A Host Plant Is More Than Its Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

A Host Plant Is More Than Its Chemistry A Host Plant Is More Than Its Chemistry zen de t t w f :4 Field naturalists frequently ob­ 1983; Coley 1982, 1983a, h^Coñnor et serve that the intensity of insect herbi- al. 1983; Haukioja 1980; Heinrich & vory in a natural defoliation event is Collins 1983; Kareiva 1982; Lawton not spread uniformly over individual 1983; McClure 1983; Niemela et al. conspecific plants and may even vary 1982; Price et al. 1980; Rausher & within one plant crown. Until the early Papaj 1983; Schultz 1983; Schultz et al. 1960’s, the general explanation would 1982; Stanton 1982; Thompson 1983; have been that heterogeneity in physi- Washburn & Cornell 1981; Wint 1983). cal conditions, carnivory, and/or the ar­ I feel that the philosophy that gener- rival of the herbivores generate such ates them deserves máximum encour- lack of uniformity. During the past 20 agement. years, much research on the Chemical I have two practical reasons for at- defenses of plants has paved the way for tempting this leavening, though I am the now commonplace concept that sure that the reader will think of such heterogeneity of herbivory in a others. First, one has only so much defoliation event may also be caused by time and resource to expend on a given heterogeneity in the nutrient or de- study of the intensity of herbivory, and fense properties of plants or plant parts there is a very real question of whether (e.g, Kogan 1977). Indeed, a number of efforts should be focused on determin- studies have found this to be the case. ing the (potential) internal plant prop­ For example, squirrels browse much erties that drive the system or on de- more heavily on terpene-poor signing observations and experiments ponderosa pines than on their more to reveal the external factors crashing terpene-rich conspecifics a few meters down on the lowly Caterpillar. Second, away (Farantinos et al. 1981). Pana- in attempting to understand the eco- manian forest insects browse young logical and evolutionary distribution of leaves more intensely than they do con­ herbivores among their host plants, it specific oíd ones, presumably because is easy to forget that what might be of the greater nutrient valué and lesser termed the carnivory regime and cli- toughness of the former (Coley 1982, mate regime of a host plant individual 1983a, b). Chrysomelid beetles and or population are as much traits of a Finnish caterpillars vary their feeding plant as is its Chemical profile. Both of patterns in response to seasonal these regimes should count for much in changes in host leaf chemistry (Haré whether and to what degree a plant or 1983; Haukioja & Niemela 1979). plant part is a suitable host. When we What I would like to do in this ask why a Caterpillar feeds on only one essay is to give the pendulum a push particular host species, it may be as back toward a middle ground, remind- much that it is highly adapted to the ing all of us (including me) that when predator risks and desiccation regimes a herbivore moves onto a host plant it of that plant as that it is adapted to the gets the outside of the plant as well as plant’s internal chemistry. By the same what is inside. Such integrative studies token, when we ask what does a her- are now beginning to appear in the bivorous generalist have to do to be a literature (e.g., Abrahamson et al. generalist, it may be as much that it has to be able to withstand the preda- Dr. Daniel H. Janzen is a Professor of Biology, tion risks of living on various kinds of University of Pennsylvania, Philadelphia. backgrounds (e.g., Heinrich & Collins ñl/lcUúL foyiSfe./}/) ¡ <, C cfirc cfA tj ccjDpiU-eÁ hM -ij \(r i i ■íMi R ./1 4 /L tL í d 142 Illinois N atural History Survey Bulletin Yol. 33, Art. 3 1983) as to have the gut chemistry to I have chosen briefly to describe tolérate various kinds of food (e.g., four systems as illustrative case histor­ Ahmad 1983). Which ability carne first ies rather than to dwell on hypothetical may be lost in the decomposed pages structure. I do this because of my opin­ of time. ión that theory in evolutionary ecology I also have an apologetic reason for is intrinsically prone to outrun descrip- attempting to meld two sequential tion of what is actually happening out fashions. I think we erred in not there. recognizing two blended questions in the seminal essay that argued that since the herbivores did not eat the green world to the ground, or even THE ARENA down very much, they must be regu- lated by the carnivores (Hairston et al. The attitudes and examples in this 1960). Question one is why don’t all the essay