Quantifying Dispersal from Hydrothermal Vent Fields in the Western Pacific Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Quantifying Dispersal from Hydrothermal Vent Fields in the Western Pacific Ocean Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean Satoshi Mitaraia,1, Hiromi Watanabeb, Yuichi Nakajimaa, Alexander F. Shchepetkinc, and James C. McWilliamsc,d aMarine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan; bDepartment of Marine Biodiversity Research and Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, 237-0061, Japan; cInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567; and dDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565 Edited by Christopher J. R. Garrett, University of Victoria, Victoria, Canada, and approved February 5, 2016 (received for review September 16, 2015) Hydrothermal vent fields in the western Pacific Ocean are mostly among vent populations in the western Pacific basins have not been distributed along spreading centers in submarine basins behind previously addressed. convergent plate boundaries. Larval dispersal resulting from deep- Detailed observations and models for eastern Pacific vents have ocean circulations is one of the major factors influencing gene flow, revealed mechanisms of near-bottom circulation strongly influenced diversity, and distributions of vent animals. By combining a bio- by distinct topographic features of midocean ridges (19–23). Con- physical model and deep-profiling float experiments, we quantify duit-like structures of midocean ridges may shield larvae from cross- potential larval dispersal of vent species via ocean circulation in the axial dispersal and also may enable long-distance dispersal that western Pacific Ocean. We demonstrate that vent fields within back- connects distant vent fields (20). Similar long-dispersal mechanisms, arc basins could be well connected without particular directionality, however, do not apply to species in the western Pacific, where whereas basin-to-basin dispersal is expected to occur infrequently, midocean ridges do not exist. If dispersal were limited to near- once in tens to hundreds of thousands of years, with clear dispersal bottom depths, vent species of the western Pacific would largely be barriers and directionality associated with ocean currents. The contained within a given back-arc basin. southwest Pacific vent complex, spanning more than 4,000 km, may Although most species likely remain near the bottom, some be connected by the South Equatorial Current for species with a strong-swimming larvae (e.g., shrimp and crabs) may disperse higher longer-than-average larval development time. Depending on larval in the water column, possibly ∼1,000 m above the bottom, where dispersal depth, a strong western boundary current, the Kuroshio they can be transported by faster currents (24, 25). Lagrangian Current, could bridge vent fields from the Okinawa Trough to the Izu- measurement methods, using deep-ocean profiling floats pro- Bonin Arc, which are 1,200 km apart. Outcomes of this study should grammed to drift at a specified depth or constant density surface, can help marine ecologists estimate gene flow among vent populations be used to measure dispersal in the water column. This approach has and design optimal marine conservation plans to protect one of the been used for hydrothermal vent surveys as well (26, 27). One ex- most unusual ecosystems on Earth. ample was the Lau Basin Float Experiment (27), which captured boundary currents within the back-arc basin and westward outflow hydrothermal vents | larval dispersal | deep-ocean circulation | from the basin resulting from the South Equatorial Current. For analytical approach various reasons, it is challenging to quantify vent-to-vent transport using only in situ experiments; therefore, one promising approach is ydrothermal vent fields in the western Pacific have received to combine dispersal experiments with ocean circulation models. Hsubstantially less attention than have eastern Pacific vents. Properly analyzed, such observation and modeling data should Western Pacific vents are mostly distributed along spreading yield reasonable estimates of dispersal processes by ocean circulation centers in submarine basins behind convergent plate boundaries, and should help marine ecologists understand biogeography and whereas those of the eastern Pacific occur mainly at midocean ridges. It is estimated that vent-endemic species in back-arc basins Significance were introduced along now-extinct midocean ridges that bridged the eastern and western Pacific Oceans ∼55 million years ago, with Submarine hot springs known as hydrothermal vents host unique a potential origin at the East Pacific Rise (1, 2). More recent ecosystems of endemic animals that do not depend on pho- tosynthesis. Quantifying larval dispersal processes is essential studies suggest the possibility that Indian Ocean ridge systems once to understanding gene flows and diversity distributions of vent connected Atlantic and Pacific vent fields (3). Spreading centers in – endemic species, as well as to protect vent communities from back-arc basins are active for typically 5 10 million years (4, 5). anthropological disturbances (e.g., deep-sea mining). In this Thus, life spans of back-arc spreading centers are significantly study, we assess the potential frequency of larval exchange longer than population lifetimes of vent animals observed in the between vent fields throughout the entire western Pacific via eastern Pacific (∼1 million years) (6). ocean circulation processes, so that population geneticists can Recent genetic studies have addressed the matter of genetic make quantitative comparisons. We show that western Pacific differentiation