Plants Burdocks in Saskatchewan

Total Page:16

File Type:pdf, Size:1020Kb

Plants Burdocks in Saskatchewan PLANTS BURDOCKS IN SASKATCHEWAN VERNON L. HARMS, #212-115 Keevil Crescent, Saskatoon, SK S7N 4P2 Burdocks (Arctium spp.) are tall, effective seed-dispersal by attaching to coarse, biennial, exotic weeds, originally animal fur and our clothes. from Eurasia, that already by the mid- 1600s had been unwittingly imported Four burdock species are known in into North America by early English and North America, one of which, Lesser or French colonists.1 These conspicuous Common Burdock (Arctium minus), is plants, mostly exceeding a metre in spread across the continent in temperate height, tend to grow in various relatively regions, having become most abundant moist, human-disturbed sites where in eastern North America, less frequent they often form large dense patches. on the Great Plains, and relatively uncommon in drier parts of the Burdocks are members of the Thistle southwestern and western United States. Tribe (Cynareae), of the Sunflower Historically, burdocks have not been Family (Asteraceae), and like all considered particularly frequent in composites have flowers borne in heads Saskatchewan. They do not, however, surrounded by bracts forming well- represent recent introductions into the defined involucres. The leaves are large province since a Regina collection of and more-or-less woolly underneath. As Lesser Burdock made by C.N. Willing biennials, the first-season plants consist dates back to 1908, a Maple Creek of a deep taproot bearing large, more- record to 1930, a Big River one to 1938, or-less triangular, basal leaves, mostly and six other scattered records to the 14 to V2 metre long. These leaves tend 1940s and 1950s. While in the past they to remind one of Arrow-leaved Colt’s- apparently were rather infrequent weeds foot (Petasites sagittatus (Pursh) Gray), in Saskatchewan, burdocks may now be but they are more irregular in shape with increasing in frequency and numbers. many clustered from a taproot. The stout, tall, much-branched stems appear The distributional information in this in the second year and bear alternately article is based on numbers and locations arranged leaves and numerous flower- of burdock collections deposited in the heads. As all thistles and their relatives, W.P. Fraser Herbarium in Saskatoon, the but unlike many other composites such G.F. Ledingham Herbarium in Regina, as asters, daisies and sunflowers, and the Swift Current Agriculture Canada burdock heads lack rays. The tubular Research Centre. But how well florets, with purple to pink (rarely white) herbarium collections reflect the actual corollas, are surrounded by numerous, distributions and abundance of the overlapping, thickish involucral-bracts species is questionable. At best, they can tapered upwards to sharp hooked tips only represent a rough sampling of the (at least outer ones) that form large species. globe-shaped, spiny involucres around the heads (Figure 1). In late-flowering Three burdock species are documented and fruit stages, the heads look like as occurring in Saskatchewan. These spiny burs, and are well adapted for are: Lesser or Common Burdock 92 Blue Jay 59(2). June 2001 Figure 1. Morphology of Saskatchewan Burdock Species. Adapted from Moore & Frankton (1974) 93 (Arctium minus Bernh.), Woolly or to 1.5 m tall..A. tomentosum. Cotton Burdock (Arctium tomentosum 2b. Involucres smooth, not hairy; corolla- P.Mill.), and Great Burdock (Arctium tips not glandular; petioles solid; heads lappa L.). The fourth North American 3.0-4.5 cm wide; middle and inner species, Woodland Burdock (Arctium involucral bracts nearly equal and nemorosum Lej. & Court., now referred surpassing corollas; plants often larger, to A. vulgare (Hill) Evans), has to 3 m tall.. A. lappa. sometimes been listed for the province, but this appears erroneous, with The Woodland Burdock would differ Saskatchewan specimens once from the above three species in having identified as this species now revised racemosely arranged heads, and leaf- to A. tomentosum. All known shape and leaf-stalks like A. minus, Saskatchewan sites of burdocks are usually ± arachnoid involucres like A. located in the agricultural region, south tomentosum, larger heads and inner of latitude 53° (see Figure 2), except for involucral bracts exceeding corollas like a record of Lesser Burdock from Big A. lappa, and non-glandular corollas River, and an unverified record of Great unlike A. tomentosum. Burdock from north of Nipawin. The following key may be used to distinguish Lesser or Common Burdock, Arctium our Saskatchewan burdock species: minus Based on records in provincial Identification Key to Arctium herbaria, Lesser Burdock is the most (Burdock) Species in Saskatchewan common burdock species in la. Heads (1.5-) 2-2.5 cm broad, Saskatchewan, as in North America. racemose or racemosely clustered, with The herbarium survey revealed a total at least the middle and upper ones of 39 collections of this species, from sessile or short-stalked; larger leaf- apparently 28 different sites and 24 blades