derive from my experiences with herbivores eat up all the plants? The the herbivore array of a lowland tropi­ answer that lay undiscussed by Hairs­ cal forest, that of Santa Rosa National ton et al. (1960) is that most of the green Park, in northwestern Guanacaste world is inedible to any given species Province, Costa Rica (this site is des- of herbivore. Also lying dormant was cribed in detail in Janzen 1983a and the derivative evolutionary question of in Boza & Mendoza 1981). This mosaic why doesn’t any given herbivore species of deciduous forest, evergreen forest, evolve the ability to eat many kinds of semi-evergreen forest, and pastures plants? Question two is the real ques­ regenerating to forests occupies about tion in Hairston et al. (1960); why don’t 11.000 ha from 0 to 350 m elevation the herbivores that can readily and between the Pan-American Highway with impunity consume a species of and the Pacific Ocean. The area has a host plant eat their host to oblivion? 5-6-month dry season (approximately Every plant species has at least one December through April), and 1,000- herbivore that can eat it. To some de- 2.000 mm of rain falls during the re- gree a plant’s herbivores do consume it, mainder of the year. Portions of the thereby leaving resources for other park were an operating cattle ranch plant species, but to a large degree they from no later than 1710 to 1978. The do not, with the consequence that com- vegetation contains at least 680 species petition and the physical environment broadleafed plants (at least 400 species determine much of the structure of of perennial woody plants) and sup- vegetation arrays. The very same car- ports at least 3,000 species of cater- nivory and climatic regimes that pre- pillars plus several hundred species of vent herbivores from eating their hosts other animáis that eat living plant to oblivion are also the traits of the parts. There are checklists of plants potential new host that must be over­ (Janzen & Liesner 1980), birds (Stiles eóme when a herbivore evolutionarily 1983), reptiles and amphibians (Scott moves to, or incorporates, a new host. et al. 1983), mammals (Wilson 1983), Nothing I have said is new, but I and butterflies (DeVries 1983) for the feel that the emphasis is different from park. The plant distributions within that of contemporary ecology and evo­ this vegetation range from nearly lutionary biology; this emphasis may monospecific stands of very large trees be witnessed in two recent books on (e.g., 10-20-m-tall stands of Quercus coevolution (Futuyma & Slatkin 1983; oleoides Cham. and Schlecht., Hymen- Nitecki 1983). Virtually no attention aea courbaril L., Ateleia herbert-smithii is given to this subject, while the (Pittier) to highly mixed vegetation coevolution of herbivores and plant where as many as 200 species of woody chemistry plays a prominent role in plants may occur in 100 ha and adult examples and in generation of theory. conspecific crowns are usually sepa- September 1985 125 Years of Biological Research 143 rated by one to many allospecific through the forest for 5 minutes or less crowns. At Santa Rosa, herbivory by at any time during daylight hours. The caterpillars, the focus of this essay, is moths darted among the shrubs and characteristically highly heterogene- treelets at a height of about 1-3 m. ous among years and among individ­ They touched branchlets, twigs, and uáis, species, and age classes of plants buds with legs and the tip of the abdo­ (e.g., Janzen 1981). men. Upon encountering a plant of Randia karstenii Polak or R. subcordata (Stand.) Standley, the moth hesitated a moment longer and sometimes laid a single spherical palé green egg on the bud, newly expanding leaf, thorn, or ANATOMY twig it contacted (Fig. 1). It then flew OF A DEFOLIATION EVENT to other branches of the same plant or, about equally frequently, off to neigh- The event boring plants. Both species of Randia During the 1983 rainy season, a were beginning budbreak; a few indi­ representative defoliation event oc- viduáis were covered with a thin layer curred at Santa Rosa. The impact of the of newly expanding leaves, while others herbivores was highly heterogeneous. had only swelling buds. The outcome 1 briefly describe the ecology of this im- of this oviposition, by what must have pact as an example of a pattern that been several thousand moths in the could have been generated either by study area, was the deposition of tens the heterogeneity of internal plant of eggs to a thousand or more eggs on chemistry or by mortality factors exter- each Randia in the forest (of 214 plants nal to the plant (or both). In fact, the briefly examined, all had some eggs).
