<<

POSTCRANIAL MORPHOLOGY OF THE MIDDLE FROM SIMA DE LOS HUESOS, .

Authors: Juan-Luis Arsuagaa,b,1, José-Miguel Carreteroc,a, Carlos Lorenzod,e,a, Asier Gómez-Olivenciaf,g,h,a, Adrián Pablosi,a, Laura Rodríguezc,j, Rebeca García-Gonzálezc, Alejandro Bonmatía,b, Rolf M. Quamk,l,a, Ana Pantoja-Péreza,b, Ignacio Martínezi,a, Arantza Aranburum, Ana Gracia-Téllezn,a, Eva Poza-Reya,b, Nohemi Salaa, Nuria Garcíaa,b, Almudena Alcázar de Velascoa, Gloria Cuenca-Bescóso, José-María Bermúdez de Castroj, Eudald Carbonelld,e,p.

Author’s Affiliations: aCentro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos. Avda. Monforte de Lemos, 5. 28029 Madrid, Spain. bDpto. de Paleontología. Fac. Ciencias Geológicas. Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain. cLaboratorio de Evolución Humana, Dpto. de Ciencias Históricas y Geografía, Universidad de Burgos, Edificio I+D+i, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain. dÀrea de Prehistòria, Dept. d’Història i Història de l’Art, Univ. Rovira i Virgili, Av. Catalunya, 35, 43002 Tarragona, Spain. eInstitut Català de Paleoecologia Humana i Evolució Social, C/ Marcel·lí Domingo s/n (Edifici W3), Campus Sescelades, 43007 Tarragona, Spain. fDept. Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea. Apdo. 644, 48080 Bilbao, Spain. gIKERBASQUE. Basque Foundation for , 48013 Bilbao, Spain.

hUMR 7194, CNRS, Dépt. Préhistoire, Muséum national d'Histoire naturelle. Musée de l’Homme, 17, Place du Trocadéro, 75016 Paris, . iÁrea de Antropología Física, Depto. de Ciencias de la Vida. Universidad de Alcalá, 28871 Alcalá de Henares, Spain. jCentro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca, 09002 Burgos, Spain. kDept. of , Binghamton University (State University of New York), Binghamton, NY 13902-6000, USA. lDivision of Anthropology, American Museum of Natural History, New York, NY 10024- 5192, USA. mDepartamento Mineralogía y Petrología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea. Apdo. 644, 48080 Bilbao, Spain. nÁrea de Paleontología. Depto. de Geografía y Geología. Universidad de Alcalá, 28871 Alcalá de Henares, Spain. oPaleontología, Aragosaurus-IUCA and Facultad Ciencias, Universidad de Zaragoza,50009 Zaragoza, Spain. pVisiting Professor, Institute of Vertebrate and of Beijing, 100044 .

1Corresponding author: Juan-Luis Arsuaga, Centro Mixto Universidad Complutense de Madrid - Instituto de Salud Carlos III (UCM-ISCIII) de Evolución y Comportamiento Humanos, c/ Monforte de Lemos 5 – Pabellón 14, 28029 Madrid (Spain). Telephone: +34918222834. Email: [email protected] 1-SKELETAL REPRESENTATION

Table S1. Complete inventory of SH postcranial remains and MNI represented by each element Minimum Number of Minimum Number of Individuals Elements (MNE) (MNI) AD SubAD Indet Total AD SubAD Indet Total M F ? MF ? Total vertebrae 212 12 Cervical V. 28 28 14 70 5 2 5 12 Thoracic V. 46 49 95 Lumbar V. 19 28 47 Total ribs 58 58 2 118 3 3 1 7 Manubria 4 4 3 2 4 11 20 2 1 2 6 11 Scapulae 6 2 6 13 27 5 2 3 6 16 Humeri 8 2 2 12 24 5 1 1 7 14 Radii 7 3 4 11 25 3 2 2 8 15 Ulnae 6 3 4 12 25 3 3 3 5 14 Carpal 131 13 Scaphoid 14 5 19 8 5 13 Lunate 14 7 21 8 4 12 Triquetral 10 6 16 6 4 10 Pisiform 6 3 9 3 3 6 Trapezium 13 3 16 8 2 10 Trapezoid 13 4 17 8 2 10 Capitate 14 5 19 8 3 11 Hamate 10 4 14 7 4 11 Metacarpals 63 10 Mtc I 6 12 18 3 7 10 Mtc II 9 3 12 4 2 6 Mtc III 7 3 10 4 3 7 Mtc IV 3 3 6 2 2 4 Mtc V 11 6 17 6 3 9 Hand phalanges 325 13 Proximal 68 39 19 126 7 6 13 Middle 50 34 11 104 Distal 59 33 3 95 7 5 12 Innominate bones 5 5 4 17 4 31 3 1 1 10 2 17 Sacra 2 3 5 10 2 3 5 10 Coccygeal V. 5 3 8 2 2 4 Femora 6 2 1 23 32 4 1 14 19 Patellae 4 2 5 5 16 2 2 3 3 10 Tibiae 5 2 3 13 23 4 2 7 13 Fibulae 1 1 7 9 18 1 1 3 3 8 Tarsal bones 130 14 Talus 21 3 24 34 4 3 14 Calcaneus 17 9 26 43 2 6 15 Navicular 20 5 25 9 5 14 Cuboid 15 3 18 7 3 10 Medial cuneiform 9 5 14 5 3 8 Inter. cuneiform 13 2 15 8 2 10 Lateral cuneiform 9 3 12 5 1 6 Metatarsals 51 11 Mtt I 10 5 15 6 5 11 Mtt II 7 1 8 4 1 5 Mtt III 6 4 10 5 3 8 Mtt IV 5 4 9 4 3 7 Mtt V 5 4 9 4 3 7 Foot phalanges 230 16 Proximal Ph. I 10 10 20 8 8 16 Distal Ph. I 9 7 16 5 4 9 Proximal II-V 20 35 9 64 Middle II-V 52 16 68 Distal II-V 53 9 62 Total MNE 1523 Final MNI 19

M = male; F = female; AD = adult; SubAD = subadult

Table S2. Relative representation and cumulative percentage

One Relative Cumulative Anatomical Units (AU) NºAU MNAU Skeleton MNAU % MNAU

1. Neurocrania 17 1 17.0 3.9 3.9 2. Mandibles 20 1 20.0 4.6 8.5 3. Dentition 533 32 16.7 3.9 12.4 4. Cerv. vertebrae 70 7 10.0 2.3 14.7 5. Thor. vertebrae 95 12 7.9 1.8 16.5 6. Lumb. vertebrae 47 5 9.4 2.2 18.7 7. Sacra 10 1 10.0 2.3 21.0 8. Ribs 118 24 4.9 1.1 22.1 9. Claviculae 20 2 10.0 2.3 24.4 10. Scapulae 27 2 13.5 3.1 27.5 11. Prox. humeri 18 2 9.0 2.1 29.6 12. Humeral shafts 37 2 18.5 4.3 33.9 13. Dist. humeri 27 2 13.5 3.1 37.0 14. Prox. ulnae 22 2 11.0 2.6 39.6 15. Ulnar shafts 27 2 13.5 3.1 42.7 16. Dist. ulnae 10 2 5.0 1.2 43.9 17. Prox. radii 24 2 12.0 2.8 46.7 18. Radial shafts 32 2 16.0 3.7 50.4 19. Dist. radii 20 2 10.0 2.3 52.7 20. Carpals 131 16 8.2 1.9 54.6 21. Metacarpals 63 10 6.3 1.4 56.0 22. Hand phalanges 325 28 11.6 2.7 58.7 23. Innominate bones 31 2 15.5 3.6 62.3 24. Prox. femora 35 2 17.5 4.1 66.4 25. Femoral shafts 36 2 18.0 4.2 70.6 26. Dist. femora 22 2 11.0 2.6 73.2 27. Patellae 16 2 8.0 1.9 75.1 28. Prox. tibiae 18 2 9.0 2.1 77.2 29. Tibial shafts 35 2 17.5 4.1 81.3 30. Dist. tibiae 19 2 9.5 2.2 83.5 31. Prox. fibulae 10 2 5.0 1.2 84.7 32. Fibular shafts 20 2 10.0 2.3 87.0 33. Dist. fibulae 19 2 9.5 2.2 89.2 34. Tali 24 2 12.0 2.8 92.0 35. Calcanei 26 2 13.0 3.0 95.0 36. Ant. tarsals 84 10 8.4 1.9 96.9 37. Metatarsals 51 10 5.1 1.2 98.1 38. Foot phalanges 230 28 8.2 1.9 100.0 TOTAL 2369 233 431.2 100 2048.9

MNAU = minimum number of anatomical units = number of bones or portions preserved in a sample divided by number of that bone or bone portion in a complete skeleton.

Figure S1. Cumulative percentage of the minimum number of anatomical units (MNAU), i.e., number of bones or bone portions preserved in a sample divided by number of that bone or bone portion in a complete skeleton. 1. Neurocrania; 2. Mandibles; 3. Dentition;4. Cerv. vertebrae; 5 Thor. vertebrae; 6. Lumb. vertebrae; 7. Sacra; 8. Ribs; 9. Claviculae; 10. Scapulae; 11. Prox. humeri; 12. Humeral shafts; 13. Dist. humeri; 14. Prox. ulnae; 15. Ulnar shafts; 16. Dist. ulnae; 17. Prox. radii; 18. Radial shafts; 19. Dist. radii; 20. Carpals; 21. Metacarpals; 22. Hand phalanges; 23. Innominate bones; 24. Prox. femora; 25. Femoral shafts; 26. Dist. femora; 27. Patellae; 28. Prox. tibiae; 29. Tibial shafts; 30. Dist. tibiae; 31. Prox. fibulae; 32. Fibular shafts; 33. Dist. fibulae; 34. Tali; 35. Calcanei; 36. Ant. tarsals; 37. Metatarsals; 38. Foot phalanges.

2- GENERAL BODY SIZE AND SHAPE, INTRAPOPULATION VARIATION AND ENCEPHALIZATION

2.1-STATURE

Systematic work at the Sima de los Huesos has allowed us to reconstruct 27 complete long bones. Despite the methodological difficulties involved in the estimation of stature in humans (i.e. bone , body proportions, sex assignment, statistical techniques, etc.) and the lack of consensus on a valid method broadly applicable in all cases, we have used the multiracial and combined-sex formulae proposed by Sjøvold (1) to estimate the mean stature of the SH hominins based on 24 complete long bones (excluding the fibula) (2).

Although the differences between the SH and samples are not significant, it is likely that the SH hominins were somewhat taller on average than the Neandertals since the SH hominins had, on average, longer limb bones than the Neandertals (2).

The SH male and female means fall in the category of ‘above medium height’ and ‘tall height’ individuals defined by Martin and Saller (3) for recent H. sapiens. The same average in Neandertals falls more clearly into the category of ‘medium height’ individuals. However, in both samples ‘tall’ individuals, (i.e., above 170 cm for men and 160 cm for women) can be found. In light of our results, it seems that early and middle Pleistocene humans from Africa, Asia, and Europe were characterized by heights in the range of Medium and Above-Medium individuals, although tall individuals are found in all three geographical areas. During the late Pleistocene, Neandertals reduced their height only slightly compared with their ancestors such as the people from Sima de los Huesos. As noted previously by others, the earliest H. sapiens populations (Skhul and Qafzeh) had a radically different stature from earlier humans (177.4 cm pooled sex mean).

Table S3. Comparison of mean stature for three fossil Homo samples

Sima de los Huesos Neandertals Early modern humans

Mean SD n Mean SD n Mean SD n Males 169.5 4.0 19 166.7 5.9 26 185.1 7.1 11 Females 157.7 2.0 5 154.5 4.6 13 169.8 6.5 6 Pooled sex 163.6 160.6 177.4 mean(a)

SD = standard deviation; n = sample size. Stature in cm. Early modern humans from Skhul and Qafzeh [see Table S25 and Carretero et al. (2)]. (a) Pooled sex mean = (male bones mean + female bones mean)/2.

2.2-BODY MASS

Among the SH sample, the body mass for the complete male 1 (4), has been estimated elsewhere as between 90.3 and 92.5 kg (5). However, in order to be consistent in our comparisons between the SH hominins and Neandertals, we have estimated the body mass (BM) based on femoral head size in both samples (Table S25). Since these humans are known to be large bodied (4, 6), we used Grine et al.’s formula (7) for BM estimation, following Auerbach and Ruff’s recommendations (8).

We have calculated a weighted mean of body mass estimations for both SH and Neandertals. This takes into account the variation within each body mass estimate, i.e., the standard deviation for each individual prediction, SDx, using a meta-analysis approach. To calculate SDx the following equation was used from Etxeberria (9).

SDX=Y'0/(Se √(1+1/n0)) where Y'0 is the predicted value, Se is the standard error of the estimate and n is the number of observations. Individual and mean ranges for SH and Neandertals are shown in Figure S2.

