Chemiegeschichtliche Daten Anorganischer Substanzen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rediscovery of the Elements — a Historical Sketch of the Discoveries
REDISCOVERY OF THE ELEMENTS — A HISTORICAL SKETCH OF THE DISCOVERIES TABLE OF CONTENTS incantations. The ancient Greeks were the first to Introduction ........................1 address the question of what these principles 1. The Ancients .....................3 might be. Water was the obvious basic 2. The Alchemists ...................9 essence, and Aristotle expanded the Greek 3. The Miners ......................14 philosophy to encompass a obscure mixture of 4. Lavoisier and Phlogiston ...........23 four elements — fire, earth, water, and air — 5. Halogens from Salts ...............30 as being responsible for the makeup of all 6. Humphry Davy and the Voltaic Pile ..35 materials of the earth. As late as 1777, scien- 7. Using Davy's Metals ..............41 tific texts embraced these four elements, even 8. Platinum and the Noble Metals ......46 though a over-whelming body of evidence 9. The Periodic Table ................52 pointed out many contradictions. It was taking 10. The Bunsen Burner Shows its Colors 57 thousands of years for mankind to evolve his 11. The Rare Earths .................61 thinking from Principles — which were 12. The Inert Gases .................68 ethereal notions describing the perceptions of 13. The Radioactive Elements .........73 this material world — to Elements — real, 14. Moseley and Atomic Numbers .....81 concrete basic stuff of this universe. 15. The Artificial Elements ...........85 The alchemists, who devoted untold Epilogue ..........................94 grueling hours to transmute metals into gold, Figs. 1-3. Mendeleev's Periodic Tables 95-97 believed that in addition to the four Aristo- Fig. 4. Brauner's 1902 Periodic Table ...98 telian elements, two principles gave rise to all Fig. 5. Periodic Table, 1925 ...........99 natural substances: mercury and sulfur. -
Potion Making by Sam Gayton I Hope You Find These Resources and Activities Useful
Potion Making by Sam Gayton I hope you find these resources and activities useful. There are two different activities that I’ve included here. You’re welcome to use or adapt them in any way you see fit. All of the resources are linked to my book The Snow Merchant, which is a story that features alchemy. You might like to read about alchemy in the All About Alchemy sheet — or you could read the first few chapters of Potion Making The Snow Merchant. by Sam Gayton Suitable for: 7 years and above. Type of activity: art, storytelling, writing Aim: to increase pupils’ confidence around hands-on activities, story-telling and writing. Activity 1: Potion Making Watch the video, and get ready to become an alchemist! Once you’ve made your potions, there are all sorts of extension activities you could try: writing down a recipe, or even trying to create a story that begins with someone drinking your potions — either on purpose, or accidentally! Activity 2: Using Music To Inspire Writing Choose a track from the list provided, sit back and listen, then listen to it again while writing with the accompanying writing prompt. Happy potion-brewing! Sam. Sam Gayton Sam is the writer of fantasy-filled children’s books, including Hercufleas and The Last Zoo. He delivers workshops for schools as part of Pop Up Festival. Find out more about Sam here: www.samgayton.com POTION MAKING BY SAM GAYTON PAGE 1 / 10 Activity 1 Potion Making. All About Alchemy What exactly is alchemy, anyway? Well… like Dr John Dee, the court astronomer and adviser to Elizabeth I. -
Case Studies in Environmental Medicine
