Download PDF File

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF File Folia Morphol. Vol. 79, No. 4, pp. 863–866 DOI: 10.5603/FM.a2020.0015 C A S E R E P O R T Copyright © 2020 Via Medica ISSN 0015–5659 journals.viamedica.pl Platysma muscle additionally innervated by a variant anterior branch of the great auricular nerve T. Jovanovski1, N. Umek1, A. Kansky2, E. Cvetko1 1Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Slovenia 2Department of Maxillofacial and Oral Surgery, University Medical Centre, Ljubljana, Slovenia [Received: 25 November 2019; Accepted: 16 January 2020] Damage to the great auricular nerve, with consequent clinical deficits, is a common surgical complication in facial aesthetic and in head and neck procedures such as parotidectomy, neck dissection, rhytidectomy and platysma flap operations. Hence, a thorough knowledge of nerve anatomy, particularly its potential variations, is critical in reducing the associated operative morbidity. Accordingly, we report an unusual variation of the anterior branch of the great auricular nerve noted in an 81-year-old female cadaver. The nerve was observed to course into the subman- dibular region anterior and superficial to the internal jugular vein, communicating with the cervical branch of the facial nerve, while independently innervating the platysma muscle. Although several anatomical variations of the branches of the cervical plexus have been documented, our report describes unique innervation of the platysma muscle by the great auricular nerve, which provides a new insight on the motor component of the nerve. (Folia Morphol 2020; 79, 4: 863–866) Key words: anatomic variation, great auricular nerve, rhytidectomy, parotidectomy, platysma muscle INTRODUCTION and terminating in the postauricular area to give sen- The great auricular nerve arises from the ven- sation to the posterioinferior aspect of the auricle [8]. tral rami of the second and the third cervical spinal Clinically, injury to the great auricular nerve is a com- nerves, to fuse into its main trunk before emerging mon complication in surgical procedures in face, from the posterior border of the sternocleidomastoid head and neck, notably rhytidectomy, parotidectomy muscle at the junction of its upper and middle third, and platysma flap surgery, occurring at a rate of 6% where it resides in its most superficial location — the to 7% during rhytidectomy [2, 7, 8]. Iatrogenic or great auricular point [1, 3]. It courses superiorly and inevitable amputation of the nerve during such pro- anteriorly, and divides into the anterior and pos- cedures could incur significant complications such terior branches. The anterior branch continues in as dysesthesia or allodynia in the involved skin area, a plane between the sternocleidomastoid muscle and otalgia, discomfort on cold exposure, and traumatic the parotid gland prior to its terminal arborisation, neuroma [11]. To minimise the risk of injury to the providing sensation to the skin overlying the parotid great auricular nerve during head and neck surgical gland and anteroinferior aspect of the auricle [8]. The procedures, it is important to fully appreciate the po- posterior branch courses on the surface of the sterno- tential variations in its anatomical disposition. In the cleidomastoid muscle before reaching the mastoid area present report, we describe an anatomic variation of Address for correspondence: Dr. N. Umek, Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia, tel: 00386 1 543 7314, e-mail: [email protected] 863 Folia Morphol., 2020, Vol. 79, No. 4 Figure 1. Dissection of the left side of the neck showing the anterior branch of the great auricular nerve innervating the platysma muscle; A. Superficial dissection; B. Magnified view with the platysma muscle reflected; GAN ant — great auricular nerve, anterior branch; GAN post — great auricular nerve, posterior branch; COM — communicating branch; Par — parotid gland; SCM — sternocleidomastoid muscle; LON — lesser occipital nerve; FN — facial nerve; FN mand — mandibular branch of facial nerve; FN cerv — cervical branch of facial nerve; Pla — platysma muscle; FV — facial vein; RMV — retromandibular vein; IJV — internal jugular vein; SSG — submandibular salivary gland. the nerve observed during a cadaver dissection — an giving two superficial (fascial) and one deep (lobular) anterior branch of the great auricular nerve coursing branch providing sensory innervation to the skin over- into the submandibular region and supplying the lying the parotid gland and inferior part of the auricle. platysma muscle, additional to the cervical branches The anterior branch ascended obliquely over the of the facial nerve. sternocleidomastoid muscle and turned anteriorly inferior to the apex of the parotid gland, crossing CASE REPORT the retromandibular and the internal jugular veins. During the dissection of the left side of the neck In the submandibular region the anterior branch of of an 81-year-old female formaldehyde-embalmed the great auricular nerve entered the deep surface of cadaver, an unusual course of the anterior