Recommended publications
  • Effects of Forest Fragmentation on Bottom-Up Control in Leaf-Cuttings Ants
    Effects of forest fragmentation on bottom-up control in leaf-cuttings ants Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades Fachbereich Biologie Technische Universität Kaiserslautern vorgelegt von M.Sc. Pille Urbas Kaiserslautern, Dezember 2004 1. Gutachter: Prof. Dr. Burkhard Büdel 2. Gutachter: PD Dr. Jürgen Kusch Vorsitzender der Prüfungskommission: Prof. Dr. Matthias Hahn ACKNOWLEDGEMENTS I ACKNOWLEDGEMENTS I wish to thank my family for always being there; Joachim Gerhold who gave me great support and Jutta, Klaus and Markus Gerhold who decided to provide me with a second family; my supervisors Rainer Wirth, Burkhard Büdel and the department of Botany, University of Kaiserslautern for integrating me into the department and providing for such an interesting subject and the infrastructure to successfully work on it; the co-operators at the Federal University of Pernambuco (UFPE), Brazil - Inara Leal and Marcelo Tabarelli - for their assistance and interchange during my time overseas; the following students for the co-operatation in collecting and analysing data for some aspects of this study: Manoel Araújo (LAI and LCA leaf harvest), Ùrsula Costa (localization and size measurements of LCA colonies), Poliana Falcão (LCA diet breadth) and Nicole Meyer (tree density and DBH). Conservation International do Brasil, Centro de Estudos Ambientais do Nordeste and Usina Serra Grande for providing infrastructure during the field work; Marcia Nascimento, Lourinalda Silva and Lothar Bieber (UFPE) for sharing their laboratory, equipment and knowledge for chemical analyses; Jose Roberto Trigo (University of Campinas) for providing some special chemicals; my friends in Brazil Reisla Oliveira, Olivier Darrault, Cindy Garneau, Leonhard Krause, Edvaldo Florentino, Marcondes Oliveira and Alexandre Grillo for supporting me in a foreign land.
    [Show full text]
  • Factors Influencing Density of the Northern Mealy Amazon in Three Forest Types of a Modified Rainforest Landscape in Mesoamerica
    VOLUME 12, ISSUE 1, ARTICLE 5 De Labra-Hernández, M. Á., and K. Renton. 2017. Factors influencing density of the Northern Mealy Amazon in three forest types of a modified rainforest landscape in Mesoamerica. Avian Conservation and Ecology 12(1):5. https://doi.org/10.5751/ACE-00957-120105 Copyright © 2017 by the author(s). Published here under license by the Resilience Alliance. Research Paper Factors influencing density of the Northern Mealy Amazon in three forest types of a modified rainforest landscape in Mesoamerica Miguel Ángel De Labra-Hernández 1 and Katherine Renton 2 1Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México, 2Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Jalisco, México ABSTRACT. The high rate of conversion of tropical moist forest to secondary forest makes it imperative to evaluate forest metric relationships of species dependent on primary, old-growth forest. The threatened Northern Mealy Amazon (Amazona guatemalae) is the largest mainland parrot, and occurs in tropical moist forests of Mesoamerica that are increasingly being converted to secondary forest. However, the consequences of forest conversion for this recently taxonomically separated parrot species are poorly understood. We measured forest metrics of primary evergreen, riparian, and secondary tropical moist forest in Los Chimalapas, Mexico. We also used point counts to estimate density of Northern Mealy Amazons in each forest type during the nonbreeding (Sept 2013) and breeding (March 2014) seasons. We then examined how parrot density was influenced by forest structure and composition, and how parrots used forest types within tropical moist forest.