among vent populations (7–11). Genetic data imply vents in distant basins are potentially connected with strong that back-arc basin populations are well-mixed genetic pools (12, directionality. This article makes a valuable contribution to a 13). In contrast, vent populations in distant basins (∼3,000 km difficult and important area of deep ocean processes. apart) are genetically distinct, suggesting that occasional migrations may have occurred over the course of several hundred thousand Author contributions: S.M. and J.C.M. designed research; S.M., H.W., Y.N., and A.F.S. per- formed research; S.M., H.W., Y.N., A.F.S., and J.C.M. contributed new reagents/analytic tools; generations (14). There is one example of a widespread species S.M., H.W., Y.N., and A.F.S. analyzed data; and S.M. and J.C.M. wrote the paper. Bathymodiolus septemdierum ( complex) occurring in all western The authors declare no conflict of interest. Pacific back-arc basins (15). To interpret gene flows of vent species, This article is a PNAS Direct Submission. it is necessary to understand larval dispersal by ocean circulation, as Freely available online through the PNAS open access option. – well as tectonic history (16 18). However, quantitative data re- 1To whom correspondence should be addressed. Email: [email protected]. garding dispersal processes in the western Pacific are still woefully This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. inadequate, leaving many unanswered questions. Dispersal patterns 1073/pnas.1518395113/-/DCSupplemental. 2976–2981 | PNAS | March 15, 2016 | vol. 113 | no. 11 www.pnas.org/cgi/doi/10.1073/pnas.1518395113 Downloaded by guest on September 29, 2021 gene flow among vent populations in the western Pacific Ocean. We Temporal variability of flow is often measured with correlation assessed potential larval dispersal from hydrothermal vent fields in timescales, representing characteristic periods during which flow the western Pacific on varying spatial scales, from intra- to interbasin remains more or less consistent in speed and direction. Correla- vent communications, by integrating information from a deep-ocean tion timescales could be qualitatively inferred from float tracks profiling float experiment and predictions derived from an ocean during the first several months of this study (Fig. 1B). Float de- circulation model. ployments separated by ∼30 d or longer demonstrate different dispersal patterns, although some consecutive releases are similar. Results and Discussion In other words, the Eulerian correlation time is less than 1 mo. Dispersal in a Back-Arc Basin. As a base case, we focused on dispersal We calculated the Eulerian correlation time (e-folding time) from processes from a vent field in the Okinawa Trough. The Okinawa time series of model flow fields. The estimated correlation time is Trough is an active back-arc spreading basin behind the Ryukyu about 2 wk, which is longer than that of the ocean surface (several arc-trench system, where the Philippine Sea Plate subducts beneath days) (31), reflecting less energetic circulation. Current observa- the Eurasian Plate (Fig. 1). The current rifting started about tion data from northern East Pacific Rise (32) appear to have a 2 million years ago (28). Depths of vent fields in the Okinawa similar Eulerian correlation time. Trough registered in the InterRidge vents database (29) vary be- tween 560 and 1,850 m, with a mean depth of 1,100 m. Dispersal Probability. Because of the unpredictable nature of dis- To assess spatial and temporal scales of dispersal at Hatoma persal, a large number of cases (degrees of freedom) are necessary to have sufficient statistical power. In the model domain, nearly Knoll (1,520 m) in the southern
Recommended publications
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]
  • Laboratory of Marine Environmental Microbiology
    Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University 12/09/2017 Laboratory of Marine Environmental Microbiology Professor:Shigeki SAWAYAMA, Associate professor:Satoshi NAKAGAWA This laboratory is doing researches on microalgal productions of ω-3 fatty acids, carotenoids and third-generation biofuels by genetic engineering. ω-3 Fatty acids and carotenoids have physiological functions and are used for dietary supplements. We are also searching novel and useful fungi from marine environments. In addition, we have studied ecophysiology and evolution of ‘earth-eating’ microorganisms inhabiting various extreme marine environments such as deep-sea hydrothermal fields. ω-3 Fatty acids, carotenoids and biofuel production using microalgae Chlorella spp. produce ω-3 fatty acids and Dunaliella spp. produce β-carotene known as a vitamin A pre-cursor. We are doing researches on molecular biology of these microalgae to produce useful compounds. Dunaliella salina Marine fungi and methanogens Fungi producing large amount of enzymes are widely used for fermentation industries. We are conducting research on screening of novel marine fungi. We are also studying ecological roles of methanogens in aquatic environments. Marine fungus with melon flavor Microbial ecophysiology and evolution in extreme marine environments. Rich microbial ecosystems exist in deep-sea and oceanic sediments, and even in rock deep inside Earth’s crust, where not long ago it was thought that life could not exist. We have studied ecophysiology and evolution of microorganisms inhabiting extreme marine environments. ©JAMSTEC DSV Shinkai6500 Key words Microalgae, ω-3 Fatty acid, Carotenoid, Biofuel, Fungi, Yeast, Methanogen, Deep-sea vents, Symbiosis, Extremophiles Research Achievements 2017 Overexpression of DnaJ-like chaperone enhances carotenoid synthesis in Chlamydomonas reinhardtii.