ATSDR Case Studies in Environmental Medicine Radon Toxicity CS213021-A AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY CASE STUDIES IN ENVIRONMENTAL MEDICINE (CSEM) Radon Toxicity Course : CB/WB1585 CE Original Date: 06/01/2010 CE Expiration Date: 06/01/2012 Key Concepts • The U. S. Environmental Protection Agency estimates that indoor radon exposure may result in 21,000 lung cancer deaths annually in the United States. • Radon may be second only to smoking as a cause of lung cancer. Increased use of medical radiation also contributes to the annual radiation dose. • The combination of smoking and radon exposure results in a higher health risk. • Current technology can easily decrease the concentration of radon in indoor air, and radon’s associated risk for producing lung cancer. About This This educational case study document is one in a series of and Other self-instructional modules designed to increase the primary Case Studies care provider’s knowledge of hazardous substances in the in environment and to promote the adoption of medical Environmental practices that aid in the evaluation and care of potentially Medicine exposed patients. The complete series of Case Studies in Environmental Medicine is on the ATSDR Web site at: http://www.atsdr.cdc.gov/emes/topics/. In addition, the downloadable PDF version of this educational series and other environmental medicine materials provide content in an electronic, printable format, especially for those who may lack adequate Internet service. How to Apply See Internet address: http://www2.cdc.gov/atsdrce/ for for and more information about continuing medical education Receive credits, continuing nursing education credits, and other Agency for Toxic Substances and Disease Registry Radon Toxicity Case Studies in Environmental Medicine (CSEM) Continuing continuing education units. -
The Phosphorus Story: Sustainable Nutrient Management at the Robert W
The Phosphorus Story: Sustainable Nutrient Management at the Robert W. Hite Treatment Facility Englewood PWO Seminar – February 7, 2019 Dan Freedman, MWRD Nate Brown, Stantec Agenda • Background on Phosphorus • Robert W. Hite Treatment Facility Background • The District’s Phosphorus Initiative • Liquid Stream Phosphorus Removal • Solids Stream Phosphorus Recovery • The Future of Phosphorus Management Background on Phosphorus (The Most Interesting Element in the World) The Lucifer of Liege by Guillaume Geefs Image by Luc Viatour What even is Phosphorus? • In Greek mythology, Phosphorus was the god “Light Bringer” otherwise known as The Morning Star (aka the planet Venus) • The Latin translation of Phosphorus is Lucifer Image source ‐ John Lemieux, flickr.com Image source ‐ https://lystek.com/ The Alchymist, In Search of the Philosopher’s Stone, Discovers Phosphorus, and prays for the successful Conclusion of his operation, as was the custom of the Ancient Alchymical Astrologers How was Phosphorus by Joseph Wright of Derby first discovered? • Discovered in 1669 by Hennig Brand whilst searching for the “philosopher’s stone” • Brand attempted to create the stone through distillation of salts by evaporating urine • Through the process he produced a material that made a brilliant white light, hence the name phosphorus Image source ‐ https://lystek.com/ Why is Phosphorus important? “Life can multiply until all the phosphorus is gone, and then there is an inexorable halt which nothing can prevent. We may be able to substitute nuclear power for coal, and plastics for wood, and yeast for meat, and friendliness for isolation—but for phosphorus there is neither substitute nor replacement.” ‐Isaac Asimov from Asimov on Chemistry Image source ‐ John Lemieux, flickr.com Image source ‐Image source ‐ https://lystek.com/ https://lystek.com/ Image source – DC Comics Who is Phosphorus? While working at a nuclear power plant, Dr. -
Robert Wilhelm Bunsen Und Sein Heidelberger Laboratorium Heidelberg, 12
Historische Stätten der Chemie Robert Wilhelm Bunsen und sein Heidelberger Laboratorium Heidelberg, 12. Oktober 2011 Gesellschaft Deutscher Chemiker 1 Mit dem Programm „Historische Stätten der Chemie“ würdigt Robert Wilhelm Bunsen – die Gesellschaft Deutscher Chemiker (GDCh) Leistungen von geschichtlichem Rang in der Chemie. Als Orte der Erinnerung eine biographische Skizze werden Wirkungsstätten beteiligter Wissenschaftlerinnen und Wissenschaftler in einem feierlichen Akt ausgezeichnet. Eine Broschüre bringt einer breiten Öffentlichkeit deren wissenschaft- Bunsen war einer der Wegbereiter der Physikalischen Chemie liches Werk näher und stellt die Tragweite