branch of the platysma muscle. The cervical branch of the facial the great auricular nerve was observed to supply the nerve divided just inferior to the apex of the parotid platysma muscle, in addition to the cervical branch- gland into the thinner anterior and thicker posterior es of the facial nerve (Fig. 1A). The dissection was branches, entering separately into the deep surface performed with the aid of the magnifying lens (4×). of the platysma muscle. A short communication con- There were no signs of previous trauma or surgical nected the thicker cervical branch of the facial nerve scars on the face and neck. The parotid fascia and the and the anterior branch of the great auricular nerve superficial cervical layer were exposed by dissection (Fig. 1B). of the whole dermal layer from the neck and face. On the right side, the great auricular nerve coursed The great auricular nerve was observed arising over the mid-body of the sternocleidomastoid mus- from and winding around the posterior border of cle posterior to the external jugular vein as a single the sternocleidomastoid muscle, coursing 1 cm supe- branch and distributed to the skin over the parotid riorly before dividing into the anterior and posterior gland. branches. Both branches then ascended beneath the platysma muscle on the surface of the sternocleido- DISCUSSION mastoid muscle. The thicker posterior branch trifur- The present report describes a cadaveric finding of cated at the posterior lobe of the parotid gland by an unusual anatomic variation of the anterior branch 864 T. Jovanovski et al., Variant great auricular nerve of the great auricular nerve supplying the platysma salivary duct and blood vessels that suggested a pos- muscle additional to the cervical branch of the facial sible role in the secretory mechanisms of the parotid nerve, with communication between both nerves. salivary gland [12]. In addition, it has been proposed The communications between the cervical plexus that the great auricular nerve might be involved in the and the facial nerve are well known and are reported coordination of proprioceptive information from the to originate during the seventh week of the embryon- muscle via the motor nerve which it communicates ic life [5]. Gasser [6] reported that early in embryonic with [11]. Previous reports have consistently shown life (7th week), the peripheral part of the facial nerve that the great auricular nerve variants communicate divides into several bundles from which the most with the facial nerve by terminating in to the nerve caudal bundles communicate with nerves from the trunk [4, 5, 10, 11]. second and third cervical ganglia in a plexus located in the caudal and ventral part of the second arch. CONCLUSIONS Another bundle of the facial nerve, the future cervi- Although a distinction has been made in the cal branch, pursues a ventral course and terminates literature for the great auricular nerve not having just deep to the myoblastic lamina from which the a motor component [4], our case report showed that platysma muscle develops. The observed anatomical after communicating with the cervical branch of the variation could be a consequence of the anterior facial nerve, the anterior branch of the great auricular branch of the great auricular nerve termination deep nerve independently entered the platysma muscle, to the myoblastic lamina rather than in the ventral which suggests a motor function. part of the second arch [6]. Previous reports have already described communi- Acknowledgements cations between the great auricular nerve and several We are grateful to Ivan Blažinovič for the dis- cranial nerves. Pillay et al. [9] described a variation in section work, Stanko Kristl and Friderik Štendler for the branching pattern of the great auricular nerve, technical assistance, Nataša Pollak Kristl for the figure as well as a communication between the transverse labelling, and to Dr. Chiedozie K. Ugwoke for manu- cervical nerve and the great auricular nerve in human script proofreading. The donor of the body used in foetuses. Yang et al. [11] and Diamond et al. [5] both the study is respectfully acknowledged. We would reported an unusual variation where the posterior also like to thank the Slovenian Research Agency branch of the great auricular nerve sends a small for financial support within the framework of the nerve twig (or several small twigs) into the parotid Programme Group P3-0043. parenchyma and connects with the trunk and tem- poral branch of the facial nerve, the auriculotemporal REFERENCES nerve and the auricular branch of the vagus nerve 1. Altafulla J, Iwanaga J, Lachkar S, et al. The great auricular [5, 10, 11]. Furthermore, Brennan et al. [4] described nerve: anatomical study with application to nerve grafting procedures. World Neurosurg. 2019; 125: e403–e407, doi: a communication between the great auricular nerve 10.1016/j.wneu.2019.01.087, indexed in Pubmed: 30703599. and the marginal mandibular branch of the facial 2. Barbour JR, Iorio ML, Halpern DE. Surgical decompression nerve seen during an elective neck dissection surgery.