    [Show full text]
  • Hawk Moths of North America Is Richly Illustrated with Larval Images and Contains an Abundance of Life History Information
    08 caterpillars EUSA/pp244-273 3/9/05 6:37 PM Page 244 244 TULIP-TREE MOTH CECROPIA MOTH 245 Callosamia angulifera Hyalophora cecropia RECOGNITION Frosted green with shiny yellow, orange, and blue knobs over top and sides of body. RECOGNITION Much like preceding but paler or Dorsal knobs on T2, T3, and A1 somewhat globular and waxier in color with pale stripe running below set with black spinules. Paired knobs on A2–A7 more spiracles on A1–A10 and black dots on abdomen cylindrical, yellow; knob over A8 unpaired and rounded. lacking contrasting pale rings. Yellow abdominal Larva to 10cm. Caterpillars of larch-feeding Columbia tubercle over A8 short, less than twice as high as broad. Silkmoth (Hyalophora columbia) have yellow-white to Larva to 6cm. Sweetbay Silkmoth (Callosamia securifera) yellow-pink instead of bright yellow knobs over dorsum similar in appearance but a specialist on sweet bay. Its of abdomen and knobs along sides tend to be more white than blue (as in Cecropia) and are yellow abdominal tubercle over A8 is nearly three times as set in black bases (see page 246). long as wide and the red knobs over thorax are cylindrical (see page 246). OCCURRENCE Urban and suburban yards and lots, orchards, fencerows, woodlands, OCCURRENCE Woodlands and forests from Michigan, southern Ontario, and and forests from Canada south to Florida and central Texas. One generation with mature Massachusetts to northern Florida and Mississippi. One principal generation northward; caterpillars from late June through August over most of range. two broods in South with mature caterpillars from early June onward.
    [Show full text]
  • BIBLIOJELH Do Ilpü
    Instituto Nacional de Pesquisas da Amazônia - IMPA Universidade Federal do Amazonas - UFAM BIBLIOJELH do iLPü TAXONOMIA DAS ESPÉCIES DE Isognathus FELDER & FELDER, 1862 (LEPIDOPTERA, SPHINGIDAE) DO ESTADO DO MARANHÃO, BRASIL E REGISTRO DAS DEMAIS ESPÉCIES DE ESFINGÍDEOS Joselelde Teixeira Câmara Dissertação de Mestrado, apresentada ao Programa de Pós-Graduação em Biologia Tropical e Recursos Naturais do convênio INPA/UFAM, como parte dos requisitos para obtenção do título de Mestre em Ciências Biológicas, área de concentração em Entomologia. Manaus - Amazonas - Brasil 2005 Instituto Nacional de Pesquisas da Amazônia - INPA Universidade Federal do Amazonas - UFAM BIBLIOTECA DO Mh TAXONOMIA DAS ESPÉCIES DE Isognathus FELDER & FELDER, 1862 (LEPIDOPTERA, SPHINGIDAE) DO ESTADO DO MARANHÃO, BRASIL E REGISTRO DAS DEMAIS ESPÉCIES DE ESFINGÍDEOS Joseleide Teixeira Câmara Orientador: José Albertino Rafael, Dr. Dissertação de Mestrado, apresentada ao Programa de Pós-Graduação em Biologia Tropical e Recursos Naturais do convênio INPA/UFAM, como parte dos requisitos para obtenção do título de Mestre em Ciências Biológicas, área de concentração em Entomologia. Manaus - Amazonas - Brasil 2005 o' Ficha Cataíográfica Câmara, Joseleide Teixeira Taxonomia das espécies de Isognathus 0. Felder & R. Felder, 1862 ^l_0pjcloptera, SphinQidae) do estado do Maranhão, Brasil e registro das demais espécies de esfingídeos / Joseleide Teixeira Câmara. — 2005. xi+ 81 f. Dissertação (mestrado) — INPA/UFAM, Manaus, 2005. 1. Lepidoptera 2.Sphingidae 3. Mariposas 4. Taxonomia 5. Maranhão I. Título CDD 19.ed.595.78 Sinopse: Foi realizado um levantamento de esfingídeos no estado do Maranhão com caracterização morfológica das espécies do gênero Isognathus Felder & Felder, 1862 que ocorrem neste estado. O material estudado foi obtido de coleções entomológicas brasileiras e coletas com utilização de lençol branco e luz mista de mercúrio.