Table S4. Individual body mass estimates for several SH femoraa and the weighted mean of the SH sample and Neandertals 95% Femoral head Sample/specimen Sex Body mass Confidence diameter interval SH F-XI Female 41.8 58.3 F-XVI Female 41.2 56.9 F-XII Male 49.0 74.6 F-XIII Male 48.3 73.0 F-X Male 52.8 83.3 Mean SH Pooled sex weighted 69.1 59.1-79.0 mean

Male weighted mean 76.8 70.7-82.9

Female weighted 57.6 52.9-62.3 mean Neandertals Pooled sex weighted 72.1 67.0-77.2 (N=14) mean Male weighted mean 76.3 71.6-81.0 Female weighted 61.6 56.0-77.2 mean

aUsing Grine et al.’s (7) formula: 2.268*FH-36.5 (r=0.92; SEE=4.3). Femoral head diameter in mm, body mass in kg. The population weighted mean and 95% confidence interval was obtained from the meta-analysis. Neandertal sample: Males = 1, Spy 2, Neandertal 1, La Chapelle-aux-Saints 1, , , 213, 1, Krapina 207 and Krapina 208. Females = Tabun C1, La Ferrassie 2, Sima de las Palomas and Krapina 214. See also Figure S2.

Figure S2. Forest plot of body mass estimations through each femur and the weighted group mean. Amud 1; Ke2=Kebara 2; Krap207=Krapina 207; Krap208=Krapina 208; Krap213=Krapina 213; Krap214=Krapina 214; LCH= La Chapelle-aux-Saints 1; LF1=; LF2=La Ferrassie 2; LM= Le Moustier 1; NEA=Neandertal 1; SdP=Sima de las Palomas; SP2=Spy 2; TC1=Tabun C1. The area of each square is proportional to the weight of each individual’s body mass in the meta-analysis (those estimations with larger SDx are weighted less in the analysis). The horizontal lines represent the confidence intervals (95%) for each individual’s body mass estimation. 2.3-SIZE VARIATION AND SEXUAL DIMORPHISM

Table S5. Variables used in the size variation analysis Anatomical Variables Details Region Cranium Endocranial capacity in cubic centimeters Mandible Mandibular corpus at = (mandibular corpus height × mandibular mental foramen corpus breadth at mental foramen)1/2 geometric mean Glenoid fossa geometric = (glenoid fossa height × glenoid fossa mean breadth)1/2 Proximal epiphysis = (proximal epiphysis breadth × head geometric mean vertical diameter × head transverse diameter)1/3 Midshaft perimeter Biepicondylar breadth Ulna Proximal epiphysis = (olecranon breadth × coronoid breadth × geometric mean olecranon height × trochlear anteroposterior diameter × coronoid height)1/5 Proximal perimeter Midshaft perimeter Proximal epiphysis = (mediolateral diameter of the radius head geometric mean × anteroposterior diameter of the radius head)1/2 Neck perimeter Distal breadth Vertebrae Atlas superior transverse diameter Axis superior transverse diameter L5 Vertebral body = (dorsoventral diameter × transverse geometric mean diameter)1/2 Sacrum Lumbosacral surface = (transverse diameter × anteroposterior geometric mean diameter)1/2 Innominate Vertical acetabular bone diameter Femur Head vertical diameter Subtrochanteric = (subtrochanteric anteroposterior diameter geometric mean × subtrochanteric mediolateral diameter)1/2 Midshaft geometric mean = (midshaft anteroposterior diameter × midshaft mediolateral diameter)1/2 Patella Geometric mean = (maximum thickness × maximum height x maximum breadth)1/3 Tibia Midshaft perimeter Talus Trochlear geometric = (trochlear length × trochlear breadth)1/2 mean Calcaneus Geometric mean = (maximum length × body length × breadth across the sustentaculum tali × height of the body)1/4.

Definition of the variables from Martin and Saller (3) and Bräuer (10) except for the following: vertical diameter of the humeral head (11), ulnar olecranon height, ulnar coronoid height, ulnar trochlear anterior-posterior diameter (12) and vertical acetabular diameter (13).

Table S6. Descriptive statistics and composition of the SH samples used in the size variation analysis Sima de los Huesos Anatomical Variables Current Previous Region Mean SD CV MR n n Cranium Endocranial capacity 15 3 1232.4 96.6 7.83 1.36 Mandible Mandibular corpus at 12 - 23.6 2.3 9.97 1.40 ment. for. GM Scapula Glenoid fossa GM 7 5 29.3 2.0 6.97 1.24 Humerus Proximal epiphysis GM 4 4 44.2 3.7 - 1.16 Midshaft perimeter 10 9 66.6 8.7 13.07 1.51 Biepicondylar breadth 8 4 59.8 4.6 7.71 1.28 Ulna Proximal epiphysis GM 9 7 24.0 2.1 8.70 1.30 Proximal perimeter 12 8 44.2 4.4 9.88 1.51 Midshaft perimeter 13 7 51.1 5.1 10.03 1.43 Radius Proximal epiphysis GM 10 - 20.5 1.4 6.86 1.25 Neck perimeter 13 5 38.9 3.6 9.27 1.34 Distal breadth 8 - 33.1 3.5 10.51 1.32 Vertebrae Atlas superior transverse 3 - 49.6 2.0 - 1.08 diameter Axis superior transverse 3 - 49.9 1.6 - 1.06 diameter L5 Vertebral body GM 4 - 40.0 3.1 - 1.19 Sacrum Lumbosacral surface GM 5 2 40.6 2.7 6.69 1.20 Innominate Vertical acetabular 7 5 56.7 3.6 6.28 1.20 bone diameter Femur Head vertical diameter 5 4 45.2 4.9 10.95 1.27 Subtrochanteric GM 10 8 31.7 2.2 6.81 1.19 Midshaft GM 7 - 29.6 3.8 12.80 1.39 Patella GM 9 5 36.5 2.2 6.07 1.21 Tibia Midshaft perimeter 7 6 89.4 8.0 8.97 1.29 Talus Trochlear GM 15 8 30.9 2.4 7.75 1.26 Calcaneus GM 11 7 52.8 2.9 5.50 1.18

CV = coefficient of variation; GM = geometric mean; MR = maximum ratio. Maximum ratio (MR) is equal to maximum value divided by minimum value. We have not calculated the CV for samples lower than n=5. The previous n is the number of elements included by Arsuaga et al. (14) and Lorenzo et al. (15). The current n is the size of the sample used in this analysis. The following variables were not used by Arsuaga et al. (14) and Lorenzo et al. (15) and they have been included in this analysis: mandibular corpus at mental foramen geometric mean, radius proximal epiphysis geometric mean, atlas superior transverse diameter, axis superior transverse diameter, L5 vertebral body geometric mean and femur midshaft geometric mean. Specimens of the Sima de los Huesos sample for: Cranium: Crania 2-17. Mandibles: AT-1, AT-250+AT-793, AT-300+AT-4147, AT- 303+AT-1957, AT-505+AT-604, AT-605, AT-792 AT-888, AT-950, AT-1775, AT-2193, and AT-6726. Scapula: AT-316+AT-1671, AT-320+AT-1750, AT-342, AT-343, AT-794, AT-2969 and Scapula I. Humerus: AT-93, AT-217, AT-1103, AT-2951+AT-2952, Humerus II, Humerus III, Humerus VI, Humerus VII, Humerus VIII, Humerus X, Humerus XI, Humerus XIII, Humerus XIV and Humerus XV. Ulna: AT-488, AT-1104, AT-1270, Ulna I, Ulna II, Ulna V, Ulna VI, Ulna VII, Ulna VIII, Ulna IX, Ulna X, Ulna XII, Ulna XIII and Ulna XIV. Radius: Radius I, Radius II, Radius III, Radius IV, Radius V, Radius VI, Radius VII, Radius IX, Radius X, Radius XI, Radius XIII, AT-349 and AT-1702. Atlas: VC3, VC7 and VC16. Axis = VC2, VC4 and VC8. Lumbar 5: VL5, AT-2191, VL12 and VL13. Sacrum: AT-322, AT-1003 (Pelvis 1), AT-1005, AT- 1234+AT-2721 (Pelvis 2) and AT-3711+AT-4200+AT-4350. Innominate bone: AT-1000 & AT-1001 (Pelvis 1), Coxal I, Coxal II (Pelvis 2), Coxal III, Coxal IV, Coxal V and Coxal VI. Femur: AT-616, AT-1020, AT-2067, Femur IV+V/2, Femur X, Femur XI, Femur XII, Femur XIII, Femur XIV+AT-1530, Femur XV and Femur XVI. Patella: AT- 670, AT-1043, AT-1044, AT-1331, AT-1783, AT-2166, AT-2948, AT-3081 and AT-3297. Tibia: AT-19, AT-848, AT-2173, Tibia I, Tibia III, Tibia VI and Tibia XII. Talus: AT-860, AT-965, AT-966+AT-980, AT-1322, AT-1477, AT-1480, AT-1716, AT-1822, AT-1930, AT- 1931, AT-2495, AT-2803, AT-3132, AT-3133 and AT-4425. Calcaneus: AT-489, AT-663, AT-969, AT-971+AT-981, AT-1576, AT-1740, AT-2466, AT-3130, AT-3131, AT-3771 and AT-4426.

Table S7. Percentage of samples generated randomly (n = 5,000) that fall above the SH coefficient of variation (CV) and SH maximum ratio (MR). Hamann-Todd Hamann-Todd Coimbra Palencia Anatomical Euroamericans Afroamericans Variables Region % % % % % % % % CV MR CV MR CV MR CV MR Cranium Endocranial capacity - - - - 98.7 92.3 83.4 68.3 Mandible Mandibular corpus at ment. 21.6 24.9 ------for. GM Scapula Glenoid fossa GM 81.2 69.3 ------Humerus Proximal epiphysis GM - 65.8 ------Midshaft perimeter 8.2 6.1 ------Biepicondylar breadth 63.6 43.4 ------Ulna Proximal epiphysis GM - - 56.5 46.6 53.3 49.5 56.4 33.0 Proximal perimeter - - 86.4 55.6 69.0 52.1 71.0 33.0 Midshaft perimeter - - 87.9 59.0 61.5 49.7 79.5 65.6 Radius Proximal epiphysis GM 89.5 80.7 ------Neck perimeter 76.7 79.8 ------Distal breadth 26.5 39.7 ------Vertebrae Atlas superior transverse - - - - - 65.0 - - diameter Axis superior transverse - - - - - 76.2 - - diameter L5 Vertebral body GM - - - - - 43.3 - - Sacrum Lumbosacral surface GM 77.3 68.4 ------Innominate 63.7 56.8 ------bone Vertical acetabular diameter Femur Head vertical diameter 8.4 17.9 - - 18.7 30.3 43.1 27.5 Subtrochanteric GM 71.2 89.5 - - - - 90.9 97.4 Midshaft GM 8.9 15.1 - - - - 23.1 28.6 Patella GM - - - - 85.5 82.5 83.6 81.2 Tibia Midshaft perimeter - - 65.8 57.8 22.1 12.2 54.1 51.1 Talus Trochlear GM - - 43.4 62.1 43.4 71.8 43.4 71.8 Calcaneus GM 75.5 73.3 - - 49.3 47.4 24.6 25.0

CV = coefficient of variation; GM = geometric mean; MR = maximum ratio. Modern comparative samples from: Coimbra: individuals born in the Beira Litoral region of between 1820 and 1920, housed in the Museum of Anthropology from the University of Coimbra, Portugal. Palencia: individuals deceased during the last quarter of the XXth century housed in the Anatomical Museum of the University of Valladolid, Spain. Hamann-Todd Euroamericans and Hamann-Todd Afroamericans: Cleveland Museum of Natural History, Ohio, USA.

2.4-ENCEPHALIZATION QUOTIENT (EQ)

Table S8. Cranial capacity (CC), estimated body mass (BM) and calculated encephalization quotient (EQ) for SH sample, Neandertals and two MH samples. Sample CC (cm3) BM (kg) EQ Sima de los Huesos Cranium 2 1333.5 76.8 3.32 Cranium 4 1360 76.8 3.39 Cranium 5 1092 57.6 3.23 Cranium 10 1218 57.6 3.61 Cranium 12 1227.5 57.6 3.62 Cranium 13 1436.5 76.8 3.58 Cranium 15 1283.5 57.6 3.80 Cranium 16 1236 57.6 3.66 Cranium 17 1218.5 57.6 3.61 Mean ± SD 3.54 ± 0.18 Range 3.23-3.80 Neandertals Amud 1 1750 73.0 4.49 La Chapelle-aux-Saints 1 1626 81.7 3.91 La Ferrassie 1 1681 87.3 3.88 Spy 2 1553 86.0 3.62 Shanidar 5 1550 71.2 4.04 Tabun C1 1271 64.4 3.52 Mean ± SD 3.91 ± 0.35 Range 3.52-4.49 Modern Humans Pecos (n=29) Mean ± SD 3.90 ± 0.37 Range 3.29-4.70 Euroamericans Hamann-Todd (n=58) Mean ± SD 3.80 ± 0.32 Range 2.89-4.52 Pooled sample (n=87) Mean ± SD 3.83 ± 0.34 Range 4.70-2.89

The EQ has been calculated as the ratio of the observed (OBS) to the expected brain size (EBS). OBS were calculated from CC following the formula from Martin (16): OBS = (CC * 1.018) - 0.025. EBS was calculated from the respective BM values following the formula from Martin (16) for Old World simians: Log10 EBS = 0.60 * Log10 BM (in g) + 2.68. As in Table S4, BM calculated from femoral head diameter (FHD) following Grine et al. (7). The statistical parameters of the comparative samples have been calculated from the individual values of EQ. We performed a Mann-Whitney test to compare SH values with those of Neandertals and modern human samples. Sima de los Huesos sample: we have used only adult specimens. CC values from Arsuaga et al. (17). To calculate the EBS we have used two BM, one for individuals with CC below 1300 cm3 (57.6 kg) and another for individuals with CC above 1300 cm3 (76.8 kg). The larger BM was calculated as the mean of the respective BM calculated with the FHD of Femur X, Femur XII and Femur XIII and the smaller BM as the mean of the respective BM calculated with the FHD of Femur XI and Femur XVI (17). H. neanderthalensis: we have used the following specimens: Amud 1, La Chapelle-aux- Saints 1, La Ferrassie 1, Spy 2, Shanidar 5, Neandertal 1, Tabun C1. The CC values are from Ruff et al. (6). The FHD as in Table S24, except for Shanidar 5 that is from Ruff et al. (6). Modern humans: we have used two modern human samples: Pecos (N=29) and Hamman-Todd (N=58). CC and FHD of Pecos sample from Ruff et al. (6). CC and FHD of the Hamman-Todd collection has been taken by us.