tapering at apex to usually ± general localities in the province. While broadly acute tips; leaf-stalks hollow and records are scattered from the southern only slightly angled; corolla limbs not border, north to Big River and Armit (east glandular; involucres strongly of Hudson Bay near the Manitoba contracted at top, the middle and inner border), this species appears most involucral bracts successively larger, the frequently encountered in the more inner ones shorter than corollas; plants southern regions of the province south to 1.5 m tall.. A. minus. of latitude 51 ° N. (Figure 2). The earliest 1 b. Heads ± corymbosely arranged with collections of Lesser Burdock in at least the lower on long stalks; larger Saskatchewan are from Regina (1908), leaf-blades rounded at apex; leaf-stalks Maple Creek (1930, 1936), Big River strongly angled, either solid or hollow; (1938), Carlyle (1941), Armit (1948), corolla limbs glandular or not; involucres Stockholm (1948), and Hidden Valley more cup-like, less contracted at top. - (on Qu’Appelle River north of Regina) .(to 2). (1949). Additional collection records are 2a. Involucres distinctly arachnoid- spread over the remaining decades of tomentose (spiderwebby to cottony); the 20th century (Figure 3). The most corolla limbs glandular and abruptly frequently listed habitats for Lesser dilated; petioles hollow; heads 2.0-2.5 Burdock in Saskatchewan were (-3) cm broad; middle and inner disturbed understories of stream-edge involucral bracts successively larger, the woods, roadside ditches, field edges inner ones longer than, subequal to, or and waste areas. Other habitats listed mostly shorter than the corollas; plants included open stream and slough edges, 94 Blue Jay I 1 Figure 2. Saskatchewan Distribution of Burdock Species 96 Blue Jay farmyards, corrals, and garden margins. specimen labels gave no indication of Unfortunately most specimen labels gave local abundance, of those that did, half no indication of local abundance, but of stated the plants to be common or about a dozen that did, two-thirds stated occurring in large patches, while the that the plants were common or locally other half indicated the plants to be frequent and one-third said they were locally uncommon or only occasional. few, several or uncommon. With regard Early anthesis stages were seen on to the flowering and fruiting phenology specimens collected from early July to of Lesser Burdock, early anthesis (i.e. early August, and full anthesis on those flower bud and young flower) stages were from mid-July to early October. seen on collections from late June to late July. Full anthesis (i.e. mature flowers) Great Burdock, A. lappa stages could be seen on late July to mid- Great Burdock is the rarest species October collections. Except for one mid- of burdock in Saskatchewan, with only October collection, fruits were only seen one confirmed record in the province on previous-year’s dried stalks of several and two unconfirmed ones. A verified spring - early summer collections with 1981 collection was from a “field-edge current-year’s leaves. Such specimens wasteland” near Biggar. An unverified raise a question - are these burdocks 1974 collection is reported from 5 km strictly biennial or possibly somewhat east of Touchwood, and an unconfirmed perennial at this latitude? Actual 1975 record exists from Garrick (about connections of the old fruiting stalks to 27 km NW of Nipawin). These two are the roots bearing new leaves could not indicated by circled question marks on be ascertained from the herbarium the right hand map in Figure 2. The specimens seen. single verified collection of Great Burdock in Saskatchewan was in Woolly or Cotton Burdock, A. flowering stage in mid-August. tomentosum The second most frequently Discussion encountered burdock species in The quite late summer flowering Saskatchewan is Woolly Burdock, with periods and apparently late fruit a total of 19 collections, from apparently production, occurring well after our first 17 different sites and 15 general frosts, seem interesting phenological localities in the province. While records features of burdocks in Saskatchewan. are scattered over the southern third of Could autumn frosts possibly hamper the province, this appears to be the most fruit development and represent a frequently encountered burdock species limiting factor preventing burdocks from north of latitude 51° N. (Figure 2). The becoming more abundant here? oldest records of Cotton Burdock in Saskatchewan are from Rosthern A review of herbarium collections (1936), southwest of Swift Current gives us a glimpse of the localities and (1956), and Kamsack (1959). All other dates of burdocks in Saskatchewan, and collections are dated in the 1980’s and provides some historical perspective on 1990’s. The most frequent habitats listed their occurrences. It is conjectural to for Saskatchewan collections of Woolly what extent the numbers, dates and Burdock were roadside ditches, locations of herbarium collections can disturbed wooded stream margins, field be relied upon to accurately reflect the edges and waste areas.
