trifolium montanum FB

Teucrium botrys SSC Asperula cynanchica FB Helianthemum nummularium FB (Xer) Sedum sexangulare SSC Acinos arvensis SSC Echium vulgare ART Sedum album SSC Carex humilis FB Melica ciliata FB (Xer)

d 3/4 against 5/6 Bupleurum falcatum Polygala comosa Juniperus communis (herb and shrub layer) Galium pumilum Galium verum Polygala vulgaris Anthyllis vulneraria

d 5/6 against 3/4 Trifolium pratense MA Festuca rubra MA Poa pratensis agg. MA Cerastium holosteoides MA Onobrychis viciifolia FB (Mes) Campanula patula MA Rhinanthus minor Myosotis ramosissima SSC Lathyrus pratensis MA

Taraxacum sect. Ruderalia MA Trifolium repens MA Cirsium arvense ART Ranunculus repens MA

Species o f dry grasslands Sanguisorba minor F B 2m r 2 r r r i* 1* 2 Euphorbia cypahssias FB 1 1* 2 2 2 1* 3 2 Koeleria pyramidata FB (Mes) 1 1* 1* 1* 2 2 1* 1* Festuca ovina agg. 2a 2m 2 2 1* 2 1* 1* Potentilla tabemaemontani FB 2m 1 2 1* 1* 1* 2 2 1* Helictotrichon pratense F B Ononis repens FB (Mes) 2 1* Brachypodium pinnatum FB 2 1* Pimpinella saxífraga agg. F B Ranunculus bulbosus F B (Mes) Centaurea scabiosa F B Veronica teucrium F B Carex caryophyllea FB (Mes) Bromus erect us F B 2 1* Pulsatilla vulgaris F B Medicago lupulina F B (Mes) Ara bis hirsuta F B

Woody species (herb and shrub layer) Cornus sanguínea RP 2a 2b 3 1 1 Prunus spinosa RP Crataegus monogyna RP Quercus robur Corylus avellana RP Fagus sylvatica QF Pinus sylvesths Viburnum opulus QF

Picea abies VP Betula pendula

Species of forest edges Viola hirta TG 1 1 1 1 2a 1* 1* 1 1 2m Hypericum perforatum TG 1* r Medicago falcata TG 1* r Agrimonia eupatoria TG Inula conyzae TG 1 1 ♦ r r Aster amellus TG Fragaria viridis TG Origanum vulgare TG 2a . . . . 1* Polygonatum odoratum TG

Others Lotus comiculatus Briza media Plantago media Solidago virgaurea Primula veris Carex montana Achillea millefolium agg. MA Rosa spec. Leontodón hispidus Hieracium pilosella Knautia arvensis MA Centaurea jacea Taraxacum sect. Erythrosperma Campanula rotundifolia Salvia pratensis MA Plantago lanceolata MA Arrhenatherum elatius MA Dactylis glomerata MA Inula salicina MOL Daucus carota ART Vicia angustifolia Galium mollugo agg. MA Brachypodium sylvaticum QF 5 2b Hieracium caesium Senecio jacobaea MA Ranunculus acris MA

1 = older woodland Phytosociological species groups: Abbreviations: Location: 2 = younger woodland VP = Vaccinio-Piceetea FO = forest Sb = Spitzberg 3-6 = dry grasslands QF = Querco-Fagetea AF = agricultural field Wl = Weißer Lahma 3 = grazed, deeper loamy soils MOL = Molinietalia PA = pasture Ds = Deisenstein 4 = grazed, steep slopes with thin soils FB = Festuco-Brometea * M = meadow Tb = Treppenberg 5 = mowed FB (Mes) = Mesobromion * Kb = Kalkberg 6 = grazed since ten years, former arable fields FB (Xer) = Xerobromion * Wh = Weinhügel SSC = Sedo-Scleranthetea * Lb = Lerchenberg MA = Molinio-Arrhenatheretea St = Staffel berg TG = Trifolio-Geranietea Mb = Morgenbühl ART = Artemisietea Kt = Köttel NC = Nardo-Callunetea Zf = Ziegenfeld RP = Rhamno-Prunetea Wb = Wallersberg * = target species