3- POSTCRANIAL SKELETAL

3.1- COMPARISON OF TRAITS IN THE GENUS HOMO

Table S9. Selected traits in fossil and extant humans Lower Pleistocene Non-SH European Asian Middle African Middle Modern Homo Additional Anatomical Region Trait H. antecessor Sima de los Huesos Neandertals Homo Middle Pleistocene Pleistocene Pleistocene sapiens references Vertebral canal Longer Longer Shorter 18, 19 dorsoventral diameter

Shows a caudal Shows a caudal Shows a caudal Variable (show a caudal Anterior tubercle 18-21 projection, 100% (n=1) projection projection projection: 48.6%) Atlas Size of the tubercles for Variable: Large (33.3 the insertion of the Large, 100% (n=1) Small (83.3 %) Large (74.4-83.3 %) 18-21 %); Small (66.7 %) transverse ligament

Size of the posterior arch Robust, 100% (n=1) Robust Slender Robust 18, 19

Relatively low and Relatively low and Relatively high and Axis Morphology 18, 19 wide wide narrow

Length Shorter Shorter Longer Shorter 18, 20 C6 and C7 spinous process Orientation More horizontal More horizontal Very horizontal Less horizontal 19, 21

Degree of lordosis of the Normal Hypolordotic Hypolordotic Normal 5, 19, 22 lumbar spine

Length of the transverse Long? Long Long Short 5, 19 process Lumbar vertebrae Transverse process orientation in cranial view Dorso-lateral Dorso-lateral Lateral Dorso-lateral 5, 19, 23 (L2-L3)

Vertebral canal shape (L4- Normal Normal Dorsoventrally enlarged Normal 5, 19 L5)

Thorax General size Larger? Larger Smaller 19

Relative Length Longer Longer?? Longer?? Longer Shorter 24

Robusticity Gracile Gracile Gracile Gracile More robust 11, 25

Frontal curvature or Type II Type II Type II # Type II Var i abl e 11, 21, 26 deflection

Relatively tall and Relatively tall and Relatively tall and Glenoid cavity shape Relatively low and wide 11, 24 narrow narrow # narrow Scapula Position of the axillary Dorsal (50%); Ventral High frequency of High frequency of High frequency of 11, 24 sulcus (50%) dorsal (88.9%) dorsal (72%) ventral (90%)

Shape of the humeral head Transversely oval # Transversely oval Vertically oval 11

Projecting and Lesser tubercle Projecting and massive Narrow and flat 11 massive Narrow with two Deltoid tuberosity Narrow with two crests Wide with three crests 11 crests #

Olecranon fossa relative Narrower and Wider and deeper Wider and deeper # Wider and deeper Narrower and shallower 11, 24, 27 size shallower Humerus

Medial pillar relative Thicker 100% (n=2) Thinner 100% (n=2) Thinner # Thinner 100% (n=1) Thinner Thicker 11, 24, 27 thickness

Variable: wider than Capitulum shape Taller than wide Taller than wide ? Wider than tall Taller than wide 25 tall (66%) Condylo-trochear sulcus Deep Deep Shallow (66%) Deep (n=1) Shallow Deep 25 depth

Absolute and relative neck Long 100% (n=1) Long (75%) Long Short 21, 24 length

Radius Radial tuberosity position Medial Anterior (n=1) Medial (75%) Medial (75%) Anterior 21, 24, 28

Degree of shaft curvatureLow (n=1) Low (n=1) High (75%) High Low 21

Olecranon size Larger Larger Smaller 29, 30

Trochlear notch More anteriorly # More anteriorly Antero-proximally 29, 30 orientation

Radial notch Vertically longer # Vertically longer Horizontally longer 29, 30 Ulna Supinator crest Short and blunt # Short and blunt Long and sharp

Pronator teres crest Pronounced Pronounced Normal

Interosseous crest shape Short and Blunt # Short and Blunt Long and Sharp

Midshaft shape Rounded # Rounded Triangular

Lower Pleistocene Non-SH European Asian Middle African Middle Modern Homo Anatomical Region Trait H. antecessor Sima de los Huesos Neandertals Additional references Homo Middle Pleistocene Pleistocene Pleistocene sapiens

Palmar projection of the Very projected Very projected Less projected 31, 32 tubercle Trapezium Concavity of the MC1 Concave Relatively flatter Concave 32 facet

Palmar projection of the Hamate Less projected (n=1) Very projected Very projected Less projected 31, 32 hamulus

Concavity of the MC2 Capitate Concave Concave Concave Concave 31, 32 facet*

Pisiform Shape Pea-shaped Pea-shaped Pea-shaped 32 Relatively short Relatively long Relatively long Lunate Shape 32 (proximo-distal) (proximo-distal) (proximo-distal) Relatively broad Relatively broad (radio- Relatively narrow Triquetral Shape 32 (radio-ulnar) ulnar) (radio-ulnar) Size of the attachment for Metacarpal 1 the opponens pollicis Large Large Small 32 muscle

Relatively short with Relatively short with Relatively long with First proximal hand Morphology relatively wide relatively wide relatively narrow 32 phalanx trochleas trochleas trochleas Proximal hand Curvature* Non-curved Non-curved Non-curved Non-curved 32 phalanges Morphology of the distal Distal hand phalanges Broad Broad Narrow 32 tuberosity

Transverse shape Elliptical Elliptical Elliptical Elliptical Rounded 5, 33-35 Pelvis Lateral iliac flaring Large Large Large Large? Large? Large Small 4, 5, 34, 36, 37

Acetabulocristal buttress Anteriorly located Anteriorly located Anteriorly located Anteriorly located? Anteriorly located Posteriorly located 34, 38, 39

Absent to poorly Acetabulospinous buttress -defined Well-defined? Poorly to well-defined Absent to well-defined 5, 40, 41 defined

AIIS orientation relative Moderately to strongly Moderately to Moderately to strongly Non-twisted or only Strongly twisted Strongly twisted? 38, 40-43 to the anterior iliac margin twisted strongly twisted twisted moderately

Os coxae Shallow, not excavating Shallow, not excavating Deep, excavating the Deep, excavating the Deep, excavating the Deep, excavating the (or only slightly) to Iliopsoas groove the medial surface of medial surface of the medial surface of the medial surface of the medial surface of the 38, 39, 41, 43 medial surface of the the AIIS AIIS # AIIS AIIS? AIIS AIIS

Supraacetabular sulcus Conspicuous Conspicuous Conspicuous Conspicuous Conspicuous Conspicuous Absent or shallow 4, 5, 38, 40, 44, 45

Superior pubic ramus Extremely thin and Thin and plate-like? Thin and plate-like Thin and plate-like Thick and bar-like 4, 5, 46, 47 morphology plate-like

Superior pubic ramus Long? Long Long Long Short 4, 47-49 length

Fusion of the Sacrum ventral face of the S1-S2 Incomplete Incomplete Var i abl eVariable (age dependent) 5, 50, 51 vertebral bodies

Relative neck length Longer Longer # Longer (n=1) Longer Shorter

Hypotrochanteric fossa Constantly present Constantly present Constantly present # Constantly present Constantly present Constantly present Constantly present Var i abl e 21, 24, 29 and crest Femur Neck-shaft angle Low?? Low # Low (n=1) Low High 24, 29

Pilaster Absent Absent # Absent Absent Absent Absent Present 24

High index > 100% Low index < 100% Low index < 100% Variable index (80- Patella Height/breadth index 21, 52 (taller than wide) (wider than tall) (wider than tall) 113%)

Retroversion angle High # High High Low 52

Tibial condyles More posterior More posterior Tibia More posterior position More anterior position 52 displacement position # position Cross-sectional shape Amygdaloid Amygdaloid Var i abl e

Malleolar facet shape Very broad Broad Narrow 53, 54

Absolutely and Absolutely and Absolutely and Head shape Intermediate 53, 55 Talus relatively narrow relatively narrow relatively broad

Wedged-shaped and Trochlear shapeRectangular Rectangular (n=1) Rectangular and broad Rectangular Rectangular and broad 53, 55, 56 narrow

General shape Broad Broad Narrow 29, 57 Calcaneus Sustentaculum tali Well projected Projected Less projected 29, 57, 58

Fourth metatarsal Breadth of the base Narrow Broad Broad Narrow 56

Distal phalanx Big toe Morphology of the distal Broad Broad Narrow (DP1) tuberosity

Plesiomorphic (blue) and derived (red) trait for the H. neanderthalensis and H. sapiens clades, except (*) primitive within genus Homo but derived compared to . Colorless cells indicate uncertain polarity. AIIS = Anterior Inferior Iliac Spine #This trait is present in the SH immature individuals

3.2- AND SPINE

Recent studies have demonstrated that there are significant differences between Homo neanderthalensis and Homo sapiens in both the vertebral column and ribs (5, 18, 20, 22, 23, 59-61). This is in stark contrast with previous studies that proposed that Neandertals showed a rather similar configuration in these anatomical regions to modern humans (29, 62). The SH sample will help elucidate the evolutionary paths that these two lineages have followed.

Neandertals show differences in both the size and shape of their costal skeleton when compared to modern humans. Neandertals show longer ribs in the mid-thorax while the upper-most and lower-most ribs are similar in size to those of Homo sapiens (59). Thus, the Neandertal thorax is likely larger in size and different in shape than that of Homo sapiens. There has been some discussion on the exact shape of the Neandertal thorax. However, quantification of the morphology of the Neandertal thorax has still not been possible due to the incompleteness of most of the individuals (Shanidar 3, La Chapelle- aux-Saints 1, La Ferrassie 1), the presence of taphonomical distortion (Kebara 2, Tabun C1), pathological lesions (Kebara 2) or errors in the reconstruction (La Ferrassie 1, Kebara 2) (59). Researchers have suggested different shapes for the thoraces in Neandertal individuals: more anteroposteriorly enlarged in Shanidar 3 (60) or more medio-laterally expanded in the case of Tabun C1 (61).

The SH rib collection represents 118 ribs: 58 subadults, 58 adults and 2 of unknown age-at-death (Table S1). The minimum number of elements (MNE) for ribs 3-10 is based on the posterior angle. The minimum number of individuals represented is seven, based on the first rib: three adults, three subadults and one of unknown age-at-death. The ribs have been separated into two broad categories based on the age-at-death: subadults and adults. The subadult group includes all the ribs that do not show fusion of the secondary centers of ossification. In cases in which the head and/or the tubercle are not present, the porosity of the shaft has been used to tentatively assign an age-at-death: adults do not show porosity while subadults show porosity.

The SH collection preserves three complete ribs (a 1st, an 11th, and a 12th). However, the absence of complete mid-thoracic ribs makes it difficult to assess the size and shape of the SH thorax. Our current working hypothesis is that the SH hominins, like Neandertals, may have had a larger thorax relative to their stature when compared to modern humans based on two facts. The first rib SH-Co1 (AT-AT-2748+AT-3546+AT- 3549) displays a dorsoventral size which is significantly longer than MH and above the Neandertal sample (four first ribs belonging to two individuals: Kebara 2 and Regourdou 1) (Table S10). In addition, the comparison of the incomplete costal fragment AT-2987+AT-3083 with the second rib of Kebara 2 suggests that it was also longer than the latter. Future discoveries of complete mid-thoracic ribs in SH will make it possible to test this hypothesis (Figure S3). Additionally, the presence of large thoraces in the SH hominins would be consistent with the larger anteroposterior and mediolateral dimensions of the SH articulated pelves (5, 35) (see below). Finally, larger thoraces would be also expected in these large-bodied (i.e. heavy) hominins (63).

We have proposed elsewhere (5) that most SH individuals likely had 7 cervicals, 12 thoracic, 5 lumbar, 5 sacral and at least 3 coccygeal vertebrae (i.e. 7/12/5/5/>3 vertebral formula). This is the modal formula in H. sapiens and is also seen in the only complete adult Neandertal vertebral column found to date (Kebara 2). Based on this evidence, the last common ancestor of Neandertals and modern humans likely shared this same vertebral formula. The present analysis of the vertebral morphology is limited to the cervical and lumbar regions in which the Neandertal and modern human morphologies are well known (Table S9).