ihrer Arbeiten im und ein bedeutender Vertreter der anorganisch-analytischen aktuellen Kontext dar. Ziel dieses Programms ist es, die Erinne- Richtung. Seine wissenschaftliche Bedeutung liegt in der Ent- rung an das kulturelle Erbe der Chemie wach zu halten und die wicklung und Perfektionierung von Methoden und Instrumen- Chemie mit ihren historischen Wurzeln stärker in das Blickfeld ten. Diese Arbeitsschwerpunkte hat Bunsen von Beginn seiner der Öffentlichkeit zu rücken. Karriere an verfolgt und systematisch ausgebaut. Am 12. Oktober 2011 gedenken die GDCh, die Deutsche 1811 als jüngster von vier Söhnen einer bürgerlichen protestan- Bunsen-Gesellschaft für Physikalische Chemie (DBG), die Che- tischen Familie in Göttingen geboren, begann Bunsen dort 1828 mische Gesellschaft zu Heidelberg (ChGzH) und die Ruprecht- das Studium der Naturwissenschaften. Seine wichtigsten Lehrer Karls-Universität -
Arcana & Curiosa
ARCANA & CURIOSA MY PERSONAL LIBRARY * Notes: * The data listed here have been exported from an .fp5 file and they may contain some formatting glitch. Any ambiguities however may be solved by consulting the websites quoted in the records of downloaded materials and/or the main online OPACs, especially the University of Manchester’s COPAC (http://copac.ac.uk/) and OPALE, the online catalogue of the Bibliothèque Nationale de France (http://catalogue.bnf.fr/). * This catalogue included printed materials as well as electronic resources published online; there is no separation of the two in sections, but all are recorded in the same database for quick reference, because I don’t always remember whether my copy of a certain work is printed or electronic. * The records are listed A-Z by surname of first author and first word in the title (articles included). * A passage to the Afterworld, http://www.knowth.com/newgrange.htm, download aprile 2003, ripubblicato da «The World of Hibernia», Cultura materiale e archeologia A Proper newe Booke of Cokerye (mid-16th c.), http://www.staff.uni- marburg.de/~gloning/bookecok.htm, download maggio 2004, Cultura materiale e archeologia Ad fontes: gnostic sources in the BPH, J.R. Ritman Library -- Bibliotheca Philosophica Hermetica. The Library of Hermetic Philosophy in Amsterdam, http://www.xs4all.nl/~bph/, download agosto 2002, Alchimia Aesch-Mezareph, traduzione inglese di W. Wynn Westcott, The Alchemy Web, http://www.levity.com/alchemy, download ottobre 2001, Adam McLean, Alchimia Alchemical and chemical -
Chapter 1 the Biography of a Trafficking Material
Trafficking Materials and Maria Rentetzi Gendered Experimental Practices Chapter 1 The Biography of a Trafficking Material In 1904, an article titled "Radium and Radioactivity" appeared in Century 1 Magazine, a monthly popular magazine published from 1881 to 1930. The article presents Marie Curie's personal account of the discovery of radium and radioactivity. In the article, Curie discusses in depth her arduous attempts to study the radiation of the compounds of uranium and that of known chemical elements, hoping to discover more which are endowed with atomic radioactivity. She revels that it was the chemists who supplied her with the materials she needed. "As I desired to make a very thorough investigation, I had resource to different chemists, who put at my disposal specimens—in some cases the only ones in existence—containing very rare elements." Her next step was to examine different minerals, especially the oxide of uranium 2 ore (pitchblende). To her great surprise, this specimen was found to be four times more active than oxide of uranium itself. The explanation was more than obvious. "The ore must contain a substance more radioactive than uranium and thorium, and this substance must necessarily be a chemical element as yet unknown."1 Her attempts to isolate the new element would lead Marie and Pierre Curie, who joined her research shortly after, to the discovery of both polonium and radium, to the Nobel Prize in Physics in 1903, and to a second Nobel Prize in 1911, this time in chemistry. This chapter attempts to present a cultural -
Project Note Weston Solutions, Inc
