Three-Terminal Heterojunction Bipolar Transistor Solar Cells with Non-Ideal Effects Efficiency Limit and Parametric Optimum

Total Page:16

File Type:pdf, Size:1020Kb

Three-Terminal Heterojunction Bipolar Transistor Solar Cells with Non-Ideal Effects Efficiency Limit and Parametric Optimum Energy Conversion and Management 188 (2019) 112–119 Contents lists available at ScienceDirect Energy Conversion and Management journal homepage: www.elsevier.com/locate/enconman Three-terminal heterojunction bipolar transistor solar cells with non-ideal effects: Efficiency limit and parametric optimum selection T ⁎ ⁎ Xin Zhanga,b, Yee Sin Angb, Zhuolin Yea, Shanhe Sua, Jincan Chena, , Lay Kee Angb, a Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, and Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China b Singapore University of Technology and Design-Massachusetts Institute of Technology International Design Center & Science and Math Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore ARTICLE INFO ABSTRACT Keywords: Without fabricating intermediate tunnel junctions or wafer bonding schemes for interconnecting the subcells, Three-terminal solar cell heterojunction bipolar transistor solar cells offer a promising new route in solar energy conversion. In this work, Heterojunction bipolar transistor an improved theory for the three-terminal heterojunction bipolar transistor solar cell is presented with inclusion Irreversible loss of non-ideal effects missing from the previous treatment, namely the non-radiative recombination and the Performance evaluation thermal conduction losses that are inevitably present in realistic devices. Following detailed balance theory, the Parametric optimization revised analytical formula for the cell conversion efficiency is derived, and the maximum efficiencies under different conditions are further calculated. Under the condition of 100 sun irradiance and 50% injection effi- ciency, a Gallium arsenide/Gallium antimonide-based solar cell operating at 465 K yields a maximum efficiency of 46.4%. Moreover, the effects of solar concentration, injection efficiency, and other key parameters on the cell performance are analyzed, and, consequently, optimal operating conditions and limiting factors on the con- version efficiency are determined. Simulation results show that such a solar cell operating with low injection efficiency under moderate concentration factor and low cell temperature can significantly boost its conversion performance. This work provides new physical insights for optimal designs, thus paving a route towards the development of low-cost high-performance solar cells. 1. Introduction Shockley-Queisser efficiency limit of 32.2% for silicon-based PV cells operated at room temperature under unconcentrated solar illumination Solar energy, a promising renewable energy source, has attracted [7]. widespread interests due to its abundant reserves and environmental For the purpose of improving light utilization and minimizing the friendliness [1]. It plays a significant role in reducing global climate thermalization losses, numerous methods, including multi junction [8], change and the next-generation energy resources [2]. The most heavily spectrum splitting [9], hot carrier collection [10], and intermediate- deployed technology for solar power conversion is single junction si- band [11] photovoltaics have been developed to minimize the ther- licon-based photovoltaics (PV) with a record efficiency of 28.3% [3]. modynamic losses by expanding the device wavelength responses to the Despite worldwide cumulative photovoltaic installed capacity exceeded ultraviolet and infrared regions. In 1958, Jackson first presented the 401 GW by 2018, the conversion efficiencies for most of this manu- model of multi-junction cells with different bandgap semiconductors in factured output still remain in the range of 10–18% [4]. In such PV a series connected architecture, in which each subcell acts as a filter cells, photons with energy larger than semiconductor bandgap excite absorbing the spectral range corresponding to the bandgap of each electrons into the conduction band, which diffuses to the electrodes to semiconductor layer, thus allowing the solar spectrum to be more ef- form an electrical current [5]. However, photons with energy