Bioinorganic Chemistrychemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elucidation of Protein Interactions and the Re-Tuning of Porphyrin Electronics for Hydroxylases
University of South Carolina Scholar Commons Theses and Dissertations 2017 Elucidation Of Protein Interactions And The Re- Tuning Of Porphyrin Electronics For Hydroxylases Steven Charles Ratigan University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Chemistry Commons Recommended Citation Ratigan, S. C.(2017). Elucidation Of Protein Interactions And The Re-Tuning Of Porphyrin Electronics For Hydroxylases. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/4482 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. ELUCIDATION OF PROTEIN INTERACTIONS AND THE RE-TUNING OF PORPHYRIN ELECTRONICS FOR HYDROXYLASES by Steven Charles Ratigan Bachelor of Arts The Citadel, 2005 Bachelor of Science University of South Carolina, 2009 Master of Arts The Citadel, 2012 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Chemistry College of Arts and Sciences University of South Carolina 2017 Accepted by: Thomas Makris, Major Professor F. Wayne Outten, Committee Member John Lavigne, Committee Member Zhengqing Fu, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Steven Charles Ratigan, 2017 All Rights Reserved. ii DEDICATION I dedicate this work to my family, who have always been there for me. Without their support, my time in academia would have been much more difficult. I would also like to thank Dr. David Donnell of The Citadel Dept. of Biology for teaching me everything I know about molecular biology, which proved to be a huge help early on in this program. -
Bioinorganic Chemistry Content
Bioinorganic Chemistry Content 1. What is bioinorganic chemistry? 2. Evolution of elements 3. Elements and molecules of life 4. Phylogeny 5. Metals in biochemistry 6. Ligands in biochemistry 7. Principals of coordination chemistry 8. Properties of bio molecules 9. Biochemistry of main group elements 10. Biochemistry of transition metals 11. Biochemistry of lanthanides and actinides 12. Modell complexes 13. Analytical methods in bioinorganic 14. Applications areas of bioinorganic chemistry "Simplicity is the ultimate sophistication" Leonardo Da Vinci Bioinorganic Chemistry Slide 1 Prof. Dr. Thomas Jüstel Literature • C. Elschenbroich, A. Salzer, Organometallchemie, 2. Auflage, Teubner, 1988 • S.J. Lippard, J.N. Berg, Bioinorganic Chemistry, Spektrum Akademischer Verlag, 1995 • J.E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie – Prinzipien von Struktur und Reaktivität, 3. Auflage, Walter de Gruyter, 2003 • W. Kaim, B. Schwederski: Bioinorganic Chemistry, 4. Auflage, Vieweg-Teubner, 2005 • H. Rauchfuß, Chemische Evolution und der Ursprung des Lebens, Springer, 2005 • A.F. Hollemann, N. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, de Gruyter, 2007 • I. Bertini, H.B. Gray, E.I. Stiefel, J.S. Valentine, Biological Chemistry, University Science Books, 2007 • N. Metzler-Nolte, U. Schatzschneier, Bioinorganic Chemistry: A Practical Course, Walter de Gruyter, 2009 • W. Ternes, Biochemie der Elemente, Springer, 2013 • D. Rabinovich, Bioinorganic Chemistry, Walter de Gruyter, 2020 Bioinorganic Chemistry Slide 2 Prof. Dr. Thomas Jüstel 1. What is Bioinorganic Chemistry? A Highly Interdisciplinary Science at the Verge of Biology, Chemistry, Physics, and Medicine Biochemistry Inorganic Chemistry (Micro)- Physics & Biology Spectroscopy Bioinorganic Chemistry Pharmacy & Medicine & Toxicology Physiology Diagnostics Bioinorganic Chemistry Slide 3 Prof. Dr. Thomas Jüstel 2. Evolution of the Elements Most Abundant Elements in the Universe According to Atomic Fraction Are: 1. -
The Nature of O2 Activation by the Ethylene-Forming Enzyme 1-Aminocyclopropane-1-Carboxylic Acid Oxidase
The nature of O2 activation by the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase Liviu M. Mirica and Judith P. Klinman* Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, CA 94720 Contributed by Judith P. Klinman, December 10, 2007 (sent for review November 15, 2007) Ethylene is a plant hormone important in many aspects of plant studied extensively, and it generally is accepted that O2 activation growth and development such as germination, fruit ripening, and at the iron center is linked to oxidative decarboxylation of the senescence. 1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase ␣KG, ultimately forming an FeIVAO species as the reactive (ACCO), an O2-activating ascorbate-dependent nonheme iron en- intermediate (14–17). This high-valent Fe/O2 species functions zyme, catalyzes the last step in ethylene biosynthesis. The O2 as a ‘‘generic’’ oxidant for a wide range of oxidation/oxygenation activation process by ACCO was investigated using steady-state reactions. kinetics, solvent isotope effects (SIEs), and competitive oxygen In contrast to the ␣KG-dependent enzymes, where ␣KG kinetic isotope effects (18O KIEs) to provide insights into the nature rather than substrate binds to the metal center, spectroscopic of the activated oxygen species formed at the active-site iron studies of ACCO have shown that ACC coordinates to the iron center and its dependence on ascorbic acid. The observed large 18O center via both its amino and carboxylate groups (10, 18).† This -KIE of 1.0215 ؎ 0.0005 strongly supports a rate-determining step finding implies a distinctly different mode for reductant inter formation of an FeIVAO species, which acts as the reactive inter- action with ACCO than for most other nonheme iron enzymes. -