Further species (relevé number with coverage in parentheses: Acer campestre (St): 2 (+); Acer platanoides : 4 (+), 6 (+), 16 (+), 19 (1*), 38 (1*), 40 (+), 60 (1*). 61 (V),Acer pseudoplatanus: 7 (1), 14 (1*), 22 (V),Actaea spicata : 2 (1 ), Aegopodium podagraria : 2 (1); Ajuga genevensis: 19 (1*), 22 (1*). 30 (1*), 51 (1). 68 (1*), 69 (1), 70(1 ):Alliaria petiolata 48 (+); Allium oleraceum 1 (1). 48 (♦). 49(1). 50(1), 52 (1). 54 (1). 69(1). 70 (*);Alnus incana 31 (1*); Ainus viridis : 17 (1*); 29 (2); Anemone nemorosa: 2 (1); Anemone sylvestris: 7 (2). 14 (1*). 19 (1*); Anthemis tinctoria: 48 (+); Anthoxanthum odoratum: 64 (1*); Anthriscus sylvestris: 48 (1), 67 (1*); Anthyllis vulneraria : 14 (1*), 31 (1*), 58 (1*); Aquilegia vulgaris: 2 (1), 15 (2a), 19 (1*), 21 (+). 22 (1*), 27 (+), 33 (1), 42 (1). 46 (♦), 49 (1 y.Arenana serpytlifolia 55 (1*). 56 (1*). 65 (1*). Asarum europaeum: 2 (1), 19 (1*); Astragalus glycyphyllos: 19 (1*), 24 (2a), 26 (1), 30 (1*), 34 (+);Be///'s perennis: 31 (1*), 68 (1*); Campanula persicifolia : 11 (+), 19 (1*). 52 (+); Campanula rapunculoides: 20 (1), 21 (1), 25 (+), 27 (+), 45 (1), 46 (1), 70 (+),Campanula trachelium: 59 (1*): Carduus nutans 48 (1). 53 (♦), 66 (1*). 70 (♦); Carex omrthopoda 14 (1*). 17 (1*). 28 (2). 29 (1*). 38 (1*). 39 (1*). 41 (1*); Cariina acaulis 8 (1). 9 (1). 13 (1), 33 (1*), 34 ( +),Centaurea cyanus: 31 (1*); Cerastium arvense: 51 (+). 52 (1), 55 (1*). 56 (1*), 59 (1*). 66 (V).Cirsium enophorum 24 (+), 48 (1); Cirsium vulgare: 15 (1). 17 (1*). 22 (1*), 35 (1). 42 (1);C/emaf/s vitalba : 1 (+). 2 (2a). 16 (1). 17 (1*), 48 (2a). 49 (1 ),Convallaria majalis : 4 (1). Convolvulus arvensis 3 (♦). 45 (♦). 48 (1). 50 (♦). 52 (2b). 53 (♦). 56 (1*). 57 (1*) 69 (1), 70 (1); Comus sanguínea (St): 2 (+); Corylus avellana (St): 2 (+); Crataegus laevigata: 31 (1*), 43 (1), 59 (1*); Crépis praemorsa 19 (1*), 22 (1*); Daphne mezereum (St): 1 (2a); Dianthus carthusianorum: 51 (1), 52 (2m), 62 (1*), 63 (1*), 65 (1*); Epipactis atrorubens: 6 (1), 8 (+). 9 (+). 10 (+), 12 ( +),Epipactis helleborine 6 (*):Eupatorium cannabmum 5 (♦), 24 (1 ), Euphrasia officinalis 11 (1). 12 (1). 13(1). 23(1), 26(1), 43 (2m), 45(1), 47 (1), 48(1), 51 (1), 52 (1); Festuca pratensis: 22 (1*), 66 (1*), 67(2), 68 (V ),Fragaria yesca: 2 (1). 5 (1), 7 (1). 17(1)*. 31 (1*). 48 (1 ).Frangula alnus: 1 (1), 10(+), 15(+), 38 (1*), 40 (+),Fraxinus excelsior (St): 1 (1). 2 (2a); Galium aparine 1 (1). 5(1), 20 (+). 48 (1). 62 (1*). 65(1 •): Galium boreale 2(1), 16(1), 22 (1 •) Genista tmetona 10(*). 20(1). 22 (1*). 27 (2a). 32 (2), 44 (1). 45 (1), 46 (1). 54 (1), 70 (+),Gentianella ciliata : 11 (+), 16 (1), 47 (+); Gentianella germanica: 12 (+), 13(1), 16 (+), 25(1), 47 (+);Hederá helix : 2 (1); Helictotrichon pubescens: 12 (1), 19 (1*), 38(1*), 68 (2); Hieracium lactucella 47 (1); Hieracium murorum : 7(2), 14 (1*), 28 (1*), 39 (V).Holcus lanatus 67 (1*). 