    [Show full text]
  • A Família Rubiaceae Na Reserva Biológica Guaribas, Paraíba, Brasil
    Acta bot. bras. 18(2): 305-318. 2004 A família Rubiaceae na Reserva Biológica Guaribas, Paraíba, Brasil. Subfamílias Antirheoideae, Cinchonoideae e Ixoroideae1 Maria do Socorro Pereira2,3,4 e Maria Regina de V. Barbosa2 Recebido em 07/09/2002. Aceito em 12/09/2003 RESUMO – (A família Rubiaceae na Reserva Biológica Guaribas, Paraíba, Brasil. Subfamílias Antirheoideae, Cinchonoideae e Ixoroideae). Este trabalho consiste no levantamento dos representantes das subfamílias Antirheoideae, Cinchonoideae e Ixoroideae na Reserva Biológica Guaribas, Paraíba, Brasil. Foram realizadas coletas intensivas no período de outubro/2000 a outubro/2001, as quais resultaram no reconhecimento de 12 espécies, 10 gêneros e cinco tribos, distribuídos nas três subfamílias. A subfamília melhor representada foi Antirheoideae, com cinco espécies, quatro gêneros e duas tribos. Os gêneros com maior número de espécies foram Guettarda L. (2) e Tocoyena Aubl. (2). Alibertia A. Rich. ex DC., Alseis Schott, Chiococca P. Browne, Chomelia Jacq., Coutarea Aubl., Posoqueria Aubl., Sabicea Aubl. e Salzmannia DC. apresentaram uma única espécie cada. São apresentadas chaves para identificação, descrições, comentários sobre morfologia e distribuição das espécies, e ilustrações dos táxons verificados. Palavras-chave: Rubiaceae, Nordeste do Brasil, Mata Atlântica, taxonomia ABSTRACT – (The family Rubiaceae in the Guaribas Biological Reserve, Paraíba State, Brazil. Subfamilies Antirheoideae, Cinchonoideae and Ixoroideae). This paper is a survey of Rubiaceae subfamilies Antirheoideae, Cinchonoideae and Ixoroideae in the Guaribas Biological Reserve, Paraíba, Brazil. Intensive collections were made from October/2000 to October/2001. Twelve species, 10 genera and five tribes were recognized. The most diverse subfamily was Antirheoideae, with five species, four genera and two tribes. The genera with the most species were Guettarda L.
