Arctium Lappa and A. Tomentosum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N. -
Systematics of the Arctioid Group: Disentangling Arctium and Cousinia (Cardueae, Carduinae)
TAXON 60 (2) • April 2011: 539–554 López-Vinyallonga & al. • Disentangling Arctium and Cousinia TAXONOMY Systematics of the Arctioid group: Disentangling Arctium and Cousinia (Cardueae, Carduinae) Sara López-Vinyallonga, Kostyantyn Romaschenko, Alfonso Susanna & Núria Garcia-Jacas Botanic Institute of Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain Author for correspondence: Sara López-Vinyallonga, [email protected] Abstract We investigated the phylogeny of the Arctioid lineage of the Arctium-Cousinia complex in an attempt to clarify the conflictive generic boundaries of Arctium and Cousinia. The study was based on analyses of one nuclear (ITS) and two chlo- roplastic (trnL-trnT-rps4, rpl32-trnL) DNA regions of 37 species and was complemented with morphological evidence where possible. Based on the results, a broadly redefined monophyletic genus Arctium is proposed. The subgenera Hypacanthodes and Cynaroides are not monophyletic and are suppressed. In contrast, the traditional sectional classification of the genus Cousinia is maintained. The genera Anura, Hypacanthium and Schmalhausenia are reduced to sectional level. Keywords Anura ; Arctium ; Cousinia ; Hypacanthium ; ITS; molecular phylogeny; nomenclature; rpl32-trnL; trnL-trnT-rpS4 ; Schmalhausenia Supplementary Material Appendix 2 is available in the free Electronic Supplement to the online version of this article (http:// www.ingentaconnect.com/content/iapt/tax). INTRODUCTION 1988a,b,c; Davis, 1975; Takhtajan, 1978; Knapp, 1987; Tama- nian, 1999), palynological -
Chloroplast Genome of the Conserved Aster Altaicus Var. Uchiyamae B2015-0044 As Genetic Barcode
Journal154 of Species Research 10(2):154-158, 2021JOURNAL OF SPECIES RESEARCH Vol. 10, No. 2 Chloroplast genome of the conserved Aster altaicus var. uchiyamae B2015-0044 as genetic barcode Minjee Lee1, Jae-Sun Yi2, Jihye Park1 and Jungho Lee1,* 1Green Plant Institute, B301, Heungdeok IT Valley, Yongin 16954, Republic of Korea 2Shingu Botanical Garden, Seongnam 13443, Republic of Korea *Correspondent: [email protected] An endemic endangered species, Aster altaicus var. uchiyamae (Danyang aster) B2015-0044, is cultivated at the Shingu Botanical Garden, which serves as the ex situ conservation institution for this species. In this work, we sequenced the chloroplast genome of A. altaicus var. uchiyamae B2015-0044. We found that the chloroplast (cp) genome of B2015-0044 was 152,457 base pairs (bps) in size: 84,247 bps of large single copy regions (LSC), 25,007 bps of inverted repeats (IRs), and 18,196 bps of small single copy regions. The B2015- 0044 cp genome contains 79 protein-coding genes (PCGs), 4 RNA genes, 29 tRNA genes, and 3 pseudo- genes. These results were identical to a previously reported cp genome (Park et al., 2017), except for two sites in introns and three in intergenic spacer (IGS) regions. For the intronic differences, we found that clpP.i1 had a 1-bp small simple repeat (SSR) (T) and petD.i had a 3-bp SSR (ATT). We found 1-bp SSRs in the IGSs of trnT_ggu~psbD and psbZ~trnG_gcc, C and A, respectively. The IGS of (ndhF)~rpl32 had a SNP. Based on our results, the cp genome of the A. -
Overview of the Anti-Inflammatory Effects, Pharmacokinetic Properties
Acta Pharmacologica Sinica (2018) 39: 787–801 © 2018 CPS and SIMM All rights reserved 1671-4083/18 www.nature.com/aps Review Article Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L Qiong GAO, Mengbi YANG, Zhong ZUO* School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China Abstract Arctigenin (AR) and its glycoside, arctiin, are two major active ingredients of Arctium lappa L (A lappa), a popular medicinal herb and health supplement frequently used in Asia. In the past several decades, bioactive components from A lappa have attracted the attention of researchers due to their promising therapeutic effects. In the current article, we aimed to provide an overview of the pharmacology of AR and arctiin, focusing on their anti-inflammatory effects, pharmacokinetics properties and clinical efficacies. Compared to acrtiin, AR was reported as the most potent bioactive component of A lappa in the majority of studies. AR exhibits potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Due to its potent anti-inflammatory effects, AR may serve as a potential therapeutic compound against both acute inflammation and various chronic diseases. However, pharmacokinetic studies demonstrated the extensive glucuronidation and hydrolysis of AR in liver, intestine and plasma, which might hinder its in vivo and clinical efficacy after oral administration. Based on the reviewed pharmacological and pharmacokinetic characteristics of AR, further pharmacokinetic and pharmacodynamic studies of AR via alternative administration routes are suggested to promote its ability to serve as a therapeutic agent as well as an ideal bioactive marker for A lappa. -