69(1). 70 (1 ) Hypericum hirsutum 19 (1*). Impatiens parviflora : 1 (+), 4 (1). 8 (+); Koeleria spec.: 17 (1*). 38 (1*), 41 (1*), 55 (1*), 56 (1*), 57 (1*); Lactuca sémola: 48 (1); Laserpitium latifolium: 10 (1). 16 (1). 21 (1 ): Lathyrus vemus: 24 (+); Leontodón helveticus: 51 (1); Lepidium perfoliatum: 14 (1*); Linaria vulgaris: 48 (+); Listera ovata : 1 (1). 2 (1). 5 (+), 13 (♦). 14 (1*), 19 (1*). 36 (♦). 38 (1*). 41 (1 ')tom cera xyfosteum 1 (1). 2 (1). 5 (♦). 6 (1). 7 (2). 11 (+), 18 (1), 19 (1*); Luzula multiflora: 64 (1*), 65 (1*), 68 (1*); Medicago minima: 56 (1*), 68 (1*); Melampyrum arvense: 35 (2m), 42 (2m); Melampyrum cristatum: 35 (+); Melilotus officinalis : 54 (1); Ophrys insectifera: 29 (1*), 38 (1*), 39 (1*), 41 (1*), 61 (1*); Orchis mascula : 19 (1*), 32 (1*); Orchis militaris : 31 (1*); Orchis ustulata 65 (1*); OrthHia secunda 7 (1 ). Potrorhagia proliféra 51 (1); Phleum phleoides : 19(1*); Phleum pratense 15 (1); Pinus sylvestris (St): 7(1), 14 (3), 32 (1*); Plantago intermedia: 6 (1), 14 (1*). 28(1*), 31 (1*), 32 (1*), 36 (2a), 68 (V).PIatanthera chlorantha: 14 (1*), 29(1*), 41 (V), Poa compressa: 33 (1), 60(1*), 61 (1*);Poa trivialis: 67 (1*); Polygonatum multiflorum 1 (+). 19 (1*); Prunella vulgans 11 (1). 14 (1*). 28 (1*). 29 (1*) 36 (1) 38(2). 39(3). 40 (1). 41 (2); Prunus avium: 17 (1*). 19(1*), 32 (1*). 64 (1*), 66 (1*); Quercus petraea: 7 (1). 28(1*), 38(1*), 39(1*), 41 (1*), 65 (1*); Rhamnus cathartica: 22 (1*), 59(1*), 60 (2), Rubus corylifolius agg. et fruticosus agg.: 17 (1*); Rumex acetosa: 67 (1*), 68(1*), 69 (+). 70 (+): Salix caprea 24 (1); Selinum carvifolia 14 (1*). 19 (1*). 22 (1*); Senecio emofoUus 15 <♦). 21 (♦). 32 (1*). 45 (1 ) 47 (-»). 66(1*). 69(1). albicans : 29 (1*); Silene flos-cuculi : 36 (1); Silene nutans : 65 (1*); Silene vulgaris : 48 (1), 53 (1); Sonchus asper: 25 (+), 48 (+); Sorbus aria (B1): 4 (2b); Sorbus torminalis: 4 (+), 7 (1), 8 (1), 14 (1*), 26 (+), 34 (1 ); Sorbus torminalis (B1): 4 (2b); Thlaspi perfoliatum : 56 (1*), 57 (1*), 62 (1*), 63 (1*); Tilia cordata 15 (+). 48 (1); Tragopogón pratensis 67 (1*). 68 (1*); Trifolium campestre 65 (1*). 67 (2), 68 (3). 69 (2a). 70 (2a); Trifolium dubium: 31 (1*), 57 (1*); Trifolium medium: 21 (1), 31 (1*), 65 (1*); Trisetum flavescens: 17 (1*), 67 (1*); Tussilago farfara: 24 (1); Valeriana wallrothii: 1 (+), 5 (1), 19 (1*), 20 (+), 22 (1*), 24 (1). 40 (+). 45 (+), 46 (+), 54 (1). 67 (V)Verbascum lychnitis 48 (1), 51 (1); Veronica arvensis 62 (1*). 63 (1*). 65 (1*); Veromca chamaedrys 67 (1*). 68 (1*). Viaa cracca 1 (+). 3 (+). 5 (1). 6 (1). 19 (1*), 24 (1),26 (1). 28 (1*), 30 (1*), 70 (1);V/c/a hirsuta : 7 (1); Vicia lathyroides : 7 (1). 63 (1*); Vicia sepium 66 (1*), 67 (1*); Vincetoxicum hirundinaria 4 (3), 34 (1), 48 (1). 49 (2a), 50 (1). 51 (1)