Recommended publications
  • Human Anatomy
    Human Anatomy د.فراس عبد الرحمن Lec.13 The neck Overview The neck is the area of the body between the base of the cranium superiorly and the suprasternal notch and the clavicles inferiorly. The neck joins the head to the trunk and limbs, serving as a major conduit for structures passing between them. Many important structures are crowded together in the neck, such as muscles, arteries, veins, nerves, lymphatics, thyroid and parathyroid glands, trachea, larynx, esophagus, and vertebrae. Carotid/jugular blood vessels are the major structures commonly injured in penetrating wounds of the neck. The brachial plexuses of nerves originate in the neck and pass inferolaterally to enter the axillae and continue to supply the upper limbs. Lymph from structures in the head and neck drains into cervical lymph nodes. Skin of the Neck The natural lines of cleavage of the skin (Wrinkle lines) are constant and run almost horizontally around the neck. This is important clinically because an incision along a cleavage line will heal as a narrow scar, whereas one that crosses the lines will heal as a wide or heaped-up scar. Fasciae of the Neck The neck is surrounded by a superficial cervical fascia that lies deep to the skin and invests the platysma muscle (a muscle of facial expression). A second deep cervical fascia tightly invests the neck structures and is divided into three layers. Superficial Cervical Fascia The superficial fascia of the neck forms a thin layer that encloses the platysma muscle. Also embedded in it are the cutaneous nerves, the superficial veins, and the superficial lymph nodes.
    [Show full text]
  • Weakness, Dysphagia, and Stridor After Botulinum Toxin Injections
    CASE REPORT Too Much of a Good Thing: Weakness, Dysphagia, and Stridor After Botulinum Toxin Injections Steven Dominguez, MD, MPH; Marek Dobke, MD, PhD; Steven Dominguez Jr, BS A 68-year-old woman presented with diminished ability to raise her head, difficulty swallowing, and intermittent stridor 5 days after receiving 225 IU of onabotulinumtoxinA. Case of treatment, the patient was under the care A 68-year-old woman presented to the ED of a plastic surgeon; thereafter, she sought 5 days after receiving onabotulinumtoxinA treatment at a physician-owned medical cosmetic injections for wrinkles of the face spa because it offered onabotulinumtoxi- and neck. She stated that she was unable nA at a lower price. The injections at the to raise her head while in a supine position medical spa were administered by a physi- and that her head felt heavy when standing. cian assistant (PA). The patient stated that She also experienced spasms and strain although the PA had steadily increased the of the posterior cervical neck muscles. In dose of onabotulinumtoxinA to maintain addition, the patient described a constant the desired aesthetic effect, this was the need to swallow forcefully throughout the first time she had experienced any side ef- day, and felt an intermittent heavy sensa- fects from the treatment. tion over her larynx that was associated The ED staff contacted the medical with stridor. She noted these symptoms spa provider, who reviewed the patient’s began 5 days after the onabotulinumtoxi- medical record over the telephone. The nA injections and had peaked 2 days prior PA stated that he had been the only practi- to presentation.