    [Show full text]
  • Diversidad De Esfinges (Lepidoptera: Sphingidae) En El Valle Del Río Rímac – Provincia De Lima, Huarochiri Y Cañete, Lima, Perú
    SAGASTEGUIANA 6(2): 91 - 104. 2018 ISSN 2309-5644 ARTÍCULO ORIGINAL DIVERSIDAD DE ESFINGES (LEPIDOPTERA: SPHINGIDAE) EN EL VALLE DEL RÍO RÍMAC – PROVINCIA DE LIMA, HUAROCHIRI Y CAÑETE, LIMA, PERÚ DIVERSITY OF SPHINGES (LEPIDOPTERA: SPHINGIDAE) IN THE RIMAC RIVER VALLEY, LIMA, PERU Rubén A. Guzmán Pittman1 & Ricardo V. Vásquez Condori2 Asociación Científica para la Conservación de la Biodiversidad. [email protected], [email protected] RESUMEN Los lepidópteros nocturnos ostentan una gran diversidad de especies, sobresaliendo los grandes ejemplares denominados esfinges, a continuación en el presente trabajo se procede a citar y describir las especies halladas en el Valle del Rio Rímac - Departamento de Lima registrándose un total de 12 especies de la familia Sphingidae y estas dentro de dos sub familias (Macroglossini, con seis géneros) y (Sphingini con tres géneros) con un total de 9 géneros hallados, siendo estos: Hyles, Erinnyis, Pachylia, Callionima, Aellops, Eumorpha, Agrius, Cocytius y Manduca) entre las cuales la sub familia Sphingini es la más diversificada con 5 especies y 3 géneros. Palabras Clave: Entomología, Esfinges, Lepidópteros, Lima, Diversidad. ABSTRACT The nocturnal lepidoptera have a great diversity of species, with the large specimens called sphinxes standing out. In this paper, the species found in the Rímac River Valley - Department of Lima are cited and described, registering a total of 12 species of the family Sphingidae and these within two sub-families (Macroglossini, with six genera) and (Sphingini with three genera) with a total of 9 genera found, these being: Hyles, Erinnyis, Pachylia, Callionima, Aellops, Eumorpha, Agrius, Cocytius and Manduca) among which the Sphingini subfamily is the most diversified with 5 species and 3 genera.
    [Show full text]
  • Unifying Knowledge for Sustainability in the Western Hemisphere
    Inventorying and Monitoring of Tropical Dry Forests Tree Diversity in Jalisco, Mexico Using a Geographical Information System Efren Hernandez-Alvarez, Ph. Dr. Candidate, Department of Forest Biometrics, University of Freiburg, Germany Dr. Dieter R. Pelz, Professor and head of Department of Forest Biometrics, University of Freiburg, Germany Dr. Carlos Rodriguez Franco, International Affairs Specialist, USDA-ARS Office of International Research Programs, Beltsville, MD Abstract—Tropical dry forests in Mexico are an outstanding natural resource, due to the large surface area they cover. This ecosystem can be found from Baja California Norte to Chiapas on the eastern coast of the country. On the Gulf of Mexico side it grows from Tamaulipas to Yucatan. This is an ecosystem that is home to a wide diversity of plants, which include 114 tree species. These species lose their leaves for long periods of time during the year. This plant community prospers at altitudes varying from sea level up to 1700 meters, in a wide range of soil conditions. Studies regarding land attributes with full identification of tree species are scarce in Mexico. However, documenting the tree species composition of this ecosystem, and the environment conditions where it develops is good beginning to assess the diversity that can be found there. A geo- graphical information system overlapping 4 layers of information was applied to define ecological units as a basic element that combines a series of homogeneous biotic and environmental factors that define specific growing conditions for several plant species. These ecological units were sampled to document tree species diversity in a land track of 4662 ha, known as “Arroyo Cuenca la Quebrada” located at Tomatlan, Jalisco.