Recommended publications
  • Phylogeny and Evolution of the Arctium-Cousinia Complex (Compositae, Cardueae-Carduinae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC TAXON 58 (1) • February 2009: 153–171 López-Vinyallonga & al. • Arctium-Cousinia complex Phylogeny and evolution of the Arctium-Cousinia complex (Compositae, Cardueae-Carduinae) Sara López-Vinyallonga1,4*, Iraj Mehregan2,4, Núria Garcia-Jacas1, Olga Tscherneva3, Alfonso Susanna1 & Joachim W. Kadereit2 1 Botanical Institute of Barcelona (CSIC-ICUB), Pg. del Migdia s. n., 08038 Barcelona, Spain. *slopez@ibb. csic.es (author for correspondence) 2 Johannes Gutenberg-Universität Mainz, Institut für Spezielle Botanik und Botanischer Garten, 55099 Mainz, Germany 3 Komarov Botanical Institute, Ul. Prof. Popova 2, 197376 St. Petersburg, Russia 4 These authors contributed equally to this publication The phylogeny and evolution of the Arctium-Cousinia complex, including Arctium, Cousinia as one of the largest genera of Asteraceae, Hypacanthium and Schmalhausenia, is investigated. This group of genera has its highest diversity in the Irano-Turanian region and the mountains of Central Asia. We generated ITS and rpS4-trnT-trnL sequences for altogether 138 species, including 129 (of ca. 600) species of Cousinia. As found in previous analyses, Cousinia is not monophyletic. Instead, Cousinia subgg. Cynaroides and Hypacanthodes with together ca. 30 species are more closely related to Arctium, Hypacanthium and Schmalhausenia (Arc- tioid clade) than to subg. Cousinia (Cousinioid clade). The Arctioid and Cousiniod clades are also supported by pollen morphology and chromosome number as reported earlier. In the Arctioid clade, the distribution of morphological characters important for generic delimitation, mainly leaf shape and armature and morphology of involucral bracts, are highly incongruent with phylogenetic relationships as implied by the molecular data.
    [Show full text]
  • Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
    Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N.
    [Show full text]
  • Systematics of the Arctioid Group: Disentangling Arctium and Cousinia (Cardueae, Carduinae)
    TAXON 60 (2) • April 2011: 539–554 López-Vinyallonga & al. • Disentangling Arctium and Cousinia TAXONOMY Systematics of the Arctioid group: Disentangling Arctium and Cousinia (Cardueae, Carduinae) Sara López-Vinyallonga, Kostyantyn Romaschenko, Alfonso Susanna & Núria Garcia-Jacas Botanic Institute of Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain Author for correspondence: Sara López-Vinyallonga, [email protected] Abstract We investigated the phylogeny of the Arctioid lineage of the Arctium-Cousinia complex in an attempt to clarify the conflictive generic boundaries of Arctium and Cousinia. The study was based on analyses of one nuclear (ITS) and two chlo- roplastic (trnL-trnT-rps4, rpl32-trnL) DNA regions of 37 species and was complemented with morphological evidence where possible. Based on the results, a broadly redefined monophyletic genus Arctium is proposed. The subgenera Hypacanthodes and Cynaroides are not monophyletic and are suppressed. In contrast, the traditional sectional classification of the genus Cousinia is maintained. The genera Anura, Hypacanthium and Schmalhausenia are reduced to sectional level. Keywords Anura ; Arctium ; Cousinia ; Hypacanthium ; ITS; molecular phylogeny; nomenclature; rpl32-trnL; trnL-trnT-rpS4 ; Schmalhausenia Supplementary Material Appendix 2 is available in the free Electronic Supplement to the online version of this article (http:// www.ingentaconnect.com/content/iapt/tax). INTRODUCTION 1988a,b,c; Davis, 1975; Takhtajan, 1978; Knapp, 1987; Tama- nian, 1999), palynological
    [Show full text]
  • Common Burdock Arctium Minus