    [Show full text]
  • A Comprehensive Review of Anatomy and Regional Anesthesia Techniques of Clavicle Surgeries
    vv ISSN: 2641-3116 DOI: https://dx.doi.org/10.17352/ojor CLINICAL GROUP Received: 31 March, 2021 Research Article Accepted: 07 April, 2021 Published: 10 April, 2021 *Corresponding author: Dr. Kartik Sonawane, Uncovering secrets of the Junior Consultant, Department of Anesthesiol- ogy, Ganga Medical Centre & Hospitals, Pvt. Ltd. Coimbatore, Tamil Nadu, India, E-mail: beauty bone: A comprehensive Keywords: Clavicle fractures; Floating shoulder sur- gery; Clavicle surgery; Clavicle anesthesia; Procedure review of anatomy and specific anesthesia; Clavicular block regional anesthesia techniques https://www.peertechzpublications.com of clavicle surgeries Kartik Sonawane1*, Hrudini Dixit2, J.Balavenkatasubramanian3 and Palanichamy Gurumoorthi4 1Junior Consultant, Department of Anesthesiology, Ganga Medical Centre & Hospitals, Pvt. Ltd., Coimbatore, Tamil Nadu, India 2Fellow in Regional Anesthesia, Department of Anesthesiology, Ganga Medical Centre & Hospitals, Pvt. Ltd., Coimbatore, Tamil Nadu, India 3Senior Consultant, Department of Anesthesiology, Ganga Medical Centre & Hospitals, Pvt. Ltd., Coimbatore, Tamil Nadu, India 4Consultant, Department of Anesthesiology, Ganga Medical Centre & Hospitals, Pvt. Ltd., Coimbatore, Tamil Nadu, India Abstract The clavicle is the most frequently fractured bone in humans. General anesthesia with or without Regional Anesthesia (RA) is most frequently used for clavicle surgeries due to its complex innervation. Many RA techniques, alone or in combination, have been used for clavicle surgeries. These include interscalene block, cervical plexus (superficial and deep) blocks, SCUT (supraclavicular nerve + selective upper trunk) block, and pectoral nerve blocks (PEC I and PEC II). The clavipectoral fascial plane block is also a safe and simple option and replaces most other RA techniques due to its lack of side effects like phrenic nerve palsy or motor block of the upper limb.
    [Show full text]
  • 319: Platysmaplasty: a Surgical Resolution of "Turkey Neck"
    Platysmaplasty A surgical resolution for the “turkey neck” by Nydia Morales,I Morales, CST CST The term “turkey neck” refers to the lateral ptosis of the frontal neck derma. This can occur when the platysma muscles separate, a result of natural weak- ening of the ligaments in the cervical region, as well as excessive lipid build- up. Other causes of this condition include genetics, bone loss and decline of skin elasticity—possibly from weight loss. It is most commonly regarded as a factor of aging, although sun exposure and smoking may also contribute. or patients who are interested in reducing the loose look of sagging skin in the neck area under the jaw line, a platys- LEARNING OBJECTIVES maplasty, or neck lift, is an option. It can be performed in F ▲ conjunction with a face lift, but it is often performed as a Review the relevant anatomy for this stand-alone procedure. This article examines the surgical options procedure for resolving turkey neck, as well as alternatives to surgery. ▲ Examine the set-up and surgical ETIOLOGY AND ANATOMY positioning for this procedure The platysma muscle is one of a pair of plate-like, wide muscles at the side of the neck. It arises from the fascia covering the supe- ▲ Compare and contrast the differences rior parts of the pectoralis major and the deltoideus. It crosses between an in-office procedure and a the clavicle and rises obliquely and medially along the side of typical OR procedure the neck. The platysma covers the external jugular vein as the vein descends from the angle of the mandible to the clavicle.
    [Show full text]
  • Esthetic Shaping of the Neck/Positive Side Effects on the Gingiva’ Warren Roberts, DMD
    Dental Facial Aesthetics ‘Aesthetic shaping of the neck/positive side effects on the gingiva’ Warren Roberts, DMD This article discusses the relationship between Platysma, a large muscle of the face and neck, and the periodontium of the lower teeth. The article explores the relationship between the contraction of the platysma muscle during its repeated use as a muscle of facial expression, the pull of labial mandibular frenums and the development of gingival recession. The use of Botox Cosmetic to soften the action of this muscle is suggested as a minimally invasive therapy in preventing gingival recession. t is now widely recognized that there is a critical ongoing maintenance problem as well as contributing to relationship between the muscles of facial expression, facial tooth loss. Traditionally gingival recession has been attributed soft tissue contours and dental smile design (1). Among other to aggressive tooth brushing or flossing, untreated Ifactors, the amount of upper incisor display is influenced by periodontal disease, occlusal dysfunction, abfraction, genetics the volume of the cheeks, the fullness of the lips and even and age. There may be another factor that has been the activity of muscles in the glabellar region. All the muscles overlooked. Current treatment for lack of gingival of facial expression are interconnected (2). The aging soft attachment often involves surgical intervention through tissue of the face must be included in the diagnosis prior to various grafting procedures (Fig. 2 & 3). Subsequently, the definitive cosmetic dental treatment as the final restorative frenums are often still observable exerting a downward pull approach needs to take into account other facial esthetic (Fig.