The SH vertebral collection represents 212 vertebrae (Table S1). The minimum number of elements (MNE) has been calculated in the C1 using the left articular mass and in the C2 using the odontoid process. In the case of the lower cervicals (C3-C7) we used the right articular pillar, and in the case of the thoracic and lumbars the vertebral body has been used. The assessment of the age-at-death is based on the presence/absence of fusion of the annular epiphyses of the vertebral body and the porosity of the articular facets (porous in subadults and non-porous in adults).

Regarding the spinal curvatures, the SH hominins, like Neandertals, display a reduced lumbar lordosis, which is derived in these two hominin groups (5, 22). This assessment is based on the study of the pelvic incidence (which is correlated with the degree of lumbar lordosis) in two SH individuals and with a preliminary analysis of the vertebral wedging in lumbar vertebrae of SH (5, 19).

The SH atlas (C1) displays a large maximum dorsoventral diameter of the vertebral canal, which is likely related to the large dorsoventral diameter of the foramen magnum. This is also present in Neandertals. Additional features of the atlas include, among others, a caudally projecting anterior tubercle of the anterior arch and a higher frequency of small tubercles for the attachment of the transverse ligament than in modern humans. The frequency of these small tubercles, however, is lower than in Neandertals. The posterior arch is more robust than in Neandertals and similar in size to that of modern humans (18, 20). The axis is craniocaudally low and the atlantoaxial joint is mediolaterally expanded (18). Neandertals are characterized as having long and horizontal spinous processes in C6 and C7 when compared to modern humans (20). In fact, both KNM-WT 15000 and show horizontal spinous processes (21) although the length is difficult to assess due to their immature status. Thus, horizontally-oriented spinous processes in the lowermost cervical spine are likely a plesiomorphic feature. In the case of the C6, the Sima de los Huesos (SH) vertebrae show a similar spinous process length as modern humans but shorter than those of Neandertals. The SH specimens show more horizontal angles than modern humans but not as horizontal as Neandertals. Thus, more vertical angles in modern humans and longer and even more horizontal spinous processes would be derived in Neandertals from the possibly plesiomorphic condition displayed by the SH specimens. In the case of the C7, the SH specimens also show a length of the spinous process that is similar to modern humans and shorter than Neandertals, but the only specimen which can be measured shows an angle similar to Neandertals, and below modern humans (Tables S11-S12, Figure S4). In summary, Neandertals retain a plesiomorphic feature, the horizontal orientation of the spinous processes, and the longer spinous processes could be considered as a derived Neandertal feature. At the same time, the less horizontally oriented spinous processes in modern humans could also be considered as a derived Homo sapiens feature.

The mid-lower lumbars from SH display long transverse processes in the lumbar vertebrae based on three different vertebrae (one L3 and two L5) from two different individuals (5, 19). The comparative analysis of this trait is difficult due to the natural fragility of this anatomical region, and its scarcity in the fossil record. The Kebara 2 Neandertal appears to show long transverse processes (23). KNM-WT 15000 also preserves the lumbar transverse processes in several lumbar vertebrae (64), but no comparative metrical study of this trait has been done. Regarding the orientation of the transverse process in cranial view, there are significant differences between Neandertals and modern humans: Neandertals show laterally oriented transverse processes of the mid-lumbars while in MH they are dorso-laterally oriented (23). The orientation in KNM-WT 15000 and in SK853 (65) is dorso-lateral which suggests that the orientation of the transverse process in Neandertals is derived. SH displays the plesiomorphic orientation as in KNM-WT 15000 and in Homo sapiens (Figure S5). Neandertals also display a derived dorsoventrally enlarged vertebral canal in L5 which is not present in the SH hominins nor in H. sapiens (5, 19). In summary, the vertebral column of the SH hominins shares some derived features with Neandertals but does not display the full suite of derived Neandertal features. Table S10. Tuberculo-ventral chord measurements of the 1st rib from SH and comparisons with Neandertals and a modern human sample Tuberculo-ventral chord Additional Specimen Sample/Species Side Mean SD n references Range

SH-Co1 97.5 - (AT-2748+AT- Sima de los Huesos L 1 3546+AT-35483549) -

88.9 5.5 Neandertal sample H. neanderthalensis L+R 4 67

82.7-94.2

84.7 5.4 R 28 Euroamerican males H. sapiens 74.8-94.5 67

83.9 4.5 L 28 73.9-91.3

SD = standard deviation; n = sample size. Values in mm. Definition of “Tuberculo-ventral chord” from (68). Neandertal sample composed of the first ribs of Kebara 2 and Regourdou 1. Modern human comparative sample from Gómez-Olivencia et al. (67). Note that the SH-Co1 rib is above the modern human male and Neandertal sample ranges. Table S11. Length and angle of the C6 spinous process in Sima de los Huesos. Neandertals and modern humans Maximum Angle Additional Specimen Sample/Species length (M13) (M12) references VC12 (AT-3349+AT-3372+AT- Sima de los Huesos 29.6 (20)** 3373) VC14 (AT-315+AT-325a+AT- Sima de los Huesos 28.3 (30) 325b) Kebara 2 H. neanderthalensis (37) 20 La Chapelle-aux-Saints 20 H. neanderthalensis 33.0 (5)** 1 La Ferrassie 1 H. neanderthalensis 37.4** 20 Shanidar 1 H. neanderthalensis 35.0* (19)** 66 Shanidar 2 H. neanderthalensis 28.7 (14)** 20 Shanidar 3 H. neanderthalensis 36.4** 20 26.6 ± 3.5 38.3 ± 8.8 20 Modern human sample H. sapiens (18.1-34.7) (26-59.5) [Mean ± SD (Range); n] n=68 n=19

SD = standard deviation; n = sample size. Values in parentheses are estimated. M13 in mm; M12 in degrees. Definition of the variables from Martin (10). Modern human comparative sample from Gómez-Olivencia et al. (20). Values underlined are outside the range of the modern human comparative sample. Z- score values have been calculated on the fossil individuals compared to the modern human sample. Significantly different values have been indicated as (*=p<0.05; **=p<0.01).

Table S12. Length and angle of the C7 spinous process in Sima de los Huesos. Neandertals and modern humans Maximum Angle Additional Specimen Sample/Species length (M13) (M12) references VC1 (AT-321 + AT-1556 + Sima de los Huesos 33.3 20 AT-1569 + AT-1609) AT-2687+AT- Sima de los Huesos 34.0 3064+AT-4007 AT-3376+AT-3970 Sima de los Huesos 37.8 Kebara 2 H. neanderthalensis 36.0 20.5 20 La Chapelle-aux-Saints 20 H. neanderthalensis 36.5 15* 1 La Ferrassie 1 H. neanderthalensis 41.3** 20 Regourdou 1 H. neanderthalensis 33.2 26 20 Shanidar 1 H. neanderthalensis (36.0) 29, 66 Shanidar 2 H. neanderthalensis (34.8) 17* 20 Shanidar 3 H. neanderthalensis 41.8** 20 34.5 ± 8.5 20 34.1 ± 2.4 Modern human sample (21.0- H. sapiens (28.0-41.7) [Mean ± SD (Range); n] 53.0) n=69 n=27

SD = standard deviation; n = sample size. Values in parentheses are estimated. M13 in mm; M12 in degrees. Definition of the variables from Martin (10). Modern human comparative sample from Gómez-Olivencia et al. (20). Values underlined are outside the range of the modern human comparative sample. Z- score values have been calculated on the fossil individuals compared to the modern human sample. Significantly different values have been indicated as (*=p<0.05; **=p<0.01).

Figure S3. Comparison of the incomplete costal fragment AT-2987+AT-3083 (b) with the right second rib of Kebara 2 (mirrored) (a). This alignment, using the muscle insertion markings, suggests that the SH rib is dorso-ventrally longer.

Figure S4. Bivariate plot between the length of the spinous process (M13) and its angle (M12) for the sixth (C6) and seventh (C7) cervical vertebrae. SH and Neandertal samples are from Tables S10-S11. The dark grey area indicates the Neandertal morphospace for the individuals in which both variables are present. The light grey area is the extended morphospace including Neandertal specimens that only preserve the length of the spinous process. For these specimens a range value (vertical lines) of the spinous process angle has been estimated based on the range of the most complete individuals. The dashed vertical lines represent SH specimens for which the spinous process angle has been estimated based on the range of the most complete Neandertal individuals.

Figure S5. Cranial view of SH VL2 (L3) (a) compared to the L3 of the Neandertal of Kebara 2 (b) and the L3 of a modern human (c). Note the more lateral orientation of the transverse process in Kebara 2.

3.3- SHOULDER GIRDLE AND UPPER LIMB BONES

Table S13. Measurements of the SH adult shoulder girdle and upper limb bones Anatomical Pooled-sex Males Females Variable region Mean SD n Mean SD n Mean SD n Scapula Glenoid index 64.3 4.9 10 - - Clavicle Robusticity index 22.6 0.5 3 22.2 - 1 22.9 0.4 2 Humerus Humeral head shape 93.0 2.8 5 93.3 3.1 4 92.1 - 1 Olecranon fossa 47.9 1.7 8 47.4 0.9 7 51.7 - 1 index(*) Pillar index 29.0 3.9 8 29.7 4.0 6 26.9 3.3 2 Ulna Trochlear notch 80.7 4.6 10 82.4 5.4 5 81.6 3.6 2 orientation Radial fossa shape 82.0 12.0 12 75.4 14.7 4 95.6 11.2 2 Robusticity index 15.9 1.9 3 17.8 - 1 13.9 - 1 Diaphyseal index at 75.5 4.1 3 71.7 - 1 79.8 - 1 pronator teres Radius Neck length index 11.0 0.9 8 11.0 1.0 6 10.8 0.1 2 (*) Curvature index 4.1 0.8 8 4.2 0.9 6 3.7 0.8 2

SD = standard deviation; n = sample size. “Trochlear notch orientation” in degrees. Definition of the variables from Martin-M (3), Senut-S (69), Trinkaus (29), Carretero et al.-C (11), Maia Neto-F (70) and McHenry-McH (12) (see Figure S6 for further details). Scapula: Glenoid index: M13/M12×100; Clavicle: Robusticity index: M6/M1×100 Humerus: Humeral head index: C3/C4×100; Olecranon fossa index C16/C5×100; Pillar index: C18/C16×100. Ulna: Trochlear notch orientation: McH8/McH9; Radial fossa shape: S13/S12; Robusticity index: Midshaft circumference(MSC)/M1×100; Diaphyseal index at pronator teres: (Min/Max diameter)×100. Radius: Neck length index: F1b/M1×100; Curvature index: M6.1/M6×100. Sexual diagnosis of SH upper limb bones following Carretero et al. (2).

Table S14. Measurements of the SH immature shoulder girdle and upper limb bones Anatomical Juvenile I Juvenile II Variable region Mean SD n Mean SD n Scapula Glenoid index 63.9 5.2 7 61.5 2.8 3 Clavicle Robusticity index 23.9 0.1 2 - Humerus Humeral head shape - - Olecranon fossa index 48.9 - 1 49.6 2.8 2 (*) Pillar index 32.2 - 1 23.6 3.3 2 Ulna Trochlear notch - 80.1 - 1 orientation Radial fossa shape 72.6 - 1 81.6 10.6 2 Robusticity index - - Diaphyseal index at 79.5 - 1 79.3 - 1 pronator teres Radius Neck length index (*) 12.1 - 1 11.5 0.01 2 Curvature index 3.2 - 1 4.2 1.2 2

See Table S13 for further details. Juveniles I: traces of epiphyseal fusion in their extremities. Juveniles II: epiphyses are fusing or already fused. (*) “Neck length” in juvenile individuals was measured as the length from proximal metaphysis to the upper limit of the radial tuberosity. “Olecreanon fossa index” in juveniles (Fossa breadth/Distal metaphysis medio-lateral diameter)×100.