Bioinorganic Chemistry
GENERAL I ARTICLE Coordination Chemistry of Life Processes: Bioinorganic Chemistry R N Mukherjee Many enzymes and proteins have metal ions at their active sites that play key roles in catalysis. An important goal of an interdisciplinary field like bioinorganic chem istry is the development of small inorganic coordination complexes that not only reproduce structural and spec troscopic features, but also function in a manner similar to their natural counterparts. To highlight this burgeon The author is a Professor at the Department of ing field, some selected results on synthetic modelling of Chemistry, liT, Kanpur. (i) the electronic structure of manganese cluster of pho His major research tosystem II and (ii) functional modelling of the dinuclear interests include copper enzyme tyrosinase are described in this article. synthetic modelling of molecular Preamble and electronic structural and functional aspects of A Chakravorty has portrayed the life of Alfred Werner, the inven dinuc1ear iron, manga nese and copper tor of coordination theory, in this issue. Needless to say that containing today's inorganic chemistry research cen tres around Werner's co metalloproteins/enzymes ordination theory. Therefore it would be most appropriate to highlight how the discovery of structure and bonding ofcoordina tion compounds finds its expressi<?n in enriching our understand ing of the inorganic chemistry oflife processes. It is now well known that many inorganic elements and their compounds are essential or beneficial for life on earth. Organic compounds are of course essential, because they provide organ isms with such essential compounds as proteins, nuc1eotides, car bohydrates, vitamins and so forth. Inorganic compounds, particu larly metallic ions and complexes, are essential cofactors in a vari ety of enzymes and proteins. -
Chemistry (CHEM) 1
Chemistry (CHEM) 1 CHEMISTRY (CHEM) GenEd Learning Objective: Key Literacies CHEM 5: Kitchen Chemistry CHEM 1: Molecular Science 3 Credits 3 Credits CHEM 5 Kitchen Chemistry (3) (GN)(BA) CHEM 5 focuses on an Selected concepts and topics designed to give non-science majors an elementary discussion of the chemistry associated with foods and appreciation for how chemistry impacts everyday life. Students who cooking. It incorporates lectures and videos, reading, problem-solving, have received credit for CHEM 3, 101, 130, or 110 may not schedule and "edible"; home experiments to facilitate students' understanding of this course. CHEM 1 is designed for students who want to gain a better chemical concepts and scientific inquiry within the context of food and appreciation of chemistry and how it applies to everyone's everyday cooking. Please note that this is a chemistry class presented in a real life. You are expected to have an interest in understanding the nature of world interactive way, not a cooking class! The course will start from a science, but not necessarily to have any formal training in the sciences. primer on food groups and cooking, proceed to the structures of foods, During the course, you will explore important societal issues that can be and end with studies of the physical and chemical changes observed in better understood knowing some concepts in chemistry. The course is foods. Students will develop an enhanced understanding of the chemical largely descriptive, though occasionally a few simple calculations will principles involved in food products and common cooking techniques. be done to illuminate specific information. -
Zinc Complexes with Nitrogen Donor Ligands As Anticancer Agents
molecules Review Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents Marina Porchia 1,* , Maura Pellei 2,* , Fabio Del Bello 3 and Carlo Santini 2 1 ICMATE-C.N.R., Corso Stati Uniti 4, 35127 Padova, Italy 2 Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy; [email protected] 3 Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; [email protected] * Correspondence: [email protected] (M.P.); [email protected] (M.P.) Academic Editor: Kogularamanan Suntharalingam Received: 7 November 2020; Accepted: 7 December 2020; Published: 9 December 2020 Abstract: The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. -
Chem 120A Fall 2005