    Common Burdock Arctium minus Name: Arctium minus Common name(s): Wild Rhubarb, Burweed, Beggar’s Buttons, Cocklebur Family: Asteraceae (Aster/Sunflower Family) Native: Europe United States Distribution Map native(adapted fromintroduced data available at https://plants.usda.gov)both absent/unreported native, no county data introduced, no county data both, no county data Arctium minus in bloom. Plant Profile: Habitat: Waste areas, disturbed areas, gardens, open fields, ditches. Loves full sun. Leaf Shape: Ovate (egg-shaped, oval). Extremely large basal leaves—up to 20 inches long by 12 inches wide. Leaf Margins: Entire, lobed, or sometimes toothed. Mature basal leaves extremely wavy. Leaf Alternate along flower stalk. Arrangement: Flower: ¾-inch round flower heads are made up of many hooked barbs (bracts) on the bottom (that form the burr) and a cluster of erect purplish tubular flowers (disk flowers) on top that give the flower head a thistle-like shaving brush appearance. Height: Second year flower stalk can grow up to 5 feet tall. Life cycle: Biennial. Basal rosette of large leaves first year, then branched flower stalk in year two. Distinct “shaving brush” purple flower with many hooked bracts underneath. This product is authorized for private use only. All other rights are reserved. Unless expressly authorized by law or in writing by copyright owner, any copying distribution or Common Burdock 1 any other use of this product or any part of it is strictly prohibited. Unauthorized distribution or reproduction may result in severe criminal and civil penalties. Common Burdock Arctium minus Creek’s Commentary The bane of all wool producers is Burdock’s hallmark parts of Burdock get bitter fairly quickly as the plant identifying feature, the small circular cockleburs matures.
    [Show full text]
  • Vascular Plants of Santa Cruz County, California
    ANNOTATED CHECKLIST of the VASCULAR PLANTS of SANTA CRUZ COUNTY, CALIFORNIA SECOND EDITION Dylan Neubauer Artwork by Tim Hyland & Maps by Ben Pease CALIFORNIA NATIVE PLANT SOCIETY, SANTA CRUZ COUNTY CHAPTER Copyright © 2013 by Dylan Neubauer All rights reserved. No part of this publication may be reproduced without written permission from the author. Design & Production by Dylan Neubauer Artwork by Tim Hyland Maps by Ben Pease, Pease Press Cartography (peasepress.com) Cover photos (Eschscholzia californica & Big Willow Gulch, Swanton) by Dylan Neubauer California Native Plant Society Santa Cruz County Chapter P.O. Box 1622 Santa Cruz, CA 95061 To order, please go to www.cruzcps.org For other correspondence, write to Dylan Neubauer [email protected] ISBN: 978-0-615-85493-9 Printed on recycled paper by Community Printers, Santa Cruz, CA For Tim Forsell, who appreciates the tiny ones ... Nobody sees a flower, really— it is so small— we haven’t time, and to see takes time, like to have a friend takes time. —GEORGIA O’KEEFFE CONTENTS ~ u Acknowledgments / 1 u Santa Cruz County Map / 2–3 u Introduction / 4 u Checklist Conventions / 8 u Floristic Regions Map / 12 u Checklist Format, Checklist Symbols, & Region Codes / 13 u Checklist Lycophytes / 14 Ferns / 14 Gymnosperms / 15 Nymphaeales / 16 Magnoliids / 16 Ceratophyllales / 16 Eudicots / 16 Monocots / 61 u Appendices 1. Listed Taxa / 76 2. Endemic Taxa / 78 3. Taxa Extirpated in County / 79 4. Taxa Not Currently Recognized / 80 5. Undescribed Taxa / 82 6. Most Invasive Non-native Taxa / 83 7. Rejected Taxa / 84 8. Notes / 86 u References / 152 u Index to Families & Genera / 154 u Floristic Regions Map with USGS Quad Overlay / 166 “True science teaches, above all, to doubt and be ignorant.” —MIGUEL DE UNAMUNO 1 ~ACKNOWLEDGMENTS ~ ANY THANKS TO THE GENEROUS DONORS without whom this publication would not M have been possible—and to the numerous individuals, organizations, insti- tutions, and agencies that so willingly gave of their time and expertise.