Table S15. Measurements of the Neandertal sample shoulder girdle and upper limb bones Anatomical Pooled-sex Males Females Variable region Mean SD n Mean SD n Mean SD n Scapula Glenoid index 66.1 3.2 15 67.7 2.7 5 67.7 0.1 2 Clavicle Robusticity index 23.6 2.1 5 23.8 2.4 4 23.0 - 1 Humerus Humeral head shape 98.4 4.4 6 99.6 3.8 5 92.7 - 1 Olecranon fossa 29.1 2.3 23 31.2 1.2 8 26.3 3.0 2 index Pillar index 26.7 5.5 23 25.3 6.5 8 21.1 0.02 2 Ulna Trochlear notch 82.4 6.9 11 82.4 5.0 8 78.2 13.7 2 orientation Radial fossa shape 91.6 25.0 16 67.0 15.0 6 110.1 38.1 2 Robusticity index - - 14.8 - 1 Diaphyseal index at 70.1 7.1 3 66.3 3.9 2 77.7 - 1 pronator teres Radius Neck length index 9.9 0.5 4 9.8 0.3 3 10.5 - 1 Curvature index 4.9 1.2 5 5.9 0.6 2 3.7 1.0 2

See Table S13 for further details. Neandertal sample for: Scapula: Amud 1; La Ferrassie 1 and 2; Neandertal 1; Shanidar 1 and 4; Tabun C1. Clavicle: Kebara 2; Krapina 142, 143, 144, 145, 149, 153, 154, 155 and 156; La Chapelle-aux-Saints 1; La Ferrassie 1; Neandertal 1; Regourdou 1; Shanidar 1 and 3. Humerus: Combe-Grenal; Hortus; Kebara 2; La Chapelle-aux-Saints 1; La Ferrassie 1; Lezetxiki; Krapina 159, 160, 161, 162, 164, 166, 169, 170, 171, 172 and 174; H5; Neandertal 1; Regourdou 1; Spy 1 and 3; Tabun C1; Vilafamés 1. Ulna: Amud 1; Krapina 179, 181, 182, 183, 184 and 185; La Chapelle-aux-Saints 1; La Ferrassie 1 and 2; La Quina H5. Neandertal 1; Regourdou 1; Shanidar 1, 3, 4, 5 and 6; Spy 1 and 2. Tabun C1. Radius: Amud 1; Kebara 2; La Chapelle-aux-Saints 1; La Ferrassie 1 and 2; Neandertal 1; Regourdou 1; Shanidar 1, 4, 5, 6, and 8; Spy 1; Tabun C1.

Table S16. Measurements of the modern human sample shoulder girdle and upper limb bones Anatomical Pooled-sex Males Females Variable region Mean SD n Mean SD n Mean SD n Scapula Glenoid index 71.5 6.2 111 73.1 6.2 79 67.3 4.5 29 Clavicle Robusticity index 25.4 3.1 262 26.6 2.9 132 24.1 2.8 130 Humerus Humeral head shape 108.2 4.3 234 108.1 4.4 129 108.3 4.3 105 Olecranon fossa 24.2 2.8 261 25.2 2.8 148 22.9 2.3 113 index Pillar index 44.2 10.1 258 45.8 9.6 147 41.9 10.5 111 Ulna Trochlear notch 68.9 7.2 336 69.2 7.3 170 68.6 7.2 165 orientation Radial fossa shape 66.9 11.0 330 67.6 11.7 169 66.0 10.2 169 Robusticity index 18.0 1.6 310 18.4 1.6 156 17.6 1.6 152 Diaphyseal index at 85.3 7.6 336 84.5 8.5 163 86.3 6.5 173 pronator teres Radius Neck length index 9.3 0.8 456 9.5 0.8 243 9.1 0.8 213 Curvature index 3.2 0.7 462 3.2 0.7 248 3.1 0.6 214

See Table S13 for further details. Modern human data from the Hamann-Todd collection, University of Burgos collection, Natural History Museum Lisboa and Instituto de Antropologia de la Universidade de Coimbra.

Figure S6. Measurements taken in the upper limb bones. a. Right scapula in lateral view. b. Left clavicle in superior view. c. Humeral head in medial view; distal right humerus in posterior view. d. Right ulna in anterior view; and proximal right ulna in lateral view. e. Proximal left radius in medial view; complete right radius in anterior view. Numbers refer to definition of the variables from Martin and Saller (3) (M), Senut (69) (S), Carretero et al. (11) (C), Maia Neto (70) (F) and McHenry et al. (12) (McH).

Figure S7. a. Ulna VII showing a blunt and short supinator crest (lower ) and radial facet shape (upper arrow). b. SH (left) trochlear notch orientation following Martin and Saller (3) in comparison to those of modern humans (right). (HTH) Hamann-Todd collection.

Figure S8. Two adult specimens (R-VII and R-VI) showing the variation in neck length and radial tuberosity position. RVII shows a medially-oriented tuberosity and long neck while R-VI shows the opposite morphology. Dashed lines mark the interosseus crest.

3.4- HAND

Table S17. Measurements of the SH hand bones compared with Neandertals and modern humans Modern Anatomical SH Neandertals Variable humans region Mean SD n Mean SD n Mean SD n Lunate Maximum 12.1 0.91 8 13.8 1.85 45 14.0 1.43 7 length (M1) Radio-ulnar 13.9 0.88 8 14.4 1.74 45 15.4 1.46 8 breadth (M2) Triquetral Maximum 9.0 0.75 7 11.5 1.16 45 9.9 0.78 5 length (M1) Triquetral 16.1 1.55 3 15.4 1.46 45 16.5 1.84 6 breadth (M2) Trapezium Dorsopalmar height of the 9.6 0.85 10 11.0 0.95 45 11.4 1.16 9 MC1 facet (M5) Dorsopalmar subtense of the -1.7 0.32 10 -1.8 0.42 45 -0.9 0.58 6 MC1 facet Tubercle 5.2 0.79 7 3.3 1.01 45 6.1 1.33 6 projection Capitate MC2/MC3 facet 59.7 6.07 6 46.0 7.0 41 60.0 10.11 8 angle Hamate Articular length 15.9 0.85 9 18.4 2.01 45 17.5 1.50 7 Hamulus projection (Max. 10.5 0.63 5 9.3 1.63 45 11.0 1.87 8 height - Body height) (M5) PP1 Articular length 25.9 0.44 8 28.9 2.46 96 27.6 1.31 10 Proximal 16.8 1.64 9 15.9 1.39 96 16.7 1.41 10 breadth DP1 Articular length 21.6 4.00 11 22.2 2.09 96 24.3 0.94 15 Distal breadth 12.2 2.40 9 10.1 1.21 96 12.8 0.70 15

PP1 = thumb proximal phalanx; DP1 = thumb distal phalanx. Variables in mm except “Capitate MC2/MC3 facet angle” in degrees. Definition of the variables from Martin and Saller (3) and Bräuer (10) except for the following: dorso-palmar subtense of the MC1 facet and trapezium tubercle projection (29); capitate MC2/MC3 facet angle (71); hamate articular length (32); phalangeal articular length, proximal breadth, distal breadth (72). Modern human data obtained in the Hamann-Todd collection (CMNH). Neandertal and modern human data for “Capitate MC2/MC3 facet angle” from Niewoehner et al. (71). Neandertal sample composed of La Ferrassie 1 and 2, La Chapelle-aux-Saints 1, Kebara 2, Regourdou 1, Shanidar 3, 4 and 7, Tabun C1, Amud 1, Krapina 200, 202. 202.1, 202.2, 203.1, 203.2, 203.3, and 203.4, Kiik-Koba.

3.5- PELVIC GIRDLE

Inventory and sex attribution. The pelvic sample is currently composed of 156 isolated fragments (os coxae, sacrum and coccyx), representing a minimum number of 49 elements (MNE=49) from at least 17 individuals (MNI=17). Specimens with signs of incomplete ossification of the os coxae, sacrum and coccygeal vertebrae have been considered as subadult elements/individuals. The os coxae has been classified as adult when showing complete fusion of the iliac crest and/or ischial tuberosity epiphyses (some traces of recent fusion could be still visible). The sacrum is considered adult when fusion of the sacroiliac epiphysis and union of the sacral bodies are complete (S1- S2 joint could show partial obliteration). Coccygeal vertebrae are considered to be adult when the ossification of the vertebral body and of the cornua and annular rings (first coccygeal vertebra) is complete. According to these criteria, 10 out of 17 individuals are osteologically immature, while five of them possessed fully developed pelves. The remaining two individuals are represented by more fragmentary remains and they were close to or already had fully mature pelves.

As previously described, the SH pelvic sample shows a certain degree of variation in modern sex-linked morphological features (4, 5). Those morphological features consistent with the male-like condition include larger size and robust muscle attachments, a narrow greater sciatic notch, absence of ventral arc and subpubic concavity and a broad flat surface of the medial aspect of the ischio-pubic ramus. In contrast, modern female-like morphology is characterized by smaller size and lower robusticity, a wider sciatic notch, development of the ventral rampart, presence of a moderate subpubic concavity, a mediolaterally (M-L) larger pubic body, acute medial aspect of the lower pubic ramus and a wider subpubic angle. Relying on this pattern of variation, three adult individuals have been considered to be males (including the almost complete articulated Pelvis 1, the partially complete Pelvis 2 and Coxal IV) and another three individuals are likely females [one adult -Coxal III- and two subadult individuals, one of them (Coxal I) had just reached full ossification of the acetabulum and the other one (Coxal V) shows a mature acetabulum but non-fused iliac crest epiphysis].

Ontogeny of pelvic traits. The appearance of several of the morphological pelvic features figured in Table S9 can be traced through development in the SH sample. Immature individuals [both with unfused and actively fusing epiphyses of the anterior inferior iliac spine (AIIS) and triradiate cartilage] shows an AIIS orientation and iliopsoas groove configuration similar to the variation found in their fully adult counterparts. Another set of features, including the development of the supraacetabular sulcus and the acetabulospinous and acetabulocristal buttresses and the morphology of the superior pubis ramus are established at different ontogenetic stages, reaching the fully adult morphology between the end of adolescence (fusion of iliac and ischial tuberosities) and the attainment of bony maturity (complete epiphyseal ossification).

SH sample vs MH sample comparison. SH metrical data are compared with a pooled- sex MH sample (Table S18). We are aware of the potential for a sex bias in the SH composition that could be hampering the significance of this comparison. Moreover, SH mean values for the selected pelvic variables include individuals attributed to males, females and individuals of indeterminate sex. In most cases the individuals contributing to the SH mean value for each variable produced unbalanced sex samples. To account for potential statistical differences influenced by the SH sex composition, we have also compared differences between male and female modern samples and SH using the Mann-Whitney U-test.

Compared to modern males, the SH sample is significantly different (p<0.05) in the maximum coxal height, in the maximum iliac breadth and the nonarticular pubic length (both at the p<0.017 level) and in the iliac height, the nonarticular ischial length, the superior pubic ramus height and the maximum sacral breadth (all at the p<0.01 level). On the other hand, the sacral length, the cotylosciatic breadth and the acetabular vertical diameter do not reach statistical significance. Compared to females, the SH sample is significantly different in the sacral length at the p<0.05 level, in the maximum iliac breadth, the nonarticular pubic length and the cotylosciatic breadth, all at the p<0.017 level, and for the remaining variables figured in Table S18 at the p<0.01 level. The superior pubic ramus height does not reach statistical significance.

In summary, it is important to point out that: i) the vertical acetabular diameter and the sacral length in the SH sample are statistically different from both the pooled-sex and female modern human samples, but not the male sample; ii) the superior pubic ramus height is different from both the pooled-sex and male modern human samples, but not the female sample; iii) the cotylosciatic breadth is only different from the female modern human sample; iv) the remaining variables offer similar results when SH is compared to male, female and pooled-sex modern samples. Therefore, the results of the comparisons between SH and modern humans are quite consistent despite the potentially unbalanced sex ratio of the SH sample.

SH sample vs. Neandertal sample comparison. Significant differences found between the iliac height of the SH and Neandertal samples could be affected by the fragmentary preservation of the ilium of several of the Neandertal specimens included in the analysis (Krapina 207, Neandertal 1 and Amud 1). This state of preservation likely results in a slight underestimation of the Neandertal mean value (Table S18).

Table S18. Measurements of the SH pelvis compared with Neandertals and moder humans SH Modern humans Neandertals Variable Mean SD Mean SD n Mean SD n n NMI Range Range Range Maximum coxal 229.1 12.7 204.5** 12.3 390 202.0 22.0 4 3 3 height (13) 215.1-240.0 166.0-239.0 178.4-221.5 Maximum iliac 178.6 - 154.4† 8.0 357 - 2 2 breadth (13) 176.3-180.8 130.0-185.0 140.1 2.0 121.6** 7.0 384 124.0* 10.4 5 Iliac height (13) 3 3 138.7-142.4 97.8-143.6 111.3-134.5 Nonarticular ischial 53.5 5.1 46.1** 4.1 398 46.0 6.9 7 8 6 length (73) 45.1-60.9 34.2-56.1 37.2-54.5 Nonarticular pubic 87.3 - 68.1† 4.5 354 86.0 6.0 6 2 2 length (13) 83.9-90.7 54.6-81.0 78.7-93.0 Superior pubic 10.4 0.3 12.6* 2.1 73 8.0** 1.3 7 4 3 ramus height (68) 10.0-10.7 8.0-18.0 5.7-9.4 Cotylosciatic 35.7 1.8 35.3 3.5 407 33.0 4.2 12 7 6 breadth (74) 32.6-38.4 26.9-45.5 27.9-39.9 Vertical acetabular 56.7 3.6 52.7** 3.8 399 56.2 6.4 9 7 7 diameter (13) 50.0-60.0 41.7-62.0 41.0-62.0 Maximum sacral 125.0 2.8 113.7** 7.5 75 112.4† 7.7 6 breadth (See 5 5 footnote) 121.1-128.5 93.6-132.9 103.4-122.4 Sacral length, 117.7 - 106.2* 8.5 75 107.7 5.8 3 2 2 straight (75) 116.5-118.9 77.7-130.1 102.0-113.6

SD = standard deviation; n =sample size; MNI= minimum number of SH individuals represented by each variable. Variables in mm. SH data is based on specimens showing mature morphology of the region involved in each variable. Modern human data (pooled-sex sample) from the Instituto de Antropologia de la Universidade de Coimbra, except “Superior pubic ramus height” data (pers. comm. Yoel Rak). Regarding the sacrum, only individuals with five vertebrae have been included in the analysis. Neandertal sample composed of Krapina 207 Cx 1, 208 Cx 2, 209+212 Cx 3/6, 255.7, 255.10, La Chapelle-aux-Saints 1, La Ferrassie 1, Neandertal 1, Regourdou 1, Subalyuk 1, Amud 1, Kebara 2, Shanidar 1, Shanidar 3, Tabun C1. Definition of the variable in parenthesis, except “Maximum sacral breadth: transverse breadth taken between the most lateral points of the sacral wings”. A Mann-Whitney’s U-test has been performed between the SH and modern humans and SH and Neandertal samples. Significantly different values have been respectively indicated on the modern human and Neandertal means using *=p<0.05; **=p<0.01. Applying the Dunn-Šidák correction for multiple comparisons [1 - (1 - α)1/n] with an α=0.05 and three groups(n) threshold value for significance is 0.017 and is indicated using †.