    [Show full text]
  • Anatomy Module 3. Muscles. Materials for Colloquium Preparation
    Section 3. Muscles 1 Trapezius muscle functions (m. trapezius): brings the scapula to the vertebral column when the scapulae are stable extends the neck, which is the motion of bending the neck straight back work as auxiliary respiratory muscles extends lumbar spine when unilateral contraction - slightly rotates face in the opposite direction 2 Functions of the latissimus dorsi muscle (m. latissimus dorsi): flexes the shoulder extends the shoulder rotates the shoulder inwards (internal rotation) adducts the arm to the body pulls up the body to the arms 3 Levator scapula functions (m. levator scapulae): takes part in breathing when the spine is fixed, levator scapulae elevates the scapula and rotates its inferior angle medially when the shoulder is fixed, levator scapula flexes to the same side the cervical spine rotates the arm inwards rotates the arm outward 4 Minor and major rhomboid muscles function: (mm. rhomboidei major et minor) take part in breathing retract the scapula, pulling it towards the vertebral column, while moving it upward bend the head to the same side as the acting muscle tilt the head in the opposite direction adducts the arm 5 Serratus posterior superior muscle function (m. serratus posterior superior): brings the ribs closer to the scapula lift the arm depresses the arm tilts the spine column to its' side elevates ribs 6 Serratus posterior inferior muscle function (m. serratus posterior inferior): elevates the ribs depresses the ribs lift the shoulder depresses the shoulder tilts the spine column to its' side 7 Latissimus dorsi muscle functions (m. latissimus dorsi): depresses lifted arm takes part in breathing (auxiliary respiratory muscle) flexes the shoulder rotates the arm outward rotates the arm inwards 8 Sources of muscle development are: sclerotome dermatome truncal myotomes gill arches mesenchyme cephalic myotomes 9 Muscle work can be: addacting overcoming ceding restraining deflecting 10 Intrinsic back muscles (autochthonous) are: minor and major rhomboid muscles (mm.
    [Show full text]
  • Bilateral Supernumerary Clavicular Head of the Sternocleidomastoid Muscle on a Human Fetus Cadaver
    MOJ Anatomy & Physiology Case Report Open Access Bilateral supernumerary clavicular head of the sternocleidomastoid muscle on a human fetus cadaver Abstract Volume 7 Issue 2 - 2020 The sternocleidomastoid muscle (SCM) variations relating to its number of heads have José Aderval Aragão,1,5 Weslley Hewesson been continuously reported, but the bilateral appearance is very rare. It is a flexor muscle of Góes Cruz Modesto,2 Nilson César Menezes the neck and an accessory muscle for breathing, normally presents two heads, but multiple 2 3 variations can occur, including one or more accessory heads. These, when present, could Santos, Iapunira Catarina Sant’Anna Aragão, 3 be one of the complicating factors of the central venous puncture, because of the narrowing Felipe Matheus Sant’Anna Aragão, Paôla in the minor supraclavicular fossa. Report the finding of bilateral supernumerary heads Cardoso,3 Fernanda Pimentel Cavaliere de on the SCM of a human fetus. It was found a rare variation of the SCM with bilateral Barros,3 Juliana Cardoso da Silva,4 Francisco supernumerary heads on a 23,9 weeks old male human fetus cadaver. The heads originated Prado Reis5 in the clavicules middle third, they were separated by a wider triangular space, when 1Department of Morphology, Federal University of Sergipe compared to the triangle formed between the usual sternal e clavicular heads, which (UFS), Aracaju, Sergipe, Brazil corresponds to one more superficial depression, the additional minor supraclavicular fossa. 2Department of Medicine, Federal University of Sergipe (UFS), On the right side, the heads united at the level of the hyoid bone to a distance of 22,65cm, Aracaju, Sergipe, Brazil and on the left, 20,22cm.