Annex 1. Systematic List of the Plants Identified in Roşia Montană Area
S.C. Roşia Montană Gold Corporation S.A. - Report on Environmental Impact Assessment Study 4.6 Biodiversity Annex 1. Systematic List of the Plants Identified in Roşia Montană Area No. Scientific Name Author Distribution Life span Location Family Genus, Species Phylum BRIOPHYTA Class HEPATOPSIDA Order MARCHANTIALES 1 MARCHANTIALACEAE Marchantia polymorpha L. sporadic perennial moist places Class BRYOPSIDA Order BRYALES 2 Mniaceae Mnium punctatum Hedw. sporadic perennial moist places 3 Mnium ondulatum Hedw. sporadic perennial moist places 4 Brachytheciaceae Brachythecium campestre Mull. sporadic perennial moist places Order HYPNOBRYALES 5 Hypnaceae Hypnum cupressiforme Hedw. sporadic perennial moist places Order BUXBAUMIALES 6 Buxbaumiaceae Buxbaumia aphylla Hedw. sporadic perennial moist places Order POLYTRICHALES 7 Polytrichaceae Polytrichum commune Hedw. sporadic perennial moist places 8 Polytrichum formosum Hedw. sporadic perennial moist places Order DICRANALES 9 Dicranaceae Dicranum scoparium Hedw. sporadic perennial moist places Order FUNARIALES 10 Funariaceae Funaria hygrometrica Hedw. sporadic perennial moist places Phylum PTERIDOPHYTA Class LYCOPODIOPSIDA Order LYCOPODIALES 11 LYCOPODIACEAE Lycopodium selago (L.) Bernh. ex Schrank & sporadic perennial Grassy, moist land, forests, bush, Mart. 12 Lycopodium annotinum L. sporadic perennial Moist places, wetlands, forests. Class EQUISETOPSIDA Order EQUISETALES 13 EQUISETACEAE Equisetum arvense L. frequent perennial Floodplains, sandy places,crop fields 14 Equisetum telmateia Ehrh. -
INTRODUCTION This Check List of the Plants of New Jersey Has Been
INTRODUCTION This Check List of the Plants of New Jersey has been compiled by updating and integrating the catalogs prepared by such authors as Nathaniel Lord Britton (1881 and 1889), Witmer Stone (1911), and Norman Taylor (1915) with such other sources as recently-published local lists, field trip reports of the Torrey Botanical Society and the Philadelphia Botanical Club, the New Jersey Natural Heritage Program’s list of threatened and endangered plants, personal observations in the field and the herbarium, and observations by other competent field botanists. The Check List includes 2,758 species, a botanical diversity that is rather unexpected in a small state like New Jersey. Of these, 1,944 are plants that are (or were) native to the state - still a large number, and one that reflects New Jersey's habitat diversity. The balance are plants that have been introduced from other countries or from other parts of North America. The list could be lengthened by hundreds of species by including non-persistent garden escapes and obscure waifs and ballast plants, many of which have not been seen in New Jersey since the nineteenth century, but it would be misleading to do so. The Check List should include all the plants that are truly native to New Jersey, plus all the introduced species that are naturalized here or for which there are relatively recent records, as well as many introduced plants of very limited occurrence. But no claims are made for the absolute perfection of the list. Plant nomenclature is constantly being revised. Single old species may be split into several new species, or multiple old species may be combined into one. -
Complete List of Literature Cited* Compiled by Franz Stadler
AppendixE Complete list of literature cited* Compiled by Franz Stadler Aa, A.J. van der 1859. Francq Van Berkhey (Johanes Le). Pp. Proceedings of the National Academy of Sciences of the United States 194–201 in: Biographisch Woordenboek der Nederlanden, vol. 6. of America 100: 4649–4654. Van Brederode, Haarlem. Adams, K.L. & Wendel, J.F. 2005. Polyploidy and genome Abdel Aal, M., Bohlmann, F., Sarg, T., El-Domiaty, M. & evolution in plants. Current Opinion in Plant Biology 8: 135– Nordenstam, B. 1988. Oplopane derivatives from Acrisione 141. denticulata. Phytochemistry 27: 2599–2602. Adanson, M. 1757. Histoire naturelle du Sénégal. Bauche, Paris. Abegaz, B.M., Keige, A.W., Diaz, J.D. & Herz, W. 1994. Adanson, M. 1763. Familles des Plantes. Vincent, Paris. Sesquiterpene lactones and other constituents of Vernonia spe- Adeboye, O.D., Ajayi, S.A., Baidu-Forson, J.J. & Opabode, cies from Ethiopia. Phytochemistry 37: 191–196. J.T. 2005. Seed constraint to cultivation and productivity of Abosi, A.O. & Raseroka, B.H. 2003. In vivo antimalarial ac- African indigenous leaf vegetables. African Journal of Bio tech- tivity of Vernonia amygdalina. British Journal of Biomedical Science nology 4: 1480–1484. 