PROJECT NOTE WESTON SOLUTIONS, INC. To: Canadian Radium & Uranium Corp. Site File Date: June 5, 2014 W.O. No.: 20405.012.013.2222.00 From: Denise Breen, Weston Solutions, Inc. Subject: Determination of Significant Lead Concentrations in Sediment Samples References 1. New York State Department of Environmental Conservation. Technical Guidance for Screening Contaminated Sediments. March 1998. [45 pages] 2. U.S. Environmental Protection Agency (EPA) Office of Emergency Response. Establishing an Observed Release – Quick Reference Fact Sheet. Federal Register, Volume 55, No. 241. September 1995. [7 pages] 3. International Union of Pure and Applied Chemistry, Inorganic Chemistry Division Commission on Atomic Weights and Isotopic Abundances. Atomic Weights of Elements: Review 2000. 2003. [120 pages] WESTON personnel collected six sediment samples (including one environmental duplicate sample) from five locations along the surface water pathway of the Canadian Radium & Uranium Corp. (CRU) site in May 2014. The sediment samples were analyzed for Target Analyte List (TAL) Metals and Stable Lead Isotopes. 1. TAL Lead Interpretation: In order to quantify the significance for Lead, Thallium and Mercury the following was performed: 1. WESTON personnel tabulated all available TAL Metal data from the May 2014 Sediment Sampling event. 2. For each analyte of concern (Lead, Thallium, and Mercury), the highest background concentration was selected and then multiplied by three. This is the criteria to find the significance of site attributable release as per Hazard Ranking System guidelines. 3. One analytical lead result (2222-SD04) of 520 mg/kg (J) was qualified with an unknown bias. In accordance with US EPA document “Using Data to Document an Observed Release and Observed Contamination”, 2222-SD03 lead concentration was adjusted by dividing by the factor value for lead of 1.44 to equal 361 mg/kg. -
“From Bone Valley to 'Far Places': a Global Environmental History of The
Edward D. Melillo – Please do no cite or copy without author’s permission “From Bone Valley to ‘Far Places’: A Global Environmental History of the 1919 Phosphate Miners’ Strike in Mulberry, Florida” Edward Melillo, Amherst College Introduction In her 1942 autobiography, Dust Tracks on a Road, writer Zora Neale Hurston vividly depicted the miners of Polk County, Florida, their “sweating black bodies, muscled like gods…. They go down in the phosphate mines and bring up the wet dust of the bones of pre-historic monsters, to make rich land in far places, so that people can eat.”1 Hurston’s narrative suspended readers between the immediacy of sinew and bone and the remoteness of the “far places” that reconstituted their soils with fertilizer from Florida’s phosphorus-rich fossil deposits. Among the sites where Hurston gathered folklore for the Works Projects Administration (WPA) in the late 1930s was the town of Mulberry, thirty-two miles (52 km) east of Tampa in Polk County. This railroad outpost in Florida’s “Bone Valley” region—a zone where phosphate-laden skeletons accumulated millions of years ago when much of the area was beneath the ocean—has long been a place where the gritty labors of a southern community converged with the demands of distant environments.2 This article chronicles a 1919 strike during which 3,000 black and white miners from the International Union of Mine, Mill, and Smelter Workers targeted seventeen of 1 Zora Neale Hurston, Dust Tracks on a Road: An Autobiography (1942; New York: HarperCollins, 2006), 147. 2 On May 6, 1935, United States President Franklin Delano Roosevelt created the WPA by Executive Order #7034. -
The History of the Periodic Table