lower fectively utilized [12]. One disadvantage of this design is reflected in than the bandgap cannot be utilized, while photons with energy above the epitaxial growth of the single-crystalline semiconductor layers and the bandgap will lose excess energy due to thermalization [6]. Together the intermediate tunnel barrier buffer layers, which requires complex with radiative recombination losses, these spectral losses result in the and expensive ultrahigh-vacuum crystal-growth techniques [13]. ⁎ Corresponding authors. E-mail addresses: [email protected] (J. Chen), [email protected] (L.K. Ang). https://doi.org/10.1016/j.enconman.2019.03.034 Received 16 January 2019; Accepted 12 March 2019 0196-8904/ © 2019 Elsevier Ltd. All rights reserved. X. Zhang, et al. Energy Conversion and Management 188 (2019) 112–119 −2 Nomenclature Psun incident solar energy (W cm ) q Elementary charge (C) C solar concentration TS sun temperature (K) Cm maximum theoretical solar concentration TC cell temperature (K) −1 c speed of light (cm s ) TA ambient temperature (K) −1 −2 Efe electrons quasi-Fermi level (eV) U heat leak coefficient (W K cm ) Efh holes quasi-Fermi level (eV) VE Voltage output of the emitter terminal (V) ET top bandgap (eV) VC Voltage output of the collector terminal (V) EB Bottom bandgap (eV) F solar concentration factor Greek symbols − h the Planck constant (eV s 1) e −2 ffi JBC current density crossing BC junction (A m ) γ Injection e ciency h −2 JB current density in the Base region (A m ) λ sensitivity for the non-radiative process e −2 ffi JEB current density crossing EB junction (A m ) η e ciency −2 JC (A m ) −2 JE (A m ) Abbreviations − k Boltzmann constant (eV K 1) n refraction index BC base–collector − P power output density (W cm 2) EB emitter–base −2 Pleak heat flux due to heat conduction (W cm ) HBTSC heterojunction bipolar transistor solar cell −2 Prad radiative flux from the HBTSC (W cm ) Additionally, due to the current-matching, the lowest current generated without the need of an intermediate tunnel junctions or wafer bonding by the subcell will ultimately limit the overall cell current. An alter- schemes for cell interconnection [26], HBTSC shares the same limiting native approach is the use of spectrum-splitting technology to overcome efficiency as the dual-junction solar cell and is free from the current the limitations of current matching and material choice for the different mismatch problem [27]. Nowadays, several theoretical investigations subcells, by splitting the solar spectrum into two bands of photons with regarding the HBTSC have been reported. The pioneering work by different-wavelength [14]. Here, photons with energy greater than the Luque and Martí put forward a concrete theoretical framework that bandgap are directed to the PV cell, while those with energy less than underlies the novel concept and calculated the efficiency limits of n/p/ the bandgap are absorbed by thermal receiver [15]. Ross and Nozik first n-type ideal HBTSCs [22]. The simulation results predicted that the reported that the conversion efficiency of the hot carrier solar cell HBTSC obtains a detailed-balance limit of 54.7% under the maximum under AM1.5 can reach a theoretical limit of 66%, which is 52% higher concentration, which is the same as that of a dual-junction solar cell. than that of traditional Si PV cell systems [16]. König et al. further Martí et al. further discussed the working principle of the HBTSC based proposed the principle, materials and design of hot carrier solar cells on a circuit model, revealing the transistor effect should be avoided with energy selective contacts [17]. The main challenges of this tech- [28]. Linares et al. presented three-terminal solar cells resembled by a nology are the lack of suitable materials with drastically reduced carrier heterojunction BJT, and then explored Si, a-Si: H, III-Vs, nanomaterials cooling rates and the fabrication of selective energy contacts to extract and perovskites for practical implementation [23]. the photogenerated carriers, which severely impedes its progress to- For practical HBTSCs, the cell temperature always increases dyna- wards commercial applications [18]. Luque and Martí theoretically mically above the ambient when exposed to concentrated sunlight. analyzed the efficiency improvement