Figure S9. Morphological traits of the SH innominate bones. Lateral (a), medial (b), dorsal (c) and ventral (d) views of AT-1000 hip bone (Pelvis 1). Ventral view (e) of AT- 1006 pubis. Lateral view (f) of AT-3497+AT-3813+AT-3814 pubis. 1-Supraacetabular sulcus. 2- Sigmoid shape with anteriorly projected anterior superior iliac spine (ASIS) and AIIS. 3-Distinct acetabulospinous pillar. 4-Large and prominent iliac tuberosity and well-delimited postauricular sulcus. 5- Marked lateral iliac flaring, strongly developed acetabulocristal pillar and robust iliac tubercle (relative to H.sapiens). 6-Dorsolaterally facing ischial tuberosity. 7-Moderately to strongly twisted AIIS. 8-Deep iliopsoas groove that excavates to the medial surface of the AIIS. 9-Flat to slightly concave pectineal surface with a thin and prominent crest. 10-Rectangular plate-like morphology of the superior pubic ramus.

Figure S10. Morphological traits of the SH sacra. Superior (a), ventral (b) and dorsal (c) views of AT-1005 sacrum. 1-Distinct dorsal alar tubercle. 2-Auricular surface caudally extended from the S2 caudal edge to mid-S3. 3-Junction between the bodies of the S1-S2 vertebrae with incomplete fusion and “second promontory” morphology. 4- Presence of intermediate dorsal crest. 5-Well-developed sacral tuberosity with at least two fossae for sacroiliac ligaments. See also Fig. S8 of Bonmatí et al. (5).

3.6-LOWER LIMB BONES

Linea aspera. The linea aspera is frequently elevated by an underlying bony ridge or pilaster resulting in a prismatic, cross-sectional configuration. A prominent linea aspera is not always accompanied by a well-developed pilaster (76). According to Trinkaus and Ruff (77) all of the late they studied have cross-sections which are subcircular to ovoid, with varying degrees of development of the linea aspera, but none of them exhibits either a concavity adjacent to the linea aspera associated with a pilaster or a flatness of the bone adjacent to the linea aspera producing a blunt angle across the posterior margin of the cross-section. Although in the SH sample there are varying degrees of development of the linea aspera, none of the SH specimens have a clear pilaster sensu Homo sapiens.

The neck-shaft angle. The neck-shaft angles of SH femora are well within modern human variation, but the sample is, on average, below many recent human sample means (for example, only 6% of individuals in our modern sample are below 115 degrees).

Table S19. Measurements of the SH adult lower limb bones SH Anatomical Variable Pooled-sex Males Females region Mean SD n Mean SD n Mean SD n Femur Neck length index - 10.5 0.3 3 - Midshaft index - 92.2 5.8 4 - Trochanteric index 75.4 8.3 4 81.0 - 2 69.8 - 2 Curvature index - 4.1 0.3 3 - (M31) Bicondylar angle - 78.6 2.1 3 - (M30) Neck angle (M29) 112.8 4.0 5 113.7 4.0 3 111.5 - 2 Tibia Tuberosity projection/retroversion 43.6 3.6 7 45.1 2.6 5 39.9 - 2 tibial fossa Midshaft index 70.7 6.9 7 68.5 7.0 5 76.1 - 2 Proximal shaft index 65.9 5.4 6 65.6 60.5 5 67.2 - 1

SD = standard deviation; n = sample size. “Neck angle” in degrees. Definition of the variables from Martin and Saller-M (3), McHenry and Corruccini-MC (78) and Trinkaus and Rhoads (52) (see Figure S11 for further details). Femur: Neck length index: MC7/MC11×100; Midshaft index: MC15/MC14×100; Trochanteric index: MC5/MC4×100. Tibia: Midshaft index: M8/M9×100. Proximal shaft index: M8a/M9a×100. Sexual diagnosis of SH lower limb bones following Carretero et al. (2).

Table S20. Measurements of the SH immature lower limb bones SH Anatomical Variable Juvenile I Juvenile II region Mean SD n Mean SD n Femur Neck length index(*) 14.9 1.4 4 - Midshaft index 102.7 4.7 12 100.9 5.3 3 Trochanteric index - - Curvature index (M31) 2.6 0.8 4 2.1 - 1 Bicondylar angle (M30) 69.6 4.8 5 75 - 1 Neck angle (M29) 121.7 3.1 8 119 6.6 3 Tibia Tuberosity projection/retroversion - - tibial fossa Midshaft index 78.8 - 1 - Proximal shaft index 74.2 - 1 -

See Table S19 for further details. Juveniles I: traces of epiphyseal fusion in the extremities. Juveniles II: epiphyses are fusing or already fused. No comparative data is presented for these age groups because equivalent measurements are not available in the fossil record. (*) “Neck length” in juvenile individuals was measured as the length from the edge of the proximal metaphysis in posterior view to the intertrochanteric crest.

Table S21. Measurements of the Neandertal lower limb bones Neandertals Anatomical Variable Pooled-sex Males Females region Mean SD n Mean SD n Mean SD n Femur Neck length index 12.0 1.4 6 12.4 1.1 5 9.8 - 1 Midshaft index 99.6 11.1 19 93.7 10.2 9 108.9 12.5 3 Trochanteric index 79.1 6.7 19 79.9 7.4 13 76.4 4.2 5 Curvature index - - - (M31) Bicondylar angle 83.3 1.5 3 84 - 2 82 - 1 (M30) Neck angle (M29) 118.6 5.0 8 116.3 3.1 6 125.5 - 2 Tibia Tuberosity projection/retroversio 44.1 5.9 7 47.4 1.9 5 36.0 - 2 n tibial fossa Midshaft index 69.7 4.1 4 68.2 3.2 3 74.4 - 1 Proximal shaft index 73.6 8.4 4 69.4 1.2 3 86.1 - 1

See Table S19 for further details. Neandertal sample: Femur: Amud 1, Fond-de-Forêt, La Chapelle-aux-Saints 1, La Ferrassie 1 and 2, La Quina H5, Neandertal 1, Shanidar 1, 4, 5 and 6, Spy 2, Tabun C1. Tibia: Kiik-Koba 1, La Chapelle-aux-Saints 1, La Ferrassie 2, Spy 2.

Table S22. Measurements of the modern human lower limb bones Modern humans Anatomical Variable Pooled-sex Males Females region Mean SD n Mean SD n Mean SD n Femur Neck length index 7.9 1.5 411 7.9 1.4 255 7.8 1.5 155 Midshaft index 95.8 9.2 416 95.9 9.4 258 95.5 8.7 157 Trochanteric index 87.3 12.3 416 86.2 7.0 98 85.8 8.0 158 Curvature index 2.8 1.0 133 2.7 0.9 85 3.0 1.2 48 (M31) Bicondylar angle 81.4 3.3 108 81.2 3.1 98 80.6 3.1 66 (M30) Neck angle (M29) 125.7 7.0 150 126.0 6.6 91 125.2 7.6 59 Tibia Tuberosity projection/retroversion 37.8 4.0 187 37.7 3.8 114 37.9 3.8 73 tibial fossa Midshaft index 79.4 8.8 381 78.7 9.1 203 80.3 8.6 178 Proximal shaft index 76.4 7.5 386 75.4 7.0 203 77.4 8.0 183

See Table S19 for further details. Modern human data from the Hamann-Todd collection, and University of Burgos collection as well as the Natural History Museum of Lisboa and the Instituto de Antropologia de la Universidade de Coimbra.

Figure S11. Graphic representation of femur measurements. Numbers refer to definition of the variable from Martin and Saller (3) (M) and McHenry and Corruccini (78) (MC).

Figure S12. Adult (TIB-XII, left) and subadult (TIB-II, right) tibia specimens showing the posterior position of the plateau relative to the diaphyseal anatomical axis, the retroversion angle and the curvature variation.

3.7- FOOT

Table S23. Measurements of the SH foot bones compared with Neandertals and modern humans SH Modern humans Neandertals Anatomical Variable Mea region Mean SD n Mean SD n SD n n Talus Talar length (M1) 51.9 3.5 18 52.8 4.0 162 51.2 3.5 21 Lateral malleolar 13.2 2.0 20 9.4 2.2 112 10.7 2.5 24 breadth (M7a) Length of the head 30.4 2.2 18 32.5 2.9 161 34.7 3.4 23 (M9) Trochlear height 9.1 1.0 18 8.4 1.0 162 9.5 1.3 22 (M6) Calcaneus Calcaneus breadth 44.6 3.0 14 40.0 3.7 164 44.2 3.6 14 (M2) Breadth of sustentaculum tali 17.6 2.4 14 14.2 2.6 114 15..3 3.6 14 (M6) Second Total length (M2) 78.7 2.9 4 73.3 4.8 153 72.5 5.5 14 metatarsal Proximal articular 13.3 0.5 5 13.3 1.2 153 15.0 2.0 13 breadth (M6b) Fourth Total length (M2) 70.3 - 2 70.3 4.9 147 67.9 6.0 14 metatarsal Proximal breadth 14.8 0.4 4 13.2 1.3 151 15.3 1.0 12 (M6a) Proximal Maximum length 34.0 1.4 7 35.0 2.9 244 27.6 3.9 23 Phalanx I (M1) Breadth of diaphysis 14.0 1.6 8 12.1 1.6 244 13.1 1.7 22 (M2) Distal Phalanx I Breadth of the distal 14.6 2.1 8 11.8 1.6 169 14.9 2.7 10 tuberosity (M2b)

Variables in mm. Data from Pablos et al. (53, 56, 57) and present study. Definition of the variable from Martin and Saller-M (3) and Bräuer (10). Modern human data from the Hamann-Todd collection. Neandertal sample: Talus: Amud 1, Kiik-Koba 1 (right and left), Krapina 235, 236, 237, 238.1, 238.2+238.7, 238.4, 239.1, 239.2, La Chapelle- aux-Saints 1, La Ferrassie 1 and 2 (right and left), La Quina H1 (right and left), Regourdou 1 (right and left), Shanidar 1 and 3 (right and left), Spy 2, Tabun C1 (right and left). Calcaneus: Amud 1, Kiik-Koba 1 (right and left), Krapina 240, La Chapelle- aux-Saints 1, La Ferrassie 1 and 2 (right and left), Regourdou 1 and 2, Shanidar 1 (right and left), Shanidar 3, Spy 2, Tabun C1. Metatarsal II: Amud 1 (right and left), Kiik- Koba 1 (right and left), La Ferrassie 1 and 2 (right and left), Sedia del Diavolo 2, Shanidar 1, 3 and 6 (right and left), Shanidar 4 left, Sima de las Palomas 92, Spy 2, Subalyuk 1, Tabun C1 (right and left). Metatarsal IV: Kebara 9, Krapina 248.1, 248.2, 248.3, La Chapelle-aux-Saints 1, La Ferrassie 1 (left) and 2 (right and left), Regourdou 1, Shanidar 1 (right), 6 (right) and 8 (right and left), Sima de las Palomas 92, Subalyuk 1 (right and left), Tabun C1. Proximal Phalanx I: Combe Grenal 845, Kebara 10, Kiik- Koba I (right and left), Krapina 252.2, 252.3, 252.4, La Ferrassie 2, Shanidar 1, 4, 6 and 8, Regourdou 1 (right and left). 4- OF THE BODY IN THE GENUS HOMO