60: 89–91. Adylov, T.A. & Zuckerwanik, T.I. (eds.). 1993. Opredelitel Abrahamson, W.G., Blair, C.P., Eubanks, M.D. & More- rasteniy Srednei Azii, vol. 10. Conspectus fl orae Asiae Mediae, vol. head, S.A. 2003. Sequential radiation of unrelated organ- 10. Isdatelstvo Fan Respubliki Uzbekistan, Tashkent. isms: the gall fl y Eurosta solidaginis and the tumbling fl ower Afolayan, A.J. 2003. Extracts from the shoots of Arctotis arcto- beetle Mordellistena convicta. -
Plantes Vasculaires Du Nouveau - Brunswick
Plantes du Nouveau - Brunswick / Plants of New-Brunswick : Magnoliopsida (Dicotylédones) Plantes Vasculaires du Nouveau - Brunswick Dicotylédones Vascular Plants of New Brunswick Magnoliopsida (Dicotyledons) Par / By Richard Fournier Superviseur de Laboratoire E-mail : [email protected] 2006 N.B. : Index à la fin / Index at the end Plantes du Nouveau - Brunswick / Plants of New-Brunswick : Magnoliopsida (Dicotylédones) 2 Introduction : -Français : Ce répertoire contient les noms scientifiques latins, français et anglais pour chaque plante vasculaire de la classe de Magnoliopsida (Dicotylédones) au Nouveau-Brunswick. Le nom des plantes natives est placé en caractères gras. On y trouvera l’identification du classem ent de l’espèces au niveau provincial (Classe S). Cette liste des plantes du Nouveau-Brunswick fut fournie avec gracieuseté par Sean Blaney du CDC Canada Atlantique. Les plantes du type S1, S2 et S3 sont identifiées par des cases ayant des teintes d’ombrage (voir ci-bas). Les noms communs ou vernaculaires français ou anglais sont tirés majoritairement de sources gouvernementales (e.g., Agriculture Canada, Ressources Naturelles Canada) ou des agences de conservation. Certains nom s français utilisés en Europe pour nos plantes exotiques sont appliqués ici. Les autres noms pas utilisés peuvent être retrouvés dans les fichiers de Synonymes. Des noms d’hybrides (présents ou si les deux parents sont présents), de sous-espèces ou de variétés (habituellement pas énoncés) ont été traduits du latin au français afin de permettre un répertoire complet. Ceci a aussi été fait pour les noms anglais (surtout les hybrides). La présentation des plantes est par ordre alphabétique : Famille, Genre, Espèce. Une liste des plantes à rechercher au Nouveau-Brunswick est retrouvée après les plantes de la famille présentes au NB. -
Anatomy of Subterranean Organs of Medicinally Used Cardueae and Related Species and Its Value for Discrimination
Sci Pharm www.scipharm.at Research article Open Access Anatomy of Subterranean Organs of Medicinally Used Cardueae and Related Species and its Value for Discrimination Elisabeth FRITZ *, Johannes SAUKEL Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria * Corresponding author. E-mail: [email protected] (E. Fritz) Sci Pharm. 2011; 79: 157–174 doi:10.3797/scipharm.1010-05 Published: December 2nd 2010 Received: October 20th 2010 Accepted: December 2nd 2010 This article is available from: http://dx.doi.org/10.3797/scipharm.1010-05 © Fritz and Saukel et al.; licensee Österreichische Apotheker-Verlagsgesellschaft m. b. H., Vienna, Austria. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Numerous species of the Asteraceae, the composites, are famous for their use in both traditional and conventional medicine. Reliable anatomical descriptions of these plants and of possible adulterations provide a basis for fast identification and cheap purity controls of respective medicinal drugs by means of light microscopy. Nevertheless, detailed comparative studies on root and rhizome anatomy of valuable as well as related inconsiderable composite plants are largely missing yet. The presented study aims to narrow this gap by performing anatomical analyses of roots and rhizomes -
Dynamic Evolution and Phylogenomic Analysis of the Chloroplast Genome