Chem 120A Fall 2005 Tuesday & Thursday 8:00 – 9:20 AM Warren Lecture Hall Room 2005 Prof. Karsten Meyer Pacific Hall 4100E 2-4247, [email protected] Office Hours: Mo 10 – 12AM Handouts http://www.inorganic-chemistry.net/ kmpages/courses.html Chem 120A Midterm I: 10/11 (30%) Midterm II: 11/08 (30%) Final Exam: Dec. 6, 2005 @ 8 – 11 AM (40%) 2 hr Review Session Sunday before Midterm Midterm I: 10/9 location & time tba Midterm II: 11/6 location & time tba 1 Chem 120A Fall 2005 PLEASE: • Try to be on time •I know you’re busy,… …but please turn off your cell phones • I know it’s early,… …but please don’t fall asleep (if you have to, don’t sit in the first row) Chem 120A PLEASE: • I know you’re in a rush,… …but if you send me an email, please address me and sign your email • If you do have a question… …please feel free to interrupt me …any time!!! 2 Chem 120A In return, I PROMISE… • I promise I’ll finish on time • I promise I’ll help you to understand • I promise I’ll follow the textbook… …& Solutions Manual… …strictly!!! Chem 120A 3 Miessler & Tarr <Inorganic Chemistry> Brief Contents 9/22 9/27 Mid- Oct. 11 Oct. term I 9/29 + 10/04 10/06 + 10/11 10/18 selected topics 10/20 Mid- Nov. 08 Nov. 10/25 + 10/27 term II 11/01 + 11/03 11/10 11/15 11/17 11/22 11/24 Thanksgiving Final Exam 11/29 + 12/01 Dec. -
ELLIOTT Department of Chemistry - Boston University 590 Commonwealth Ave
SEAN J. ELLIOTT Department of Chemistry - Boston University 590 Commonwealth Ave. - Boston, MA 02215 - (617) 358-2816 - [email protected] Updated 14 November 2013 Research Interests My research is focused on the redox chemistry of bioinorganic proteins and enzymes: multi- electron catalysts, enzymes, and complex metalloproteins such as multi-heme cytochromes c. For the past decade, I have specialized in the use of protein electrochemistry as a means of monitoring biological electron transfer processes coupled to enzymatic chemistry and long- range, extra-cellular ET. My work has spanned the problems of redox reactivity and mechanistic chemistry of peroxidase enzymes, redox regulation and lability of novel [Fe2S2] proteins, and the mechanisms of extra-cellular ET in Shewanella. I have demonstrated the use of protein electrochemistry as a means to probe drug binding at redox proteins, and developing new electrochemical techniques for examining protein-protein interactions. Education 1990-1994 B.A. in Chemistry and English Amherst College summa cum laude, Phi Beta Kappa 1993 Bioinorganic Chemistry University of East Anglia Study Abroad, Norwich, UK 1994-2000 Ph.D. Bioinorganic Chemistry Caltech Division of Chemistry and Chemical Engineering Pasadena, CA Thesis Advisor: Professor Sunney I. Chan 2000 – 2002 EMBO Post-doctoral Fellow University of Oxford Inorganic Chemistry Laboratory Oxford, UK Advisor: Professor Fraser Armstrong, F.R.S. Academic Experience 2002 – 2008 Assistant Professor Boston University Dept. of Chemistry Molecular Biology, Cell Biology & Biochemistry Program 2008 – present Associate Professor with tenure Boston University Dept. of Chemistry, Molecular Biology, Cell Biology & Biochemistry Program Fall 2011 Visiting Associate with Prof. Anthony Sinskey MIT Department of Biology Cambridge, MA Spring 2012 Visiting Associate with Prof. -
Bioinorganic Chemistry a Chemical Perspective on Life What Elements Are Present in Life ?
Bioinorganic Chemistry A Chemical Perspective on Life What elements are present in life ? Which of are considered inorganic ? Humans are :water : fat : protein : mineral 53% : 27% : 16% : 5% http://en.wikipedia.org/wiki/Body_water A.-F. Miller, 2008, pg Origin of life based on metal ions; bioinorganic chemistry as an agent of continuing global chemical change. G. Wächtershäuser (1988) ‘Before Enzymes and Templates: Theory of Surface Metabolism’ Microbiol. Rev. 52: 452-484. Timothy W. Lyons (2008) Science 321: 923-924. Summary: New data change the picture of how the iron, oxygen, and sulfur contents of the ocean evolved. Robert J. Diaz and Rutger Rosenberg (2008) Spreading Dead Zones and Consequences for Marine Ecosystems. Science 321: 926-929. T. R. Kulpet al. (2008) Arsenic(III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California. Science 321: 967-970. A.-F. Miller, 2008, pg 2 Origin of life based on metal ions; bioinorganic chemistry as an agent of continuing global chemical change. ‘Spreading Dead Zones and the Consequences for Marine Ecosystems” A.-F. Miller, 2008, pg 3 Diaz & Rosenberg (2008) Science 321: 926-929 IA Periodic Table 0 http://www.random-science-tools.com/chemistry/periodic_table.htm IIA IIIB IVB VB VIB VIIB IIIA IVA VA VIA VIIA VIII VIII VIII IB IIB A.-F. Miller, 2008, pg 4 Elemental abundance in the earth’s crust: linear scale A.-F. Miller, 2008, pg Elemental abundance in the earth’s crust: log scale A.-F. Miller, 2008, pg 6 Elemental abundance in oceans: linear scale A.-F. Miller, 2008, pg Elemental abundance in oceans: logarithmic scale A.-F. -
An Overview on Ligands of Therapeutically Interest