Table S24. Material and data for the analysis of the evolution of the body in the genus Homo Sample Specimen FML ACHFHD BIB Reference KNM-ER 3228 55.5 46.3# 35, this study Early KNM-ER 1472 401 79 Pleistocene KNM-ER 1481 396 44.0 79 Homo 1 KNM-ER 3728 390 79 (2.0-1.8 Myrs) Dmanisi 4167 386 40.0 80 KNM-ER 737 420 79 KNM-ER 1808 480 79 79, S. Simpson KNM-WT 15000 255.0- and S. 432 Early (Immature) 266.0 Spurlock, pers. Pleistocene com. Homo 2 KNM-WT 15000 S. Simpson and (1.7-0.8 Myrs) (Adult 300.0 S. Spurlock, estimation) pers. com. BSN49/P27 41.0 32.6# 288.0 34 375- OH 34 395 81 OH 28 450 47.6 79, this study KNM-ER 999 482 82, 83 Zhouk Fem 1 400 44 Zhouk Fem 4 407 44 Non-SH Berg Aukas 56.4 7 middle Arago 44 60.6 51.2# This study Pleistocene Broken Hill 689 49.5 6 Homo Broken Hill 719 60.1 50.7# This study Broken Hill 907 52.5 6 Jinniushan 1 60.0 50.6# 344.0 33 Le prince 1 59.0 49.7# 39 Femur IV 46.5 84 Femur V 46.5 84 Femur X 458 52.8 2, this study Femur XI 41.8 This study Sima de los Femur XII 450 49.0 2, this study Huesos Femur XIII 450 48.3 2, this study Femur XVI 41.2 This study Pelvis 1 335.0 5 Pelvis 2 338.4 This study Amud 1 (L) 484 57.1 47.9# 38, this study Kebara 2 (R) 59 48.0# 313.0 6, this study La Chapelle-aux- 292.0 Neandertals Saints 1 (R) 430 52.1 6, 85,86 La Ferrassie 1 (R) 56.0 44 La Ferrassie 1 465 44 (L) Neandertal 1 (L) 444 52.0 44 Shanidar 1 (R) 461 29 Spy 2 (R) 425 53.0 44 La Ferrassie 2 (L) 411 46.0 44 44, 68, This Tabun C1 (R) 260.0 416 40.0 study Sima de las Palomas 96 (R) 391.5 43.0 87 Krapina 207 54.3 45.2# This study Krapina 208 55.5 46.3# This study Krapina 209 54.9 45.8# This study Krapina 213 52.7 6 Krapina 214 44.2 6 Mean 434.6 45.0 262.0 SD 28.2 4.0 15.5 Modern Max 488 54.56 306.0 Humans Min 380.6 38.27 220.0 n 67 67 255

FML = femoral maximum length; ACH = acetabular height; FHD = femoral head diameter; BIB = Bi-iliac breadth #FHD calculated from vertical acetabular diameter following Ruff (36). Modern human sample comes from Hamann-Todd and University of Iowa (Femoral maximum length and head diameter) and Coimbra (Bi-iliac breadth). See also Table S25.

5- MATERIALS EXAMINED IN THIS STUDY

Table S25. Comparative material used in this study Specimen/sample Source Additional references Modern humans Hamann-Todd Osteological O collection: Euroamericans Hamann-Todd Osteological O collection: Afroamericans University of Burgos: O Osteological collection: Europeans University of Iowa O Osteological collection: Euroamericans Instituto de Antropologia O de la Universidade de Coimbra: Europeans Natural History Museum O Lisboa: Europeans Pecos B 6 Neandertals Amud 1 O. C. B 6, 38, 88 Combe Grenal 845 B 89 Dederiyeh 8906 B 90 Kebara 2 and 9 O. C. B 6, 50, 59, 91-93 Kiik-Koba 1 C 88, 94 Krapina sample O. C. B 6, 88, 95-98 La Chapelle-aux-Saints 1 O 6, 20, 85, 86, 99 La Ferrassie 1 and 2 O. C 20, 44, 100, 101 La Quina H1 and H5 C. B 88, 102 Le Moustier 1 C 17 Moros de Gabasa O. B 103 1 O. C. B 6, 44 Regourdou 1 and 2 O. B 20, 42, 104-106 Sedia del Diavolo 2 B 107 Shanidar 1, 2, 3, 4, 5, 6 and O. C. B 6, 29, 60, 66, 88, 95, 108-110 8 Sima de las Palomas 92 B 87, 111 and 96 Spy 2 and isolated C. B 6, 44, 88, 112 elements Subalyuk 1 B. C 113 Tabun C1 O. B 6, 44, 61, 68, 114, 115 Early Modern Humans Qafzeh 7, 8, 9 B 105 Skhul IV, V, VII B 68 European early Pleistocene Homo Homo antecessor-TD6 O 21, 27, 31, 56, 67 European middle Pleistocene Homo Arago 44 C. B 40, 116 Grotte du Prince B 39 Vilafamés 1 and 2 O. C. B 117 Asian middle Pleistocene Homo Jinniushan B 33, 55, 118 B 44 African middle Pleistocene Homo Berg Aukas B 7 Broken Hill (E-691. E.719. O. B 6, 25, 45, 119 E-898 ) OH 28 C. B 116, 120 African and Asian early Pleistocene Homo BSN49/P27 B 34 D4167 B 80 KNM-ER 737 B 79 KNM-ER 813A C 121 KNM-ER 1464 C 121 KNM-ER 999 B 82, 83 KNM-ER 1472 B 79 KNM-ER 1476a C 121 KNM-ER 1481 B 79 KNM-ER 1808 B 79 KNM-ER 3228 C. B 35, 43 KNM-WT 15000 C. B 36, 122, S. Simpson and S. Spurlock, pers. com. OH 34 B 78 SK-853 B 64