9/25/2019 The History of the Periodic Table Chemistry Section 5-1 Targets for Today Describe the concept of alchemy Describe early scientific breakthroughs in the discovery of elements Explain how the modern periodic table is constructed. 1 9/25/2019 The Discovery of Elements The world is made out of stuff People have known and named specific elements since ancient times Earliest elements discovered Ex. Gold, silver, tin, copper, lead, mercury 2 9/25/2019 I discovered something, but what is it? Early alchemists isolated some elements from compounds, though they didn’t know they had the first pure element. Alchemy – a scientists whose goal is to turn basic metals (ex. Copper) into gold 3 9/25/2019 The first true element - Phosphorus In 1669 an alchemist in Hamburg, Germany named Hennig Brand was the first person to discover an element and know what it was. Hennig Brand He discovered phosphorus after isolating it from urine… over 1,200 gallons of it! As he boiled it down in an attempt to make a “sorcerer’s stone,” a yellowish- green powder remained 4 9/25/2019 Phosphorus Characteristics Atomic # 15 White powder that emits a faint glow when exposed to oxygen Only water and calcium make up more of your bodies weight John Davy (1788-1829) Davy discovered a love of chemistry at age 19, and became one of the most celebrated chemists of his day. He discovered a number of elements, including: calcium, sodium, potassium, magnesium, and others. 5 9/25/2019 John Davy (1788-1829) Other discoveries Nitrous oxide (laughing gas) Inventions One of the first light bulbs Miner headlamps 6 9/25/2019 Radioactive Elements In 1891 the first radioactive elements was discovered – Uranium (#92) Its unusual properties were not discovered until much later. -
Bibliography
Bibliography Unpublished Sources The Military Archives, Stockholm (Krigsarkivet, KrA) Artilleribok, Artilleriet. Laro-¨ och handbocker.¨ XVI:47. Benzelstierna, Jesper Albrecht, En dehl Hrr volontairers af Fortificationen examen pro anno 1737, Fortifikationen, Chefsexpeditionen, Examenshandlingar 1737, F2:1. Fyra stycken projecterofwer ¨ sluyser af tr¨a¨a wedh Trollh¨attan. Kungsboken 16:1. Journalerofwer ¨ arbetet p˚a dockan. ifr˚an den 2: ianuary 1717. till den 1: october 1720. d˚a entreprenaden begynttes, Militierakningar¨ 1717:1. Rappe, Niklas, Atta˚ b¨ocker om artilleriet, uti den moskovitiska f˚angenskapen sammandragna och till slut bragta, av generalmajor Niklas Rappe (1714), Artilleriet. Laro-¨ och handbocker,¨ XVI:18a–b. The Royal Library, Stockholm (Kungliga Biblioteket, KB) Bromell, Magnus von, Doctoris Magni Bromelii prælectiones privatæ in regnum minerale Upsaliæ habito in martio etc anno 1713, copy by J. Troilius, X 601. Buschenfelt, Samuel, Denaldre ¨ fadren Buschenfelts marchscheider Relation 1694. tilh¨orige Ritningar, L 70:54:2. Nordberg, Joran,¨ Anecdotes, eller Noter till kyrckoherdens doctor J¨oran Norbergs Historia, om konung Carl den XIIte, glorwyrdigst iaminnelse, ˚ wid censureringen uteslutne, D 809. Nordberg, Joran,¨ Anecdotes, eller Noter till kyrkioherdens doctor J¨oran Nordbergs Historia om konung Carl den XIIte, hwilka wid censureringen blifwit uteslutne, part one, D 812. Nordberg, Joran,¨ Kyrckoherden doctor J¨oran Nordbergs Anedoter til des Historia om konung Carl den XII. glorwordigst iaminnelse, ˚ hwilcka blifwit uteslutne wid censurerandet, D 814. Polhem, Christopher, Anteckningar och utkast r¨orande ett af honom uppfunnet ‘Universalspr˚ak’, :::, N 60. Polhem, Christopher, Filosofiska uppsatser, P 20:1–2. Polhem, Christopher, Mindre uppsatser och fragment i praktisk mekanik, X 267:1. Polhem, Christopher, Uppsatser i allm¨ant naturvetenskapligaamnen ¨ , X 517:1. -
Chemical Knowledge in the Early Modern World'.', Osiris., 29 (1)
Durham Research Online Deposited in DRO: 25 March 2015 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Eddy, Matthew Daniel and Mauskopf, Seymour H. and Newman, William R. (2014) 'An introduction to 'Chemical knowledge in the early modern world'.', Osiris., 29 (1). pp. 1-15. Further information on publisher's website: http://dx.doi.org/10.1086/678110 Publisher's copyright statement: c 2014 by The History of Science Society. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk An Introduction to Chemical Knowledge in the Early Modern World by Matthew Daniel Eddy, Seymour H. Mauskopf, and William R. Newman THE SCOPE OF EARLY MODERN CHEMICAL KNOWLEDGE The essays in this volume collectively cover the development of chemistry in the “early modern world,” that is to say, from the ifteenth century through the eighteenth century.