    [Show full text]
  • Saturniidae from Santa Catarina State, Brazil, with Taxonomic Notes (Lepidoptera) 215-220 Nachr
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nachrichten des Entomologischen Vereins Apollo Jahr/Year: 2009 Band/Volume: 30 Autor(en)/Author(s): Siewert Ricardo R., Silva Eduardo J. E., Mielke Carlos G. C. Artikel/Article: Saturniidae from Santa Catarina State, Brazil, with taxonomic notes (Lepidoptera) 215-220 Nachr. entomol. Ver. Apollo, N. F. 30 (4): 215–220 (2010) 215 Saturniidae from Santa Catarina State, Brazil, with taxonomic notes (Lepidoptera) Ricardo R. Siewert, Eduardo J. E. Silva and Carlos G. C. Mielke Ricardo Russo Siewert & Eduardo José Ely e Silva, Departamento de Fitossanidade, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPEL), Campus Universitário, s/nº, caixa postal 354, CEP, 96010­900, Pelotas, RS, Brasil; [email protected] & [email protected] Carlos Guilherme Costa Mielke, Caixa Postal 1206, 84.145­000 Carambeí, Paraná, Brasil; [email protected] Abstract: A species list of the Saturniidae (Lepidoptera) of Material and methods the state of Santa Catarina, Brasil, is presented. 149 species are listed in four subfamilies: Arsenurinae (16), Ceratocam­ Collections visited are listed below (all in Brazil) with pinae (32), Hemileucinae (90), and Saturniinae (11). The their abbreviations, besides their code used in Table 1: following are stat. rev. as species: Hylesia corevia (Hüb ner, CGCM (= X1) Col. Carlos G. C. Mielke, Curitiba, Paraná. [1825]) and Eacles lauroi Oiticica, 1938. CMN (= X2) Museu Nacional, Rio de Janeiro, Rio de Janeiro. Key words: fauna survey, taxonomy, neotropical. DZUP (= X3) Col. Padre Jesus S. Moure, Departamento de Zoo­ Saturniidae aus Santa Catarina, Brasilien mit logia, Universidade Federal do Paraná, Curitiba, Pa ra ná.
    [Show full text]
  • The Barnacle Historic State Park
    THE BARNACLE HISTORIC STATE PARK APPROVED Unit Management Plan STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Division of Recreation and Parks December 2016 TABLE OF CONTENTS INTRODUCTION PURPOSE AND SIGNIFICANCE OF THE PARK ....................................... 1 Park Significance ................................................................................1 PURPOSE AND SCOPE OF THE PLAN..................................................... 2 MANAGEMENT PROGRAM OVERVIEW ................................................... 7 Management Authority and Responsibility .............................................. 7 Park Management Goals ...................................................................... 8 Management Coordination ................................................................... 8 Public Participation ..............................................................................8 Other Designations .............................................................................9 RESOURCE MANAGEMENT COMPONENT INTRODUCTION ................................................................................. 11 RESOURCE DESCRIPTION AND ASSESSMENT..................................... 12 Natural Resources ............................................................................. 12 Topography .................................................................................. 12 Geology ....................................................................................... 12 Soils ...........................................................................................
    [Show full text]
  • The Identity of the African Firebush (Hamelia) in the Ornamental Nursery Trade
    HORTSCIENCE 39(6):1224–1226. 2004. and may be extinct. Hamelia versicolor occurs in southern Mexico and partially overlaps with the Mexican populations of H. patens. The The Identity of the African Firebush latter is the most common of all the species and is subdivided into two varieties: H. patens (Hamelia) in the Ornamental Nursery var. patens and H. patens var. glabra Oersted. The widespread H. patens var. patens is found Trade from Florida, the West Indies, and Mexico to Brazil and Argentina. Typically H. patens var. Thomas S. Elias and Margaret R. Pooler patens has red to red-orange fl owers, large U.S. Department of Agriculture, Agricultural Research Service, U.S. National ovate leaves that are moderately to densely Arboretum, 3501 New York Avenue, Washington, D.C. 20002-1958 pubescent, with large variation in leaf size, degree of pubescence, and fl ower and fruit size Additional index words. amplifi ed fragment length polymorphism, AFLP, Rubiaceae, scarlet (Fig. 1, middle). Hamelia patens var. glabra bush, taxonomy, tropical shrub is found in southern Mexico and disjunctly in northern South America, and has smaller, nar- Abstract. The neotropical shrub Hamelia patens Jacq. has been cultivated as an ornamen- rowly ovate pubescent leaves, a more compact tal in the United States, Great Britain, and South Africa for many years, although only in habit, and yellow to yellow-orange fl owers limited numbers and as a minor element in the trade. Recently, other taxa of Hamelia have (Fig. 1, bottom). been grown and evaluated as new fl owering shrubs. The relatively recent introduction of a Specimens of H.