O = original; C = cast; B=bibliography

References of the supporting information

1. Sjøvold T (1990) Estimation of stature from long bones utilizing the line of organic correlation. Hum Evol 5(5):431–447. 2. Carretero JM, et al. (2012) Stature estimation from complete long bones in the Middle Pleistocene humans from the Sima de los Huesos, Sierra de Atapuerca (Spain). J Hum Evol 62(2):242–255. 3. Martin R, Saller K (1957) Lehrbuch der Anthropologie (Gustav Fisher, Stuttgart). 4. Arsuaga JL, et al. (1999) A complete human pelvis from the Middle Pleistocene of Spain. Nature 399(6733):255–258. 5. Bonmatí A, et al. (2010) Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain. Proc Natl Acad Sci USA 107(43):18386–18391. 6. Ruff CB, Trinkaus E, Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387(6629):173–176. 7. Grine FE, Jungers WL, Tobias PV, Pearson OM (1995) Fossil Homo from Berg Aukas, northern . Am J Phys Anthropol 97(2):151–185. 8. Auerbach BM, Ruff CB (2004) Human body mass estimation: A comparison of "Morphometric" and "Mechanical" methods. Am J Phys Anthropol 125(4):331– 342. 9. Etxeberria J (2007) Cuadernos de Estadística. eds Etxeberria J & Tejedor FJ (La Muralla, Madrid), Vol 4. 10. Bräuer G (1988) Osteometrie. Anthropologie. Handbuch der vergleichenden Biologie des menschen, eds Martin R & Knuβman R (Gustav Fisher, Stuttgart), Vol 1, pp 160–232. 11. Carretero JM, Arsuaga JL, Lorenzo C (1997) Clavicles, scapulae and humeri from the Sima de los Huesos site (Sierra de Atapuerca, Spain). J Hum Evol 33(2- 3):357–408. 12. McHenry HM, Corruccini RS, Howell FC (1976) Analysis of an early hominid ulna from the Omo basin, Ethiopia. Am J Phys Anthropol 44(2):295–304. 13. Genovés S (1959) Diferencias sexuales en el hueso coxal. Ph.D. (Universidad Nacional Autónoma de México). 14. Arsuaga JL, et al. (1997) Size variation in Middle Pleistocene humans. Science 277(5329):1086–1088. 15. Lorenzo C, Carretero JM, Arsuaga JL, Gracia A, Martínez I (1998) Intrapopulational body size variation and cranial capacity variation in Middle Pleistocene Humans: The Sima de los Huesos sample (Sierra de Atapuerca, Spain). Am J Phys Anthropol 106(1):19–33. 16. Martin RD (1990) Primate origins and evolution (Princeton University Press, Princeton). 17. Arsuaga JL, et al. (2014) Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science 344(6190):1358–1363. 18. Gómez-Olivencia A, et al. (2007) Metric and morphological study of the upper cervical spine from the Sima de los Huesos site (Sierra de Atapuerca, Burgos, Spain). J Hum Evol 53(1):6–25. 19. Gómez-Olivencia A (2009) Estudios paleobiológicos sobre la columna vertebral y la caja torácica de los humanos fósiles del Pleistoceno, con especial referencia a los fósiles de la Sierra de Atapuerca. Ph.D. (Universidad de Burgos, Burgos). 20. Gómez-Olivencia A, Been E, Arsuaga JL, Stock JT (2013) The Neandertal vertebral column 1: The cervical spine. J Hum Evol 64(6):608–630. 21. Carretero JM, Lorenzo C, Arsuaga JL (1999) Axial and appendicular skeleton of Homo antecessor. J Hum Evol 37(3–4):459–499. 22. Been E, Gómez-Olivencia A, Kramer PA (2012) Lumbar lordosis of extinct hominins. Am J Phys Anthropol 147(1):64–77. 23. Been E, Peleg S, Marom A, Barash A (2010) Morphology and function of the lumbar spine of the Kebara 2 Neandertal. Am J Phys Anthropol 142(4):549–557. 24. Weaver TD (2009) The meaning of Neandertal skeletal morphology. Proc Natl Acad Sci USA 106(38):16028–16033. 25. Carretero JM (1994) Estudio del esqueleto de las dos cinturas y el miembro superior de los homínidos de la Sima de los Huesos, Sierra de Atapuerca, Burgos. Ph.D. (Universidad Complutense de Madrid, Madrid). 26. Voisin J-L (2001) Évolution de la morphologie claviculaire au sein du genre Homo. Conséquences architecturales et fonctionnelles sur la ceinture scapulaire. L'Anthropologie 105(4):449–468. 27. Bermúdez de Castro JM, et al. (2012) Early pleistocene human humeri from the Gran Dolina-TD6 site (Sierra de Atapuerca, Spain). Am J Phys Anthropol 147(4):604–617. 28. Trinkaus E, Churchill SE (1988) Neandertal radial tuberosity orientation. Am J Phys Anthropol 75(1):15–21. 29. Trinkaus E (1983) The Shanidar Neandertals (Academic Press, New York). 30. Aiello L, Dean C (1990) An introduction to Human Evolutionary Anatomy. (Academic Press, London). 31. Lorenzo C, Arsuaga JL, Carretero JM (1999) Hand and foot remains from the Gran Dolina Early Pleistocene site (Sierra de Atapuerca, Spain). J Hum Evol 37(3- 4):501–522. 32. Lorenzo C (2007) Evolución de la en los homínidos. Análisis morfológico de los fósiles de la Sierra de Atapuerca. Ph.D. (Universidad Complutense de Madrid, Madrid). 33. Rosenberg KR, Zuné L, Ruff CB (2006) Body size, body proportions, and encephalization in a Middle Pleistocene archaic human from northern China. Proc Natl Acad Sci USA 103(10):3552–3556. 34. Simpson SW, et al. (2008) A Female Pelvis from Gona, Ethiopia. Science 322(5904):1089–1092. 35. Ruff C (2010) Body size and body shape in early hominins - implications of the Gona Pelvis. J Hum Evol 58(2):166–178. 36. Brown F, Harris J, Leakey R, Walker A (1985) Early Homo erectus skeleton from west Lake Turkana, . Nature 316(6031):788–792. 37. Weaver TD (2002) A multi-causal functional analysis of hominid hip morphology. Ph.D. (Stanford University, Palo Alto, CA). 38. Endo B, Kimura T (1970) Postcranial skeleton of the Amud Man. The Amud Man and his Site, eds Suzuki H & Takai F (University of Tokyo. Academic Press of , Tokyo), pp 231–406. 39. de Lumley M-A (1972) L'os iliaque anténéandertalien de la Grotte du Prince (Grimaldi, Ligurie italienne). Bull Mus Anthropol Préhist Monaco 18:89–112. 40. Sigmon BA (1982) Comparative morphology of the locomotor skeleton of Homo erectus and the other fossil hominids, with special reference to the Tautavel innominate and femora. 1er Congrès International de Paléontologie Humaine, Nice L´Homo erectus et la place de l'Homme de Tautavel parmi les Hominidés fossiles, (CNRS, Nice), pp 422–446. 41. Bonmatí A, Arsuaga JL (2007) The Innominate Bone Sample from Krapina. Periodicum Biol 109(4):335–361. 42. Meyer V, Bruzek J, Couture C, Madelaine S, Maureille B (2011) Un noveau bassin Neandertalien: description morphologique des restes pelviens de Regourdou 1 (Montignac, Dordogne, France). Paleo 22:207–222. 43. Rose MD (1984) A hominine hip-bone, KNM-ER 3228, from East Lake Turkana, Kenya. Am J Phys Anthropol 63(4):371–378. 44. Heim JL (1982) Les Hommes Fossiles de La Ferrassie. Tome II. Les Squelettes adultes (squelette des membres) (Masson, Paris). 45. Stringer CB (1986) Archaic character in the Broken Hill innominate E. 719. Am J Phys Anthropol 71(1):115–120. 46. Trinkaus E (1976) The morphology of European and Southwest Asian Neandertal pubic bones. Am J Phys Anthropol 44(1):95–103. 47. Rosenberg KR (1998) Morphological variation in West Asian postcrania. and modern humans in western Asia, eds Akazawa T, Aoki K, & Bar-Yosef O (Plenum Press, New York), pp 367–379. 48. Rosenberg KR (1988) The functional significance of Neandertal pubic length. Curr Anthropol 29(4):595–617. 49. Trinkaus E (1984) Neandertal pubic morphology and gestation length. Curr Anthropol 25(4):509–514. 50. Duday H, Arensburg B (1991) La pathologie. Le Squelette Moustérien de Kébara 2, eds Bar-Yosef O & Vandermeersch B (CNRS, Paris), pp 179–193. 51. Pilbeam D (2004) The Anthropoid Postcranial Axial Skeleton: Comments on Development, Variation, and Evolution. J Exp zool 302B(3):241–267. 52. Trinkaus E, Rhoads ML (1999) Neandertal knees: power lifters in the Pleistocene? J Hum Evol 37(6):833–859. 53. Pablos A, et al. (2013) Human talus bones from the Middle Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). J Hum Evol 65(1):79– 92. 54. Rhoads JG, Trinkaus E (1977) Morphometrics of the Neandertal talus. Am J Phys Anthropol 46(1):29–43. 55. Lu Z, Meldrum DJ, Huang Y, He J, Sarmiento EE (2011) The Jinniushan hominin pedal skeleton from the late Middle Pleistocene of China. Homo - J Comp Hum Biol 62(6):389–401. 56. Pablos A, et al. (2012) New foot remains from the Gran Dolina-TD6 Early Pleistocene site (Sierra de Atapuerca, Burgos, Spain). J Hum Evol 63(4):610–623. 57. Pablos A, et al. (2014) Human calcanei from the Middle Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). J Hum Evol 76:63-76. 58. Trinkaus E, Svoboda JA, Wojtal P, Fisákova MN, Wilczynski J (2010) Human remains from the Moravian : morphology and taphonomy of additional elements from Dolní Vĕstonice II and Pavlov I. Int J Osteoarchaeol 20(6):645– 669. 59. Gómez-Olivencia A, Eaves-Johnson KL, Franciscus RG, Carretero JM, Arsuaga JL (2009) Kebara 2: new insights regarding the most complete Neandertal thorax. J Hum Evol 57(1):75–90. 60. Franciscus RG, Churchill SE (2002) The costal skeleton of Shanidar 3 and a reappraisal of Neandertal thoracic morphology. J Hum Evol 42(3):303–356. 61. Weinstein KJ (2008) Thoracic morphology in Near Eastern Neandertals and early modern humans compared with recent modern humans from high and low altitudes. J Hum Evol 54(3):287–295. 62. Arensburg B (1991) The vertebral column, thoracic cage and . Le squelette moustérien de Kébara 2, eds Bar-Yosef O & Vandermeersch B (Éditions du CNRS, Paris), pp 113–147. 63. Gehr P, et al. (1981) Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: Wild and domestic mammals. Respir Physiol 44(1):61–86. 64. Latimer B, Ward CV (1993) The thoracic and lumbar vertebrae. The Nariokotome Homo erectus skeleton, eds Walker A & Leakey R (Springer, Berlin), pp 266–293. 65. Robinson JT (1972) Early hominid posture and locomotion (The University of Chicago Press, Chicago). 66. Stewart TD (1962) Neanderthal cervical vertebrae with special attention to the Shanidar Neanderthals from . Bibl primat 1:130–154. 67. Gómez-Olivencia A, et al. (2010) The costal skeleton of Homo antecessor: preliminary results. J Hum Evol 59(6):620–640. 68. McCown TD, Keith A (1939) The of Mount Carmel. The Fossil Human Remains from the Levalloiso-, (Clarendon Press, Oxford), Vol II. 69. Senut B (1981) L'humérus et ses articulations chez les hominidés Plio- Pléistocènes (C.N.R.S., Paris). 70. Maia Neto MA (1957) Estudo osteometrico do antebraço nos portugueses. Contribuiçoes para o Estudo da Antropologia Portuguesa 6(6):141–222. 71. Niewoehner WA, Weaver AH, Trinkaus E (1997) Neandertal capitate-metacarpal articular morphology. Am J Phys Anthropol 103(2):219–233. 72. Musgrave JH (1970) An anatomical study of the hands of Pleistocene and recent man. Ph.D. (University of Cambridge, Cambridge). 73. Arsuaga JL, Carretero JM (1994) Multivariate analysis of the sexual dimorphism of the hip bone in a modern human population and in early hominids. Am J Phys Anthropol 93(2):241–257. 74. Sauter MR, Privat F (1954-55) Sur un nouveau procédé métrique de détermination sexuelle du bassin osseux. Bull Soc Suisse Anthropol Ethnol 31:60– 84. 75. Tague RG (1989) Variation in pelvic size between males and females. Am J Phys Anthropol 80(1):59–71. 76. Pitt MJ (1982) Radiology of the femoral linea aspera-pilaster complex: the track sign. Radiology, 142:66. 77. Trinkaus E, Ruff CB (1999) Diaphyseal Cross-sectional Geometry of Near Eastern Middle Palaeolithic Humans: The Femur. J Archaeol Sci 26(4):409-424. 78. McHenry HM, Corruccini RS (1978) The femur in early . Am J Phys Anthropol 49(4):473–488. 79. Holliday TW (2012) Body size, body shape, and the circumscription of the genus Homo. Curr Anthropol 53(S6):S330-S345. 80. Lordkipanidze D, et al. (2007) Postcranial evidence from early Homo from Dmanisi, . Nature 449(7160):305–310. 81. Haeusler M, McHenry HM (2004) Body proportions of reviewed. J Hum Evol 46(4):433-465. 82. McDougall I, Davies T, Maier R, Rudowski R (1985) Age of the Okote Tuff Complex at Koobi Fora, Kenya. Nature 316(6031):792-794. 83. Geissmann T (1986) Length estimate for KNM-ER 736, a hominid femur from the lower pleistocene of East Africa. Hum Evol 1(6):481-493. 84. Carretero JM, et al. (2004) Los humanos de la Sima de los Huesos (Sierra de Atapuerca) y la evolución del cuerpo en el género Homo. Miscelánea Homenaje a Emiliano Aguirre. Zona Arqueológica 1:120-135. 85. Trinkaus E (2011) The postcranial dimensions of the La Chapelle-aux-Saints 1 Neandertal. Am J Phys Anthropol 145(3):461–468. 86. Boule M (1911-13) L'Homme Fossile de La Chapelle-aux-Saints. Ann de Paléont 6: 111–172; 7: 21–56, 85-192; 8: 1–70. 87. Walker MJ, Ortega J, Parmová K, López MV, Trinkaus E (2011) Morphology, body proportions, and postcranial hypertrophy of a female Neandertal from the Sima de las Palomas, southeastern Spain. Proc Natl Acad Sci USA 108(25):10087– 10091. 88. Trinkaus E (1975) A functional analysis of the Neandertal foot. Ph.D. (University of Pennsylvania, Pennsylvania). 89. Garralda MD, Vandermeersch B (2000) Les Néandertaliens de la grotte de Combe-Grenal (Domme, Dordogne, France). Paleo 12(12):213–259. 90. Akazawa T, et al. (1993) The Neanderthal remains from Dederiyeh Cave, Syria: Interim report. Anthropol Sci 101(4):361–387. 91. Courtaud P (1989) Deux os du pied provenant des niveaux mousteriens de la grotte de Kebara (). Bull Mém Soc Anthrop Paris 1(1–2):45–58. 92. Rak Y, Arensburg B (1987) Kebara 2 neandertal pelvis: first look at a complete inlet. Am J Phys Anthropol 73(2):227–231. 93. Rak Y (1991) The pelvis. Le Squelette Moustérien de Kébara 2, eds Bar-Yosef O & Vandermeersch B (CNRS, Paris), pp 147–156. 94. Bonch-Osmolovski GA (1954) The Skeleton of the Foot and Leg of the Fossil Man from the Cave of Kiik-Koba (Paleolit Kryma. Vol. 3. Acad. Sci. U.S.S.R., Moscow). 95. Gambier D (1981) Etude de l'astragale chez les Neandertaliens. Ph.D. (Universite Pierre et Marie Curie, Paris). 96. Radovčić J, Smith FH, Trinkaus E, Wolpoff MH (1988) The Krapina Hominids. An illustrated catalog of skeletal collection (Croatian Natural History Museum, Mladost, ). 97. Trinkaus E (1975) The Neandertals from Krapina, northern Yugoslavia: An inventory of the lower limb remains. Z Morph Anthropol 67(1):44–59. 98. Trinkaus E (1978) Functional implications of the Krapina Neandertal lower limb remains. Krapinski Praçovjek i Evolucija Hominida, ed Malez M (Jugoslavenska Akademija Znanosti i Umjetnosti, Zagreb), pp 155–192. 99. Gómez-Olivencia A (2013) Back to the old man's back: reassessment of the anatomical determination of the vertebrae of the Neandertal individual of La Chapelle-aux-Saints. Ann de Paléont 99(1):43–65. 100. Gómez-Olivencia A (2013) The presacral spine of the La Ferrassie 1 Neandertal: a revised inventory. Bull Mém Soc Anthropol Paris 25(1–2):19–38. 101. Heim JL (1976) Les Hommes Fossiles de la Ferrassie. Tome I. Le gisement. Les squelettes adultes (crâne et squelette du tronc) (Masson, Paris). 102. Martin H (1923) L'Homme fossile de la Quina (Librairie Octave Doin, Paris). 103. Lorenzo JI, Montes L (2001) Restes néandertaliens de la Grotte de “Los Moros de Gabasa” (Huesca, Espagne). Trabalhos de Arqueologia. Les premiers Hommes modernes de la Péninsule Ibérique. Actes du Colloque de la Commission VIII de l’UISPP, eds Zilhao J, Aubry T, & Carvalho AF (Instituto Portugues de Arqueología, Lisboa), Vol 17, pp 77–86. 104. Gómez-Olivencia A, Couture-Veschambre C, Madelaine S, Maureille B (2013) The vertebral column of the Regourdou 1 Neandertal. J Hum Evol 64(6):582–607. 105. Vandermeersch B (1981) Les hommes fossiles de Qafzeh (Israel) (CNRS, Paris). 106. Vandermeersch B, Trinkaus E (1995) The postcranial remains of the Régourdou 1 Neandertal. The shoulder and remains. J Hum Evol 28(5):439–476. 107. Mallegni F, Busoni CA (1986) Les restes humaines du gisement de Sedia del Diavolo (Rome) remontant au Riss final L'Anthropologie 90(3):539–553. 108. Trinkaus E (1977) An inventory of the Neanderthal remains from , Northern Iraq Sumer 33:9–33. 109. Trinkaus E, Stewart TD (1980) The Shanidar 3 Neanderthal: A fragmentary skeleton from Shanidar Cave, northern Iraq. Sumer 9:9–39. 110. Trinkaus E, Zimmerman MR (1982) Trauma among the Shanidar Neandertals. Am J Phys Anthropol 57(1):61–76. 111. Walker MJ, Ortega J, López MV, Parmová K, Trinkaus E (2011) Neandertal postcranial remains from the Sima de las Palomas del Cabezo Gordo, Murcia, Southeastern Spain. Am J Phys Anthropol 144(4):505–515. 112. Trinkaus E (1978) Les Metatarsiens et les Phalanges du pied des Neandertaliens de Spy. Bull Inst R Sci Nat Belgique 51(7):1–18. 113. Bartucz L (1940) Der urmensch der mussolini-Hohle. Geol Hungarica Series palaeontol 14:47–105. 114. Ponce de León M, et al. (2008) Neanderthal brain size at birth provides insights into the evolution of human life history. Proc Natl Acad Sci USA 105(37):13764– 13768. 115. Weaver TD, Hublin J-J (2009) Neandertal birth canal shape and the evolution of human childbirth. Proc Natl Acad Sci USA 106(20):8151–8156. 116. Day MH (1982) The Homo erectus pelvis: punctuation or gradualism? in 1er Congrès International de Paléontologie Humaine, Nice. L'Homo erectus et la place de l'Homme de Tautavel parmi les hominidés fossiles (CNRS, Nice), pp 411– 421. 117. Arsuaga JL, et al. (2001) Fósiles humanos del Pais Valenciano. De Neandertales a Cromañones, ed Villaverde V (Departamento de Prehistoria i Arqueologia. Universitat de Valencia, Valencia), pp 265–322. 118. Lu Z-E (2003) The Jinniushan Hominid in anatomical, chronological, and cultural context. Current Research in Chinese Pleistocene , eds Shen C & Keates SG (British Archaeological Reports International Series 1179, Oxford), pp 127–136. 119. Trinkaus E (2009) The human tibia from Broken Hill, Kabwe, . PaleoAnthropology 2009:145–165. 120. Day MH (1971) Postcranial remains of Homo erectus from Bed IV, Olduvai Gorge, . Nature 232(5310):383–387. 121. Day MH (1976) Hominid postcranial remains from the East Rudolf sucessión. Earliest Man and environments in the Lake Rudolf Basin, Prehistoric Archaeology and Ecology series, eds Coppens Y, Howell FC, Isaac GL, & Leakey REF (University of Chicago Press, Chicago), pp 507–521. 122. Walker A, Leakey R (1993) The postcranial bones. The Nariokotome Homo erectus skeleton, eds Walker A & Leakey R (Springer, Berlin), pp 95–161.