Pharmacy & Pharmacology International Journal Review Article Open Access An overview on ligands of therapeutically interest Abstract Volume 6 Issue 3 - 2018 The principles governing metal-ligand complex stability and specificity depend on the 1 2 properties of both the metal and the chelating agent. The exploration of coordination Julia Martín, Miguel Ropero Alés, Agustin G 2 chemistry offers the real prospects of providing new understanding of intractable diseases Asuero and of devising novel therapeutics and diagnosis agents. Refinement in the approach to 1Department of Analytical Chemistry, Escuela Politécnica chelator design has come with a more subtle understanding of binding kinetics, catalytic Superior, University of Seville, Spain mechanisms and donor interactions. Ligands that effectively bind metal ions and also include 2Department of Analytical Chemistry, Faculty of Pharmacy, specific features to enhance targeting, reporting, and overall efficacy are driving innovation University of Seville, Spain in areas of disease, diagnosis and therapy. In this contribution the topics of bioinorganic medicinal chemistry, chelating agents in the treatment of metallic ion overload in the body, Correspondence: Julia Martín, Department of Analytical and expanding the notion of chelating agent in medicine are successively dealt with, paying Chemistry, Escuela Politécnica Superior, University of Seville. C/ then attention to platinum, gold, iron, copper and aluminium ion metal complexes having Virgen de África, 7, E–41011 Seville, Spain, Tel +34-9-5455-6250, medicinal interest. A tabular summary containing selected applications of ligands and Email [email protected] complexes of therapeutic interest is also shown to including the most relevant and current Received: March 26, 2018 | Published: May 30 2018 bibliography. -
Here's Your E-Book
Detox Outside the Box 1 Chronic degenerative diseases flood the American healthcare system with sufferers. ln spite of modern medicine's ability to reduce symptoms of many illnesses, their fundamental causes- and cures- still elude traditional practitioners. Because toxic heavy metals are associated with our two biggest challenges, cancer and heart disease (as well as many other severe disease states), the etiology of heavy metal toxicity must be recognized and addressed. Chelation is the answer. A therapy whose time has come, chelation should now be defined and understood as a 21st century modality of choice for removing toxic metals from the body. Some of the world's best known therapies and treatments were not accepted in their early days. For example, acceptance of vitamin C's benefits as a powerful antioxidant took a long time to influence traditional viewpoints. While chelation therapy with EDTA is in its infancy, it will prove as a powerful agent for the removal of toxic heavy metals. I also encourage all clinicians to get on board with this amazing modality. Intravenous chelation has been recognized for decades by the United States Food and Drug Administration as the treatment of choice for lead poisoning. Since intravenous chelation is time consuming and expensive, l've been administering chelation in the form of a suppository, and believe it is a revolutionary advancement. l've seen excellent results for over ten years with thousands of my patients and within the last three years I decided to study calcium disodium EDTA suppositories. I have now published proven results of its safety and efficacy in approved clinical trials. -
Noble Metals in Medicine
Noble Metals in Medicine Transition Metal Complexes as Drugs and Chemotherapeutic Agents BY NICHOLASFARRELL, Kluwer Academic Publishers, Dordrecht, 1989, 291 pages, ISBN 90-277-2828-3, Dfl. 180.00, €59.00 A number of books dealing with the generally having mechanisms of action different biological activity, particularly the therapeutic from that of cisplatin. In some cases metal ions activity, of metal complexes have been publish- are acting by enhancing cellular uptake of ac- ed in recent years. Interest in the field has been tive ligands, a principle which is exemplified promoted by the clinical use of a number of several more times in subsequent chapters deal- precious metal complexes, including platinum ing with anti-bacterial, anti-viral and anti- anti-cancer, gold anti-arthritis and silver anti- arthritic activity. bacterial agents. Now a useful new addition to The utilisation of the redox properties of the literature has been published, somewhat metal compounds is illustrated by a chapter oddly, as Volume I I in the series “Catalysis by devoted to metal ions as mediators of the anti- Metal Complexes”. tumour action of antibiotics such as the In addition to an introduction and appendices bleomycins. Binding of a metal ion, for exam- the book contains 12 chapters, the first six of ple iron(II), to the antibiotic is believed to be which are devoted primarily to the anti-tumour involved in generating activated oxygen species activity of metal complexes, an area to which leading to oxidative cleavage of DNA. the author has made a number of interesting Another chapter discusses the interaction of contributions through his publications on metal complexes with radiation in biological platinum complexes.