    [Show full text]
  • The Heart of a Dragon: 3D Anatomical Reconstruction of the 'Scaly-Foot Gastropod'
    The heart of a dragon: 3D anatomical reconstruction of the 'scaly-foot gastropod' (Mollusca: Gastropoda: Neomphalina) reveals its extraordinary circulatory system Chen, C., Copley, J. T., Linse, K., Rogers, A. D., & Sigwart, J. D. (2015). The heart of a dragon: 3D anatomical reconstruction of the 'scaly-foot gastropod' (Mollusca: Gastropoda: Neomphalina) reveals its extraordinary circulatory system. Frontiers in zoology, 12(13), [13]. https://doi.org/10.1186/s12983-015-0105-1 Published in: Frontiers in zoology Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2015 Chen et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws.
    [Show full text]
  • A Functional Trait Perspective on the Biodiversity of Hydrothermal Vent Communities
    FDvent: A functional trait perspective on the biodiversity of hydrothermal vent communities SCOR Working Group Proposal Title: A FUNCTIONAL TRAIT PERSPECTIVE ON THE BIODIVERSITY OF HYDROTHERMAL VENT COMMUNITIES Acronym: FDvent Abstract: Species diversity measures based on taxonomy, and more recently on molecular data, dominate our view of global biodiversity patterns. However, consideration of species functional traits, such as size, feeding ecology and habitat use, can provide insights into biodiversity patterns by representing how communities contribute to ecosystem processes. Moreover response traits, characteristics linked to how species respond to environmental change, have been linked to the processes underpinning community recovery following disturbance. We propose identifying functional traits for the global vent species pool to provide the first quantification of spatial and temporal patterns in functional diversity in this unique ecosystem. We will use expert knowledge and a literature review to identify both effect and response functional traits, and retrieve data for diverse macrofaunal and meiofaunal taxa. Our aim, given that trait-based measures provide a means to directly compare communities with species arising from different evolutionary trajectories, is to test whether vent communities from different biogeographic provinces display functional convergence while accounting for the geological and chemical settings. We will further test for change in functional diversity following the formation of new vents and disturbance events. This knowledge is critical for environmental management, given that hydrothermal vents are presently targeted for mineral resource exploitation by 2017. Our proposed working group will build an open-access traits database and offer a novel perspective on global biodiversity and succession patterns in vent communities.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Science Volume 1 of 1 Life-history biology and biogeography of invertebrates in deep-sea chemosynthetic environments by Verity Nye Thesis for the degree of Doctor of Philosophy December 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Science Thesis for the degree of Doctor of Philosophy LIFE-HISTORY BIOLOGY AND BIOGEOGRAPHY OF INVERTEBRATES IN DEEP-SEA CHEMOSYNTHETIC ENVIRONMENTS Verity Nye Globally-distributed, insular and ephemeral deep-sea hydrothermal vents with their endemic faunas provide ‘natural laboratories’ for studying the processes that shape global patterns of marine life. The continuing discovery of hydrothermal vents and their faunal assemblages has yielded hundreds of new species and revealed several biogeographic provinces, distinguished by differences in the taxonomic composition of their assemblages.