    [Show full text]
  • FIPAT-TA2-Part-2.Pdf
    TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART II Contents: Systemata musculoskeletalia Musculoskeletal systems Caput II: Ossa Chapter 2: Bones Caput III: Juncturae Chapter 3: Joints Caput IV: Systema musculare Chapter 4: Muscular system Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput II: OSSA Chapter 2: BONES Latin term Latin synonym UK English US English English synonym Other 351 Systemata Musculoskeletal Musculoskeletal musculoskeletalia systems systems
    [Show full text]
  • Decompression Via Microsurgical Anterior Foraminotomy for Cervical Spondylotic Myelopathy Technical Note
    Decompression via microsurgical anterior foraminotomy for cervical spondylotic myelopathy Technical note Hae-Dong Jho, M.D., Ph.D. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Over the past few years, a microsurgical anterior foraminotomy technique has been developed by the author and used to achieve spinal cord decompression for the treatment of cervical spondylotic myelopathy. A 5 X 8­mm unilateral anterior foraminotomy is accomplished by resecting the uncovertebral joint via an anterior approach. Through the foraminotomy hole, the posterior osteophytes at the spinal cord canal are removed diagonally up to the beginning of the contralateral nerve root. To treat multilevel disease, a tunnel is made among the foraminotomy holes. This technique accomplishes widening of the spinal cord canal in the transverse and longitudinal axes by direct resection of the compressive lesions through the holes of unilateral anterior foraminotomies; however, it does not require bone fusion or postoperative immobilization. Postoperatively patients remain in the hospital overnight, and do not need to wear cervical braces. This new surgical technique has shown excellent clinical outcomes with fast recovery and adequate anatomical decompression in patients with cervical spondylotic myelopathy. The surgical technique is reported and illustrated by two of the author's cases. Key Words * cervical vertebrae * discectomy * intervertebral disc displacement * myelopathy * radiculitis * spine Cervical spondylotic myelopathy has been surgically treated either by a posterior decompressive laminectomy or by an anterior discectomy or vertebrectomy approach.[1,2,5­9] Decompressive laminectomy is actually an indirect decompressive procedure because compressive lesions are most often located anteriorly.[2,6,9] An anterior vertebrectomy approach requires bone graft fusion and immobilization for a few months.
    [Show full text]
  • Shoulder Droop Following Excision of Malignant Melanoma on the Posterior Neck William Scharpf, BS,* Laura F
    Shoulder Droop Following Excision of Malignant Melanoma on the Posterior Neck William Scharpf, BS,* Laura F. Sandoval, DO,** Jonathan Stuart Crane, DO, FAOCD*** *Medical Student, 2nd year, Campbell University School of Osteopathic Medicine, Buies Creek, NC **Dermatology Resident, 2nd year, Sampson Regional Medical Center Dermatology Residency Program, Clinton, NC ***Dermatologist, Dermone, Wilmington, NC; Program Director, Sampson Regional Medical Center Dermatology Residency Program, Clinton, NC Abstract A patient with malignant melanoma on his left posterior neck underwent a wide local excision in the left posterior triangle. Surgical procedures within this region can lead to severing or stressing of the spinal accessory nerve (SAN), which provides muscle innervation to the trapezius and sternocleidomastoid (SCM) muscles. Subsequent paralysis of these muscles will cause the shoulder on the affected side to droop downward. Chance of permanent disability is remarkably increased with failure to recognize signs and symptoms following surgery. While there are immediate treatments available for this condition, the best form of care remains prevention and proper awareness. We present a case of iatrogenic injury to the SAN as a result of a malignant melanoma excision in the left posterior triangle of the neck. sensory and motor innervation to the back of the Introduction 5 In surgery of the skin, familiarity with anatomy head and neck. The only structure separating this such as important vessels and nerves is key. In delicate region from the skin is a layer of deep cases of invasive melanoma and invasive squamous cervical fascia. Thus, an extreme level of caution is cell carcinoma that meet guidelines, sentinel required during a radical neck dissection.