of ideal solar cells by introducing Moreover, there exist several irreversible losses in the HBTSC, which an intermediate band between the conduction and valence bands to may cause additional performance degradation. Such effects are, absorb low-energy photons [19]. Based on this concept, Wang et al. however, not considered in the proof-of-concept calculation presented fabricated bulk intermediate band solar cell using Zinc telluride doped in Ref. [22]. Importantly, for the realistic simulation of HBTSCs, it is with oxygen impurities to form the intermediate band [20]. The prac- necessary to include these effects, so to obtain a reliable theoretical tical implementation of this approach remains challenging due to the efficiency limit and the optimum design of HBTSC. expensive cost of nanostructured intermediate-band materials and the In this paper, an updated model of a HBTSC are proposed with in- fabrication complexity in achieving energy-level alignment [11]. The clusions of: (i) variable temperatures
Recommended publications
  • Federico Capasso “Physics by Design: Engineering Our Way out of the Thz Gap” Peter H
    6 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 3, NO. 1, JANUARY 2013 Terahertz Pioneer: Federico Capasso “Physics by Design: Engineering Our Way Out of the THz Gap” Peter H. Siegel, Fellow, IEEE EDERICO CAPASSO1credits his father, an economist F and business man, for nourishing his early interest in science, and his mother for making sure he stuck it out, despite some tough moments. However, he confesses his real attraction to science came from a well read children’s book—Our Friend the Atom [1], which he received at the age of 7, and recalls fondly to this day. I read it myself, but it did not do me nearly as much good as it seems to have done for Federico! Capasso grew up in Rome, Italy, and appropriately studied Latin and Greek in his pre-university days. He recalls that his father wisely insisted that he and his sister become fluent in English at an early age, noting that this would be a more im- portant opportunity builder in later years. In the 1950s and early 1960s, Capasso remembers that for his family of friends at least, physics was the king of sciences in Italy. There was a strong push into nuclear energy, and Italy had a revered first son in En- rico Fermi. When Capasso enrolled at University of Rome in FREDERICO CAPASSO 1969, it was with the intent of becoming a nuclear physicist. The first two years were extremely difficult. University of exams, lack of grade inflation and rigorous course load, had Rome had very high standards—there were at least three faculty Capasso rethinking his career choice after two years.
    [Show full text]
  • DESIGN and FABRICATION of Gan-BASED HETEROJUNCTION BIPOLAR TRANSISTORS
    DESIGN AND FABRICATION OF GaN-BASED HETEROJUNCTION BIPOLAR TRANSISTORS By KYU-PIL LEE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2003 In his heart a man plans his course, But, the LORD determines his steps. Proverbs 16:9 ACKNOWLEDGMENTS First and foremost, I would like to express great appreciation with all my heart to Professor Pearton and Professor Ren for their expert advice, guidance, and instruction throughout the research. I also give special thanks to members of my committee (Professor Abernathy, Professor Norton, and Professor Singh) for their professional input and support. Additional special thanks are reserved for the people of our research group (Kwang-hyun, Kelly, Ben, Jihyun, and Risarbh) for their assistance, care, and friendship. I am very grateful to past group members (Sirichai, Pil-yeon, David, Donald and Bee). 1 also give my thanks to P. Mathis for her endless help and kindness; and to Mr. Santiago who is network assistant in the Chemical Engineering Department, because of his great help with my simulation. I also thank my discussion partners about material growth technologies, Dr. B. Gila, Dr. M. Overberg, Jerry and Dr. Kang-Nyung Lee. I would like to give my thanks to my friends (especially Kyung-hoon, Young-woo, Se-jin, Byeng-sung, Yong-wook, and Hyeng-jin). Even when they were very busy, they always helped my research work without hesitation. I cannot forget Samsung's vice president Dr. Jong-woo Park’s devoted help, and the steadfast support from Samsung Electronics.