    [Show full text]
  • Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin
    California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses Capstone Projects and Master's Theses Summer 2020 Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin Kenji Jordi Soto California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes_all Recommended Citation Soto, Kenji Jordi, "Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin" (2020). Capstone Projects and Master's Theses. 892. https://digitalcommons.csumb.edu/caps_thes_all/892 This Master's Thesis (Open Access) is brought to you for free and open access by the Capstone Projects and Master's Theses at Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. For more information, please contact [email protected]. HYDROTEHRMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _______________ A Thesis Presented to the Faculty of Moss Landing Marine Laboratories California State University Monterey Bay _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Marine Science _______________ by Kenji Jordi Soto Spring 2020 CALIFORNIA STATE UNIVERSITY MONTEREY BAY The Undersigned Faculty Committee Approves the Thesis of Kenji Jordi Soto: HYDROTHERMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _____________________________________________
    [Show full text]
  • A New Vent Limpet in the Genus Lepetodrilus (Gastropoda: Lepetodrilidae) from Southern Ocean Hydrothermal Vent Fields Showing High Phenotypic Plasticity
    fmars-06-00381 July 15, 2019 Time: 15:56 # 1 ORIGINAL RESEARCH published: 16 July 2019 doi: 10.3389/fmars.2019.00381 A New Vent Limpet in the Genus Lepetodrilus (Gastropoda: Lepetodrilidae) From Southern Ocean Hydrothermal Vent Fields Showing High Phenotypic Plasticity Katrin Linse1*, Christopher Nicolai Roterman2 and Chong Chen3 1 British Antarctic Survey, Cambridge, United Kingdom, 2 Department of Zoology, University of Oxford, Oxford, United Kingdom, 3 X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan The recently discovered hydrothermal vent ecosystems in the Southern Ocean host a suite of vent-endemic species, including lepetodrilid limpets dominating in abundance. Limpets were collected from chimneys, basalts and megafauna of the East Scotia Ridge Edited by: segments E2 and E9 and the Kemp Caldera at the southern end of the South Sandwich Wei-Jen Chen, Island arc. The limpets varied in size and shell morphology between vent fields and National Taiwan University, Taiwan displayed a high degree of phenotypic plasticity. Size frequency analyses between vent Reviewed by: fields suggests continuous reproduction in the limpet and irregular colonisation events. Marjolaine Matabos, Institut Français de Recherche pour Phylogenetic reconstructions and comparisons of mitochondrial COI gene sequences l’Exploitation de la Mer (IFREMER), revealed a level of genetic similarity between individuals from the three vent fields France Junlong Zhang, consistent with them belonging to a single molecular operational taxonomic unit. Here Institute of Oceanology (CAS), China we describe Lepetodrilus concentricus n. sp., and evaluate its genetic distinctness and *Correspondence: pylogenetic position with congeners based on the same gene. Results indicate that Katrin Linse L.
    [Show full text]
  • Revisiting the Lepetodrilus Elevatus Species Complex
    Revisiting the Lepetodrilus elevatus species complex (Vetigastropoda: Lepetodrilidae), using samples from the Galápagos and Guaymas hydrothermal vent systems Marjolaine Matabos, Didier Jollivet To cite this version: Marjolaine Matabos, Didier Jollivet. Revisiting the Lepetodrilus elevatus species complex (Vetigas- tropoda: Lepetodrilidae), using samples from the Galápagos and Guaymas hydrothermal vent systems. Journal of Molluscan Studies, Oxford University Press (OUP), 2019, 85 (1), pp.154-165. 10.1093/mol- lus/eyy061. hal-02354593 HAL Id: hal-02354593 https://hal.archives-ouvertes.fr/hal-02354593 Submitted on 7 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Revisiting the Lepetodrilus elevatus species complex (Vetigastropoda: 2 Lepetodrilidae), using samples from the Galápagos and Guaymas 3 hydrothermal vent systems 4 Marjolaine Matabos1 and Didier Jollivet2 5 6 1IFREMER, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 7 29280 Plouzané, France; and 8 2Sorbonne Université, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et 9 Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 10 Roscoff, France 11 Correspondence: M. Matabos; e-mail: [email protected] 12 (Received 7 June 2018 ; editorial decision 9 November 2018) 13 Running head: LEPETODRILUS ELEVATUS SPECIES COMPLEX 14 15 1 16 ABSTRACT 17 The current distribution ranges of vent species result from the complex tectonic history 18 of oceanic ridges.