    [Show full text]
  • Lista De Anexos
    LISTA DE ANEXOS ANEXO N°1 MAPA DEL HUMEDAL ANEXO N°2 REGIMEN DE MAREAS SAN JUAN DEL N. ANEXO N°3 LISTA PRELIMINAR DE FAUNA SILVESTRE ANEXO N°4 LISTA PRELIMINAR DE VEGETACIÓN ANEXO N°5 DOSSIER FOTOGRAFICO 22 LISTADO PRELIMINAR DE ESPECIES DE FAUNA SILVESTRE DEL REFUGIO DE VIDA SILVESTRE RIO SAN JUAN. INSECTOS FAMILIA ESPECIE REPORTADO POR BRENTIDAE Brentus anchorago Giuliano Trezzi CERAMBYCIDAE Acrocinus longimanus Giuliano Trezzi COCCINELLIDAE Epilachna sp. Giuliano Trezzi COENAGRIONIDAE Argia pulla Giuliano Trezzi COENAGRIONIDAE Argia sp. Giuliano Trezzi FORMICIDAE Atta sp. Giuliano Trezzi FORMICIDAE Paraponera clavata Giuliano Trezzi FORMICIDAE Camponotus sp. Giuliano Trezzi GOMPHIDAE Aphylla angustifolia Giuliano Trezzi LIBELLULIDAE Micrathyria aequalis Giuliano Trezzi LIBELLULIDAE Micrathyria didyma Giuliano Trezzi LIBELLULIDAE Erythemis peruviana Giuliano Trezzi LIBELLULIDAE Erythrodiplax connata Giuliano Trezzi LIBELLULIDAE Erythrodiplax ochracea Giuliano Trezzi LIBELLULIDAE Dythemis velox Giuliano Trezzi LIBELLULIDAE Idiataphe cubensis Giuliano Trezzi NYMPHALIDAE Caligo atreus Javier Baltodano NYMPHALIDAE Archaeoprepona demophoon Javier Baltodano NYMPHALIDAE Eueides lybia Javier Baltodano NYMPHALIDAE Dryas iulia Javier Baltodano NYMPHALIDAE Heliconius charitonius Javier Baltodano NYMPHALIDAE Heliconius cydno Javier Baltodano NYMPHALIDAE Heliconius erato Javier Baltodano NYMPHALIDAE Heliconius melponeme Javier Baltodano NYMPHALIDAE Heliconius sara Javier Baltodano NYMPHALIDAE Philaetria dido Javier Baltodano NYMPHALIDAE Aeria eurimedia
    [Show full text]
  • Extreme Diversity of Tropical Parasitoid Wasps Exposed by Iterative Integration of Natural History, DNA Barcoding, Morphology, and Collections
    Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections M. Alex Smith*†, Josephine J. Rodriguez‡, James B. Whitfield‡, Andrew R. Deans§, Daniel H. Janzen†¶, Winnie Hallwachs¶, and Paul D. N. Hebert* *The Biodiversity Institute of Ontario, University of Guelph, Guelph Ontario, N1G 2W1 Canada; ‡Department of Entomology, 320 Morrill Hall, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801; §Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613; and ¶Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Contributed by Daniel H. Janzen, May 31, 2008 (sent for review April 18, 2008) We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgas- A detailed recognition of species in parasitoid communities is trine braconid genera reared from parapatric tropical dry forest, cloud necessary because of the pivotal role parasitoids play in food web forest, and rain forest in Area de Conservacio´ n Guanacaste (ACG) in structure and dynamics. While generalizations about the effects of northwestern Costa Rica and combined these data with records of parasitoids on community diversity are complex (7), a common- caterpillar hosts and morphological analyses. We asked whether place predictor of the impact of a parasitoid species on local host barcoding and morphology discover the same provisional species and dynamics is whether the parasitoid is a generalist or specialist. A whether the biological entities revealed by our analysis are congruent generalist, especially a mobile one, is viewed as stabilizing food webs with wasp host specificity. Morphological analysis revealed 171 (see ref.
    [Show full text]