    [Show full text]
  • Based Vertical Double Heterojunction Bipolar Transistors with High Current Amplification
    COMMUNICATION Heterojunction Bipolar Transistor www.advelectronicmat.de 2D Material-Based Vertical Double Heterojunction Bipolar Transistors with High Current Amplification Geonyeop Lee, Stephen J. Pearton, Fan Ren, and Jihyun Kim* been applied to various types of semicon- The heterojunction bipolar transistor (HBT) differs from the classical homo- ductor devices, such as lasers, solar cells, junction bipolar junction transistor in that each emitter-base-collector layer high electron mobility transistors, and het- [3–6] is composed of a different semiconductor material. 2D material (2DM)- erojunction bipolar transistors (HBTs). Notably, with a bipolar junction transistor, based heterojunctions have attracted attention because of their wide range which is a three-terminal transistor fabri- of fundamental physical and electrical properties. Moreover, strain-free cated by connecting two P–N homojunc- heterostructures formed by van der Waals interaction allows true bandgap tion diodes, there is a trade-off between engineering regardless of the lattice constant mismatch. These characteristics the current gain and high-frequency ability [3,7] make it possible to fabricate high-performance heterojunction devices such because of these problems. In sharp contrast, HBTs realized using the hetero- as HBTs, which have been difficult to implement in conventional epitaxy. structure can avoid these trade-offs and Herein, NPN double HBTs (DHBTs) are constructed from vertically stacked improve device performance.[8] HBTs, due 2DMs (n-MoS2/p-WSe2/n-MoS2) using dry transfer technique. The forma- to their high power efficiency, uniformity tion of the two P–N junctions, base-emitter, and base-collector junctions, of threshold voltage, and low 1/f noise in DHBTs, was experimentally observed.
    [Show full text]
  • Quantum Dot and Electron Acceptor Nano-Heterojunction For
    www.nature.com/scientificreports OPEN Quantum dot and electron acceptor nano‑heterojunction for photo‑induced capacitive charge‑transfer Onuralp Karatum1, Guncem Ozgun Eren2, Rustamzhon Melikov1, Asim Onal3, Cleva W. Ow‑Yang4,5, Mehmet Sahin6 & Sedat Nizamoglu1,2,3* Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy‑metal content in such architectures hinders their safe use. In this study, we demonstrate heavy‑metal‑free quantum dot‑based nano‑heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano‑heterojunctions using type‑II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron–hole wavefunction overlap of 0.52 due to type‑II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor–acceptor ratio. This study paves the way toward safe and efcient nanoengineered quantum dot‑based next‑generation photostimulation devices. Neural interfaces that can supply electrical current to the cells and tissues play a central role in the understanding of the nervous system. Proper design and engineering of such biointerfaces enables the extracellular modulation of the neural activity, which leads to possible treatments of neurological diseases like retinal degeneration, hearing loss, diabetes, Parkinson and Alzheimer1–3. Light-activated interfaces provide a wireless and non-genetic way to modulate neurons with high spatiotemporal resolution, which make them a promising alternative to wired and surgically more invasive electrical stimulation electrodes4,5.
    [Show full text]
  • 17 Band Diagrams of Heterostructures
    Herbert Kroemer (1928) 17 Band diagrams of heterostructures 17.1 Band diagram lineups In a semiconductor heterostructure, two different semiconductors are brought into physical contact. In practice, different semiconductors are “brought into contact” by epitaxially growing one semiconductor on top of another semiconductor. To date, the fabrication of heterostructures by epitaxial growth is the cleanest and most reproducible method available. The properties of such heterostructures are of critical importance for many heterostructure devices including field- effect transistors, bipolar transistors, light-emitting diodes and lasers. Before discussing the lineups of conduction and valence bands at semiconductor interfaces in detail, we classify heterostructures according to the alignment of the bands of the two semiconductors. Three different alignments of the conduction and valence bands and of the forbidden gap are shown in Fig. 17.1. Figure 17.1(a) shows the most common alignment which will be referred to as the straddled alignment or “Type I” alignment. The most widely studied heterostructure, that is the GaAs / AlxGa1– xAs heterostructure, exhibits this straddled band alignment (see, for example, Casey and Panish, 1978; Sharma and Purohit, 1974; Milnes and Feucht, 1972). Figure 17.1(b) shows the staggered lineup. In this alignment, the steps in the valence and conduction band go in the same direction. The staggered band alignment occurs for a wide composition range in the GaxIn1–xAs / GaAsySb1–y material system (Chang and Esaki, 1980). The most extreme band alignment is the broken gap alignment shown in Fig. 17.1(c). This alignment occurs in the InAs / GaSb material system (Sakaki et al., 1977).