    [Show full text]
  • Bilateral Supernumerary Sternocleidomastoid Heads with Critical Narrowing of the Minor and Major Supraclavicular Fossae: Clinical and Surgical Implications
    Int. J. Morphol., 30(3):927-933, 2012. Bilateral Supernumerary Sternocleidomastoid Heads with Critical Narrowing of the Minor and Major Supraclavicular Fossae:Clinical and Surgical Implications Cabezas Supernumerarias Bilaterales del Músculo Esternocleidomastoídeo con Estrechamiento Crítico de las Fosas Supraclavicular Menor y Mayor: Implicancias Clínicas y Quirúrgicas *,**,***,****Athanasios Raikos; ***George K. Paraskevas; ****Stefanos Triaridis; ***Panagiota Kordali; ****George Psillas & **Beate Brand-Saberi RAIKOS, A.; PARASKEVAS, G. K.; TRIARIDIS, S.; KORDALI, P.; PSILLAS, G. & BRAND-SABERI, B. Bilateral supernumerary sternocleidomastoid heads with critical narrowing of the minor and major supraclavicular fossae: clinical and surgical implications. Int. J. Morphol., 30(3):927-933, 2012. SUMMARY: Anatomical variations of the sternocleidomastoid muscle are rare and concern its origin, insertion, and the number of heads. We report on a rare bilateral variant of the sternocleidomastoid muscle with aberrant and supernumerary muscular heads, observed in a cadaveric subject. On the right side of the neck, a typical sternomastoid head of the sternocleidomastoid muscle, and three aberrant clavicular heads of variable thickness, origin, and termination were noticed. On the left side, two sternomastoid heads were present; the medial one was of typical pattern, while the lateral was supernumerary. The cleidomastoid portion of the left sternocleidomastoid muscle was fused with the double sternomastoid segment. A strap-like muscle originating from the middle third of the clavicle and inserting onto the transverse process of the C3 vertebra was noticed. This is known as the cleidocervical muscle. On the right side of the neck, the posterior cervical triangle was diminished, the minor supraclavicular fossa was considerably narrow, whereas on the left, it was diminished in addition to a bilateral shortening of the major supraclavicular fossa minimizing space needed for potential surgical access.
    [Show full text]
  • Defining the Facial Extent of the Platysma Muscle a Review of 71 Consecutive Face-Lifts
    ORIGINAL ARTICLE Defining the Facial Extent of the Platysma Muscle A Review of 71 Consecutive Face-lifts Anil R. Shah, MD; David Rosenberg, MD Objective: To delineate the superior (facial) extent of Results: On average, the platysma extended 3.98 cm the platysma muscle. along the malar mandibular line, superiorly from the in- ferior border of the mandible. The platysma was located 3.09 cm inferiorly from the malar eminence along the ma- Methods: A total of 142 facial halves were examined from lar mandibular line. On average, the platysma muscle oc- 71 consecutive deep-plane rhytidectomies performed over cupied 56% of the malar mandibular line. a period of 3 months. The platysma muscle was identi- fied and isolated during the procedure. The superior ex- Conclusion: The platysma muscle may have a more sig- tent of the platysma was measured along the line cre- nificant facial extension than previously described. ated by the angle of the mandible to the malar eminence, also known as the malar mandibular line. Arch Facial Plast Surg. 2009;11(6):405-408 ESPITE THE MYRIAD OF the extent of the platysma muscle can be face-lift techniques avail- clearly seen, based on the directional as- able, few surgeons who pects of the muscle fibers and the often perform face-lifts would thick nature of the facial platysma. Dur- question the role that the ing surgery, attenuation of the facial pla- platysma muscle plays in rejuvenation of tysma can be seen clearly at the midface D 1 the aging neck. However, the extension along its superior extent.
    [Show full text]