    [Show full text]
  • Overview of the Anti-Inflammatory Effects, Pharmacokinetic Properties
    Acta Pharmacologica Sinica (2018) 39: 787–801 © 2018 CPS and SIMM All rights reserved 1671-4083/18 www.nature.com/aps Review Article Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L Qiong GAO, Mengbi YANG, Zhong ZUO* School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China Abstract Arctigenin (AR) and its glycoside, arctiin, are two major active ingredients of Arctium lappa L (A lappa), a popular medicinal herb and health supplement frequently used in Asia. In the past several decades, bioactive components from A lappa have attracted the attention of researchers due to their promising therapeutic effects. In the current article, we aimed to provide an overview of the pharmacology of AR and arctiin, focusing on their anti-inflammatory effects, pharmacokinetics properties and clinical efficacies. Compared to acrtiin, AR was reported as the most potent bioactive component of A lappa in the majority of studies. AR exhibits potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Due to its potent anti-inflammatory effects, AR may serve as a potential therapeutic compound against both acute inflammation and various chronic diseases. However, pharmacokinetic studies demonstrated the extensive glucuronidation and hydrolysis of AR in liver, intestine and plasma, which might hinder its in vivo and clinical efficacy after oral administration. Based on the reviewed pharmacological and pharmacokinetic characteristics of AR, further pharmacokinetic and pharmacodynamic studies of AR via alternative administration routes are suggested to promote its ability to serve as a therapeutic agent as well as an ideal bioactive marker for A lappa.
    [Show full text]
  • Annex 1. Systematic List of the Plants Identified in Roşia Montană Area
    S.C. Roşia Montană Gold Corporation S.A. - Report on Environmental Impact Assessment Study 4.6 Biodiversity Annex 1. Systematic List of the Plants Identified in Roşia Montană Area No. Scientific Name Author Distribution Life span Location Family Genus, Species Phylum BRIOPHYTA Class HEPATOPSIDA Order MARCHANTIALES 1 MARCHANTIALACEAE Marchantia polymorpha L. sporadic perennial moist places Class BRYOPSIDA Order BRYALES 2 Mniaceae Mnium punctatum Hedw. sporadic perennial moist places 3 Mnium ondulatum Hedw. sporadic perennial moist places 4 Brachytheciaceae Brachythecium campestre Mull. sporadic perennial moist places Order HYPNOBRYALES 5 Hypnaceae Hypnum cupressiforme Hedw. sporadic perennial moist places Order BUXBAUMIALES 6 Buxbaumiaceae Buxbaumia aphylla Hedw. sporadic perennial moist places Order POLYTRICHALES 7 Polytrichaceae Polytrichum commune Hedw. sporadic perennial moist places 8 Polytrichum formosum Hedw. sporadic perennial moist places Order DICRANALES 9 Dicranaceae Dicranum scoparium Hedw. sporadic perennial moist places Order FUNARIALES 10 Funariaceae Funaria hygrometrica Hedw. sporadic perennial moist places Phylum PTERIDOPHYTA Class LYCOPODIOPSIDA Order LYCOPODIALES 11 LYCOPODIACEAE Lycopodium selago (L.) Bernh. ex Schrank & sporadic perennial Grassy, moist land, forests, bush, Mart. 12 Lycopodium annotinum L. sporadic perennial Moist places, wetlands, forests. Class EQUISETOPSIDA Order EQUISETALES 13 EQUISETACEAE Equisetum arvense L. frequent perennial Floodplains, sandy places,crop fields 14 Equisetum telmateia Ehrh.