    [Show full text]
  • Heterojunction Quantum Dot Solar Cells
    Heterojunction Quantum Dot Solar Cells by Navid Mohammad Sadeghi Jahed A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2016 © Navid Mohammad Sadeghi Jahed 2016 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The advent of new materials and application of nanotechnology has opened an alternative avenue for fabrication of advanced solar cell devices. Before application of nanotechnology can become a reality in the photovoltaic industry, a number of advances must be accomplished in terms of reducing material and process cost. This thesis explores the development and fabrication of new materials and processes, and employs them in the fabrication of heterojunction quantum dot (QD) solar cells in a cost effective approach. In this research work, an air stable, highly conductive (ρ = 2.94 × 10-4 Ω.cm) and transparent (≥85% in visible range) aluminum doped zinc oxide (AZO) thin film was developed using radio frequency (RF) sputtering technique at low deposition temperature of 250 °C. The developed AZO film possesses one of the lowest reported resistivity AZO films using this technique. The effect of deposition parameters on electrical, optical and structural properties of the film was investigated. Wide band gap semiconductor zinc oxide (ZnO) films were also developed using the same technique to be used as photo electrode in the device structure.
    [Show full text]
  • Band Alignment and Graded Heterostructures
    Band Alignment and Graded Heterostructures Guofu Niu Auburn University Outline • Concept of electron affinity • Types of heterojunction band alignment • Band alignment in strained SiGe/Si • Cusps and Notches at heterojunction • Graded bandgap • Impact of doping on equilibrium band diagram in graded heterostructures Reference • My own SiGe book – more on npn SiGe HBT base grading • The proc. Of the IEEE review paper by Nobel physics winner Herb Kromer – part of this lecture material came from that paper • The book chapter of Prof. Schubert of RPI – book can be downloaded online from docstoc.com • http://edu.ioffe.ru/register/?doc=pti80en/alfer_e n.tex - by Alfreov, who shared the noble physics prize with Kroemer for heterostructure laser work 3 Band alignment • So far I have intentionally avoided the issue of band alignment at heterojunction interface • We have simply focused on – ni^2 change due to bandgap change for abrupt junction – Ec or Ev gradient produced by Ge grading • We have seen in our Sdevice simulation that the final band diagrams actually depend on doping – A Ec gradient favorable for electron transport is obtained for forward Ge grading in p-type (npn HBT) – A Ev gradient favorable for hole transport is obtained for forward Ge grading in n-type (pnp HBT) Electron Affinity – rough picture • Neglect interface between vacuum and semiconductor, vacuum level is drawn to be position independent • The energy needed to move an electron from Ec to vacuum level is called electron affinity. 5 Electron Affinity Model • The electron affinity model is the oldest model invoked to calculate the band offsets in semiconductor heterostructures (Anderson, 1962).
    [Show full text]
  • Heterojunction Engineering for Next Generation Hybrid II-VI Materials
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 9-2017 Heterojunction Engineering for Next Generation Hybrid II-VI Materials Thor Garcia The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/2385 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] HETEROJUNCTION ENGINEERING FOR NEXT GENERATION HYBRID II-VI MATERIALS by THOR AXTMANN GARCIA A dissertation submitted to the Graduate Faculty in chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2017 © 2017 THOR AXTMANN GARCIA All Rights Reserved ii Heterojunction Engineering for Next Generation Hybrid II-VI Materials by Thor Axtmann Garcia This manuscript has been read and accepted for the Graduate Faculty in chemistry in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Date Professor Maria C. Tamargo Chair of Examining Committee Date Professor Brian R. Gibney Executive Officer Supervisory Committee: Professor Aidong Shen Professor Igor L. Kuskovsky Professor Glen Kowach THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT Heterojunction Engineering for Next Generation Hybrid II-VI Materials by Thor Axtmann Garcia Advisor: Professor Maria C. Tamargo Molecular Beam Epitaxy(MBE) is a versatile thin film growth technique with monolayer control of crystallization. The flexibility and precision afforded by the technique allows for unique control of interfaces and electronic structure of the films grown.