    [Show full text]
  • Molecular Phylogeny of Basal Gastropods (Vetigastropoda) Shows Stochastic Colonization of Chemosynthetic Habitats at Least from the Mid Triassic
    Cah. Biol. Mar. (2006) 47 : 343-346 Molecular phylogeny of basal gastropods (Vetigastropoda) shows stochastic colonization of chemosynthetic habitats at least from the mid Triassic Daniel L. GEIGER1 and Christine E. THACKER2 (1) Santa Barbara Museum of Natural History, Invertebrate Zoology, 2559 Puesta del Sol Road, Santa Barbara, CA 93105, USA. phone: (805) 683 4711 x152, fax: (805) 563 0574. E-mail: [email protected] (2) Natural History Museum of Los Angeles County, Ichthyology Section, 900 Exposition Blvd., Los Angeles, CA 90007, USA. E-mail: [email protected] Abstract: A molecular phylogeny of 40 basal gastropod species representing 14 families (including eight species in four families from chemosynthetic habitats) was constructed, based on 3038 characters (Histone 3, COI, 18S). Unambiguous fossils indicated minimum ages of four major lineages. It suggests that chemosynthetic habitats were colonized several times independently and date back to at least the mid Triassic. Keywords: Gastropods l Hydrothermal vent l Molecular phylogeny l Colonization l Triassic Introduction thetic lineages. We can analyze their relationships despite the fact that the membership of Vetigastropoda is not yet Determining the age of taxa living at chemosynthetic fully agreed upon. There is a broad consensus that habitats (hydrothermal vents, cold seeps, whale and wood Haliotidae (abalone), Scissurellidae (little slit shells), falls) is an interesting question. Several groups of Fissurellidae (key hole limpets), Pleurotomariidae (slit organisms are found in more than one chemosynthetic shells) and Trochoidea (top snails, turban snails) belong in habitat type, but are not know from either shallow water or Vetigastropoda. Some of the chemosynthetic groups the general deep sea.
    [Show full text]
  • Data Sources the Next 64 Pages Comprise a Reference List
    SUPPORTING INFORMATION APPENDIX 1: Data Sources The next 64 pages comprise a reference list for all literary sources given as references for trait scores and/or comments in the sFDvent raw (marked with an asterisk (*) if not then included in recommended) and/or recommended datasets (Tables S4.3 and S4.2, respectively). These references are not in alphabetical order, as the database is a ‘living’ record, so new references will be added and a new number assigned. In the recommended dataset (Table S4.2), the references are recorded according to the numbers listed below (and in Table S1.1), to ensure that citations are relatively easy for users to carry through when conducting analyses using subsets of the data, for example. If a score in the recommended dataset is supported by more than one reference, multiple reference identifiers are provided and separated by a semi-colon (;). The references are not provided as numbers / identifiers in the other versions of the dataset, as information is lost during this processing step (e.g., ‘expert opinion’, or 66, replaces comments made by experts in each reference column regarding additional observations, rationale for certainty scores, etc.), which may prove useful for some users. Other versions of the dataset thus maintain raw reference entries for transparency and as potentially useful metadata. We provide a copy of the recommended dataset without the references as numbers (Table S4.2A), in case it is easier for users to cross-reference between the two sheets to seek additional comments for a given data subset of interest. 1. Aguado, M.
    [Show full text]
  • Patterns of Genome Size Diversity in Invertebrates
    PATTERNS OF GENOME SIZE DIVERSITY IN INVERTEBRATES: CASE STUDIES ON BUTTERFLIES AND MOLLUSCS A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by PAOLA DIAS PORTO PIEROSSI In partial fulfilment of requirements For the degree of Master of Science April, 2011 © Paola Dias Porto Pierossi, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-82784-0 Our file Notre reference ISBN: 978-0-494-82784-0 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • 1 SUPPORTING INFORMATION APPENDIX 1: Data Sources The
    SUPPORTING INFORMATION APPENDIX 1: Data Sources The next 64 pages comprise a reference list for all literary sources given as references for trait scores and/or comments in the sFDvent raw (marked with an asterisk (*) if not then included in recommended) and/or recommended datasets (Tables S4.3 and S4.2, respectively). These references are not in alphabetical order, as the database is a ‘living’ record, so new references will be added and a new number assigned. In the recommended dataset (Table S4.2), the references are recorded according to the numbers listed below (and in Table S1.1), to ensure that citations are relatively easy for users to carry through when conducting analyses using subsets of the data, for example. If a score in the recommended dataset is supported by more than one reference, multiple reference identifiers are provided and separated by a semi-colon (;). The references are not provided as numbers / identifiers in the other versions of the dataset, as information is lost during this processing step (e.g., ‘expert opinion’, or 66, replaces comments made by experts in each reference column regarding additional observations, rationale for certainty scores, etc.), which may prove useful for some users. Other versions of the dataset thus maintain raw reference entries for transparency and as potentially useful metadata. We provide a copy of the recommended dataset without the references as numbers (Table S4.2A), in case it is easier for users to cross-reference between the two sheets to seek additional comments for a given data subset of interest. 1. Aguado, M.
    [Show full text]