    [Show full text]
  • Arctium Lappa and Arctium Tomentosum, Sources of Arctii Radix
    plants Article Arctium lappa and Arctium tomentosum, Sources of Arctii radix: Comparison of Anti-Lipoxygenase and Antioxidant Activity as well as the Chemical Composition of Extracts from Aerial Parts and from Roots Weronika Skowro ´nska 1, Sebastian Granica 1 , Magdalena Dziedzic 2, Justyna Kurkowiak 3, Maria Ziaja 4 and Agnieszka Bazylko 1,* 1 Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; [email protected] (W.S.); [email protected] (S.G.) 2 Student’s Scientific Association at the Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; [email protected] 3 Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; [email protected] 4 Institute of Physical Culture Studies, Rzeszów University, Cicha 2a, 35-326 Rzeszów, Poland; [email protected] * Correspondence: [email protected] Abstract: Arctium lappa is a weed used in traditional medicine in the treatment of skin inflammation and digestive tract diseases. Arctium tomentosum is used in folk medicine interchangeably with Arctium lappa and, according to European Medicines Agency (EMA) monography, provides an equal source of Arctii radix (Bardanae radix), despite the small amount of research confirming its activity and Citation: Skowro´nska,W.; Granica, S.; Dziedzic, M.; Kurkowiak, J.; Ziaja, M.; chemical composition. The aim of the study was the comparison of the anti-lipoxygenase and the •− Bazylko, A. Arctium lappa and Arctium antioxidant activity, scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide anion (O2 ), tomentosum, Sources of Arctii radix: and hydrogen peroxide (H2O2), of 70 % (v/v) ethanolic extracts from the aerial parts and the roots Comparison of Anti-Lipoxygenase of Arctium lappa and Arctium tomentosum.
    [Show full text]
  • INTRODUCTION This Check List of the Plants of New Jersey Has Been
    INTRODUCTION This Check List of the Plants of New Jersey has been compiled by updating and integrating the catalogs prepared by such authors as Nathaniel Lord Britton (1881 and 1889), Witmer Stone (1911), and Norman Taylor (1915) with such other sources as recently-published local lists, field trip reports of the Torrey Botanical Society and the Philadelphia Botanical Club, the New Jersey Natural Heritage Program’s list of threatened and endangered plants, personal observations in the field and the herbarium, and observations by other competent field botanists. The Check List includes 2,758 species, a botanical diversity that is rather unexpected in a small state like New Jersey. Of these, 1,944 are plants that are (or were) native to the state - still a large number, and one that reflects New Jersey's habitat diversity. The balance are plants that have been introduced from other countries or from other parts of North America. The list could be lengthened by hundreds of species by including non-persistent garden escapes and obscure waifs and ballast plants, many of which have not been seen in New Jersey since the nineteenth century, but it would be misleading to do so. The Check List should include all the plants that are truly native to New Jersey, plus all the introduced species that are naturalized here or for which there are relatively recent records, as well as many introduced plants of very limited occurrence. But no claims are made for the absolute perfection of the list. Plant nomenclature is constantly being revised. Single old species may be split into several new species, or multiple old species may be combined into one.
    [Show full text]
  • Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture
    Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture Forest Service Donald L. Hazlett Rocky Mountain Research Station General Technical Report RMRS-GTR-130 June 2004 Hazlett, Donald L. 2004. Vascular plant species of the Comanche National Grassland in southeast- ern Colorado. Gen. Tech. Rep. RMRS-GTR-130. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 36 p. Abstract This checklist has 785 species and 801 taxa (for taxa, the varieties and subspecies are included in the count) in 90 plant families. The most common plant families are the grasses (Poaceae) and the sunflower family (Asteraceae). Of this total, 513 taxa are definitely known to occur on the Comanche National Grassland. The remaining 288 taxa occur in nearby areas of southeastern Colorado and may be discovered on the Comanche National Grassland. The Author Dr. Donald L. Hazlett has worked as an ecologist, botanist, ethnobotanist, and teacher in Latin America and in Colorado. He has specialized in the flora of the eastern plains since 1985. His many years in Latin America prompted him to include Spanish common names in this report, names that are seldom reported in floristic pub- lications. He is also compiling plant folklore stories for Great Plains plants. Since Don is a native of Otero county, this project was of special interest. All Photos by the Author Cover: Purgatoire Canyon, Comanche National Grassland You may order additional copies of this publication by sending your mailing information in label form through one of the following media.