    [Show full text]
  • Microwave Characterization and Modeling of Gaas/Algaas Heterojunction Bipolar Transistors
    b NASA Technical Metnorandurn 1001 50 Microwave Characterization and Modeling of GaAs/AlGaAs Heterojunction Bipolar Transistors { h AS A-'IN- 100 150) PIIC EC WAVE C HP ii ACTEHIZATICN NE 7-26 265 AEL: BCDELXNG CP GaAs/l!lGaAs kE?EfiCJUNC?ICti EIECZAS IEANSlS'lCLS (RASA) 34 F Avail: b31S EC A03/r,F AC1 CSCL 20N Unclas 63/32 OGi379C1 Rainee N. Simons and Robert R. Romanofsky Lewis Research Center Cleveland, Ohio Prepared for the 'EEsof User's Group Meeting Las Vegas, Nevada, June 9, 1987 MICROWAVE CHARACTERIZATION AND MODELING OF GaAs/AlGaAs HETLROJUNCTION BIPOLAR TRANSISTORS Rainee N. Simons and Robert R. Romanofsky National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 441 35 SUMMARY The characterization and modeling of a microwave GaAs/AlGaAs heterojunc- tion Bipolar Transistor (HBT) are discussed. The de-embedded scattering param- eters are used to derive a small signal lumped element equivalent circuit model using EEsof's "Touchstone" software package. Each element in the equivalent m 01 circuit model Is shown to have Its origin within the device. The model shows Ln m good agreement between the measured and modeled scattering parameters over a I wide range of bias currents. Further, the MAG and Ih211 calculated from w the measured data and the MAG and Ih211 predicted by the model are also in good agreement. Consequently the model should also be capable of predicting the fmax and fT of other HBTs. INTRODUCI ION In conventional GaAs Metal Semiconductor Field Effect Transistor (MESFET) and GaAs/AlGaAs High Electron Mobility Transistor (HEMT) devices, current con- duction is parallel to the surface and hence the device speed tends to be con- strained by limitations of the lithography process which defines the channel length.
    [Show full text]
  • Algaas Anode Heterojunction PIN Diodes
    AlGaAs Anode Heterojunction PIN Diodes T. Boles, J. Brogle, D. Hoag, D. Carlson M/ACOM Technology Solutions, Lowell, MA 0185 Abstract This paper describes the development of a heterojunction AlGaAs/GaAs PIN diode as a revolutionary improvement as compared to the homojunction GaAs PIN diode commonly used in microwave systems for commercial and military applications. In a heterojunction device the injected carriers from the junction are confined by the bandgap discontinuity between the AlGaAs/GaAs layers. This confinement effectively reduces the series resistance within the I-region of a PIN diode. Simulations of both single and double heterojunction PIN diodes predict a significant improvement in the return loss and insertion loss as compared to an equivalent GaAs PIN structure. In particular, the single heterojunction PIN diode, when simulated at a bias of 10 ma, indicates a factor of two reduction in high frequency insertion loss. I. INTRODUCTION The application of bandgap engineering to produce novel semiconductor structures is a technique that has been in vogue in the microwave industry for several years. Utilizing the properties of multiple quantum wells, superlattices and heterojunctions, a new class of semiconductors grown by molecular beam epitaxy and metalorganic vapor phase epitaxy was created. In particular, the development of three terminal heterojunction devices in the form of HBTs and pHEMTs has received a great deal of attention from manufacturers of RF, microwave, and mmW systems for both commercial and military applications. While the use of bandgap engineering has been applied to bipolar transistors fabricated in elemental silicon; group IV-IV materials, i.e. SiGe, SiC, SiGeC, etc.; and III-V compounds, i.e.