www.nature.com/scientificreports OPEN Dynamic evolution and phylogenomic analysis of the chloroplast genome in Received: 19 March 2018 Accepted: 31 May 2018 Schisandraceae Published: xx xx xxxx Bin Li1,2,3 & Yongqi Zheng1,2,3 Chloroplast genomes of plants are highly conserved in both gene order and gene content, are maternally inherited, and have a lower rate of evolution. Chloroplast genomes are considered to be good models for testing lineage-specifc molecular evolution. In this study, we use Schisandraceae as an example to generate insights into the overall evolutionary dynamics in chloroplast genomes and to establish the phylogenetic relationship of Schisandraceae based on chloroplast genome data using phylogenomic analysis. By comparing three Schisandraceae chloroplast genomes, we demonstrate that the gene order, gene content, and length of chloroplast genomes in Schisandraceae are highly conserved but experience dynamic evolution among species. The number of repeat variations were detected, and the Schisandraceae chloroplast genome was revealed as unusual in having a 10 kb contraction of the IR due to the genome size variations compared with other angiosperms. Phylogenomic analysis based on 82 protein-coding genes from 66 plant taxa clearly elucidated that Schisandraceae is a sister to a clade that includes magnoliids, monocots, and eudicots within angiosperms. As to genus relationships within Schisandraceae, Kadsura and Schisandra formed a monophyletic clade which was sister to Illicium. Chloroplasts are the photosynthetic organelle that provides energy for plants. Te chloroplast has its own genome. In angiosperms, most chloroplast genomes are composed of circular DNA molecules ranging from 120 to 160 kb in length and have a quadripartite organization consisting of two copies of inverted repeats (IRs) of approximately 20–28 kb in size, which divide the rest of chloroplast genome into an 80–90 kb large single copy (LSC) region and a 16–27 kb small single copy (SSC) region. -
Checklist of Vascular Plants of the Southern Rocky Mountain Region
Checklist of Vascular Plants of the Southern Rocky Mountain Region (VERSION 3) NEIL SNOW Herbarium Pacificum Bernice P. Bishop Museum 1525 Bernice Street Honolulu, HI 96817 [email protected] Suggested citation: Snow, N. 2009. Checklist of Vascular Plants of the Southern Rocky Mountain Region (Version 3). 316 pp. Retrievable from the Colorado Native Plant Society (http://www.conps.org/plant_lists.html). The author retains the rights irrespective of its electronic posting. Please circulate freely. 1 Snow, N. January 2009. Checklist of Vascular Plants of the Southern Rocky Mountain Region. (Version 3). Dedication To all who work on behalf of the conservation of species and ecosystems. Abbreviated Table of Contents Fern Allies and Ferns.........................................................................................................12 Gymnopserms ....................................................................................................................19 Angiosperms ......................................................................................................................21 Amaranthaceae ............................................................................................................23 Apiaceae ......................................................................................................................31 Asteraceae....................................................................................................................38 Boraginaceae ...............................................................................................................98 -
Activity-Guided Investigation of Antiproliferative Secondary Metabolites of Asteraceae Species
University of Szeged Faculty of Pharmacy Graduate School of Pharmaceutical Sciences Department of Pharmacognosy Activity-guided investigation of antiproliferative secondary metabolites of Asteraceae species Ph.D. Thesis Boglárka Csupor-Löffler Supervisors: Prof. Judit Hohmann Dr. Zsuzsanna Hajdú Szeged, Hungary 2012 TABLE OF CONTENTS List of publications related to the thesis ................................................................................................ I Abbreviations and symbols ................................................................................................................... II 1. Introduction ...................................................................................................................................... 1 2. Aims of the study ............................................................................................................................. 3 3. Literature survey .............................................................................................................................. 4 3.1. General characterization of the family Asteraceae .................................................................. 4 3.1.1. Botany .............................................................................................................................. 4 3.1.2. Phytochemistry ................................................................................................................ 5 3.1.3. Pharmaceutical and economic importance ....................................................................