    [Show full text]
  • 2019 Census of the Vascular Plants of Tasmania
    A CENSUS OF THE VASCULAR PLANTS OF TASMANIA, INCLUDING MACQUARIE ISLAND MF de Salas & ML Baker 2019 edition Tasmanian Herbarium, Tasmanian Museum and Art Gallery Department of State Growth Tasmanian Vascular Plant Census 2019 A Census of the Vascular Plants of Tasmania, including Macquarie Island. 2019 edition MF de Salas and ML Baker Postal address: Street address: Tasmanian Herbarium College Road PO Box 5058 Sandy Bay, Tasmania 7005 UTAS LPO Australia Sandy Bay, Tasmania 7005 Australia © Tasmanian Herbarium, Tasmanian Museum and Art Gallery Published by the Tasmanian Herbarium, Tasmanian Museum and Art Gallery GPO Box 1164 Hobart, Tasmania 7001 Australia https://www.tmag.tas.gov.au Cite as: de Salas, MF, Baker, ML (2019) A Census of the Vascular Plants of Tasmania, including Macquarie Island. (Tasmanian Herbarium, Tasmanian Museum and Art Gallery, Hobart) https://flora.tmag.tas.gov.au/resources/census/ 2 Tasmanian Vascular Plant Census 2019 Introduction The Census of the Vascular Plants of Tasmania is a checklist of every native and naturalised vascular plant taxon for which there is physical evidence of its presence in Tasmania. It includes the correct nomenclature and authorship of the taxon’s name, as well as the reference of its original publication. According to this Census, the Tasmanian flora contains 2726 vascular plants, of which 1920 (70%) are considered native and 808 (30%) have naturalised from elsewhere. Among the native taxa, 533 (28%) are endemic to the State. Forty-eight of the State’s exotic taxa are considered sparingly naturalised, and are known only from a small number of populations. Twenty-three native taxa are recognised as extinct, whereas eight naturalised taxa are considered to have either not persisted in Tasmania or have been eradicated.
    [Show full text]
  • Plantes Vasculaires Du Nouveau - Brunswick
    Plantes du Nouveau - Brunswick / Plants of New-Brunswick : Magnoliopsida (Dicotylédones) Plantes Vasculaires du Nouveau - Brunswick Dicotylédones Vascular Plants of New Brunswick Magnoliopsida (Dicotyledons) Par / By Richard Fournier Superviseur de Laboratoire E-mail : [email protected] 2006 N.B. : Index à la fin / Index at the end Plantes du Nouveau - Brunswick / Plants of New-Brunswick : Magnoliopsida (Dicotylédones) 2 Introduction : -Français : Ce répertoire contient les noms scientifiques latins, français et anglais pour chaque plante vasculaire de la classe de Magnoliopsida (Dicotylédones) au Nouveau-Brunswick. Le nom des plantes natives est placé en caractères gras. On y trouvera l’identification du classem ent de l’espèces au niveau provincial (Classe S). Cette liste des plantes du Nouveau-Brunswick fut fournie avec gracieuseté par Sean Blaney du CDC Canada Atlantique. Les plantes du type S1, S2 et S3 sont identifiées par des cases ayant des teintes d’ombrage (voir ci-bas). Les noms communs ou vernaculaires français ou anglais sont tirés majoritairement de sources gouvernementales (e.g., Agriculture Canada, Ressources Naturelles Canada) ou des agences de conservation. Certains nom s français utilisés en Europe pour nos plantes exotiques sont appliqués ici. Les autres noms pas utilisés peuvent être retrouvés dans les fichiers de Synonymes. Des noms d’hybrides (présents ou si les deux parents sont présents), de sous-espèces ou de variétés (habituellement pas énoncés) ont été traduits du latin au français afin de permettre un répertoire complet. Ceci a aussi été fait pour les noms anglais (surtout les hybrides). La présentation des plantes est par ordre alphabétique : Famille, Genre, Espèce. Une liste des plantes à rechercher au Nouveau-Brunswick est retrouvée après les plantes de la famille présentes au NB.
    [Show full text]