    [Show full text]
  • Chapter 2 Semiconductor Heterostructures
    Semiconductor Optoelectronics (Farhan Rana, Cornell University) Chapter 2 Semiconductor Heterostructures 2.1 Introduction Most interesting semiconductor devices usually have two or more different kinds of semiconductors. In this handout we will consider four different kinds of commonly encountered heterostructures: a) pn heterojunction diode b) nn heterojunctions c) pp heterojunctions d) Quantum wells, quantum wires, and quantum dots 2.2 A pn Heterojunction Diode Consider a junction of a p-doped semiconductor (semiconductor 1) with an n-doped semiconductor (semiconductor 2). The two semiconductors are not necessarily the same, e.g. 1 could be AlGaAs and 2 could be GaAs. We assume that 1 has a wider band gap than 2. The band diagrams of 1 and 2 by themselves are shown below. Vacuum level q1 Ec1 q2 Ec2 Ef2 Eg1 Eg2 Ef1 Ev2 Ev1 2.2.1 Electron Affinity Rule and Band Alignment: How does one figure out the relative alignment of the bands at the junction of two different semiconductors? For example, in the Figure above how do we know whether the conduction band edge of semiconductor 2 should be above or below the conduction band edge of semiconductor 1? The answer can be obtained if one measures all band energies with respect to one value. This value is provided by the vacuum level (shown by the dashed line in the Figure above). The vacuum level is the energy of a free electron (an electron outside the semiconductor) which is at rest with respect to the semiconductor. The electron affinity, denoted by (units: eV), of a semiconductor is the energy required to move an electron from the conduction band bottom to the vacuum level and is a material constant.
    [Show full text]
  • Analysis of Quantum-Well Heterojunction Emitter Bipolar Transistor Design
    American Journal of Nano Research and Applications 2020; 8(1): 9-15 http://www.sciencepublishinggroup.com/j/nano doi: 10.11648/j.nano.20200801.12 ISSN: 2575-3754 (Print); ISSN: 2575-3738 (Online) Analysis of Quantum-well Heterojunction Emitter Bipolar Transistor Design Hsu Myat Tin Swe 1, 2, Hla Myo Tun 1, Maung Maung Latt 2 1Department of Electronic Engineering, Yangon Technological University, Yangon, Myanmar 2Department of Electronic Engineering, Technological University (Taungoo), Taungoo, Myanmar Email address: To cite this article: Hsu Myat Tin Swe, Hla Myo Tun, Maung Maung Latt. Analysis of Quantum-Well Heterojunction Emitter Bipolar Transistor Design. American Journal of Nano Research and Applications . Vol. 9, No. 1, 2020, pp. 9-15. doi: 10.11648/j.nano.20200801.12 Received : March 16, 2020; Accepted : April 1, 2020; Published : April 13, 2020 Abstract: The paper presents the analysis of Quantum-well Heterojunction Emitted Bipolar Transistor Design based on physical parameters with numerical computations. The specific objective of this work is to enhance the physical performance of the Quantum-well Heterojunction Emitted Bipolar Transistor Design in real world applications. There have been considered on the III-V compound materials like GaAs for p-type layer, AlGaAs for n-type layer and InGaAs for quantum-well layer for different kinds of junctions which were developed in HEBT structure. In this analyses, the parameters for implemented HEBT structure were evaluated to find the multi-quantum-well band diagram, operating frequency (unity beta frequency), rise time, storage delay time, fall time, minority carrier distribution, current gain variation, voltage-current characteristics and phonon control on quantum-well device.
    [Show full text]