Spring 2010 Gems & Gemology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Mineralogical Study of the La Hueca Cretaceous Iron-Manganese
Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Corona Esquivel, Rodolfo; Ortega Gutiérrez, Fernando; Reyes Salas, Margarita; Lozano Santacruz, Rufino; Miranda Gasca, Miguel Angel Mineralogical study of the La Hueca Cretaceous Iron-Manganese deposit, Michoacán, south-western Mexico Revista Mexicana de Ciencias Geológicas, vol. 17, núm. 2, 2000, pp. 142-151 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57217206 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Ciencias Geológicas, volumen 17, número 2, 143 2000, p. 143- 153 Universidad Nacional Autónoma de México, Instituto de Geología, México, D.F MINERALOGICAL STUDY OF THE LA HUECA CRETACEOUS IRON- MANGANESE DEPOSIT, MICHOACÁN, SOUTHWESTERN MEXICO Rodolfo Corona-Esquivel1, Fernando Ortega-Gutiérrez1, Margarita Reyes-Salas1, Rufino Lozano-Santacruz1, and Miguel Angel Miranda-Gasca2 ABSTRACT In this work we describe for the first time the mineralogy and very briefly the possible origin of a banded Fe-Mn deposit associated with a Cretaceous volcanosedimentary sequence of the southern Guerrero terrane, near the sulfide massive volcanogenic deposit of La Minita. The deposit is confined within a felsic tuff unit; about 10 meters thick where sampled for chemical analysis. Using XRF, EDS and XRD techniques, we found besides todorokite, cryptomelane, quartz, romanechite (psilomelane), birnessite, illite-muscovite, cristobalite, chlorite, barite, halloysite, woodruffite, nacrite or kaolinite, and possibly hollandite-ferrian, as well as an amorphous material and two unknown manganese phases. -
Rhodochrosite Gems Unstable Colouration of Padparadscha-Like
Volume 36 / No. 4 / 2018 Effect of Blue Fluorescence on the Colour Appearance of Diamonds Rhodochrosite Gems The Hope Diamond Unstable Colouration of in London Padparadscha-like Sapphires Volume 36 / No. 4 / 2018 Cover photo: Rhodochrosite is prized as both mineral specimens and faceted stones, which are represented here by ‘The Snail’ (5.5 × 8.6 cm, COLUMNS from N’Chwaning, South Africa) and a 40.14 ct square-cut gemstone from the Sweet Home mine, Colorado, USA. For more on rhodochrosite, see What’s New 275 the article on pp. 332–345 of this issue. Specimens courtesy of Bill Larson J-Smart | SciAps Handheld (Pala International/The Collector, Fallbrook, California, USA); photo by LIBS Unit | SYNTHdetect XL | Ben DeCamp. Bursztynisko, The Amber Magazine | CIBJO 2018 Special Reports | De Beers Diamond ARTICLES Insight Report 2018 | Diamonds — Source to Use 2018 The Effect of Blue Fluorescence on the Colour 298 Proceedings | Gem Testing Appearance of Round-Brilliant-Cut Diamonds Laboratory (Jaipur, India) By Marleen Bouman, Ans Anthonis, John Chapman, Newsletter | IMA List of Gem Stefan Smans and Katrien De Corte Materials Updated | Journal of Jewellery Research | ‘The Curse Out of the Blue: The Hope Diamond in London 316 of the Hope Diamond’ Podcast | By Jack M. Ogden New Diamond Museum in Antwerp Rhodochrosite Gems: Properties and Provenance 332 278 By J. C. (Hanco) Zwaan, Regina Mertz-Kraus, Nathan D. Renfro, Shane F. McClure and Brendan M. Laurs Unstable Colouration of Padparadscha-like Sapphires 346 By Michael S. Krzemnicki, Alexander Klumb and Judith Braun 323 333 © DIVA, Antwerp Home of Diamonds Gem Notes 280 W. -
Metamorphism of Sedimentary Manganese Deposits
Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits. -
Age and Origin of Silicocarbonate Pegmatites of the Adirondack Region
minerals Article Age and Origin of Silicocarbonate Pegmatites of the Adirondack Region Jeffrey Chiarenzelli 1,*, Marian Lupulescu 2, George Robinson 1, David Bailey 3 and Jared Singer 4 1 Department of Geology, St. Lawrence University, Canton, NY 13617, USA 2 New York State Museum, Research and Collections, Albany, NY 12230, USA 3 Geosciences Department, Hamilton College, Clinton, NY 13323, USA 4 Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Rensselaer, NY 12180, USA * Correspondence: [email protected]; Tel.: +1-315-229-5202 Received: 24 July 2019; Accepted: 19 August 2019; Published: 23 August 2019 Abstract: Silicocarbonate pegmatites from the southern Grenville Province have provided exceptionally large crystal specimens for more than a century. Their mineral parageneses include euhedral calc–silicate minerals such as amphibole, clinopyroxene, and scapolite within a calcite matrix. Crystals can reach a meter or more in long dimension. Minor and locally abundant phases reflect local bedrock compositions and include albite, apatite, perthitic microcline, phlogopite, zircon, tourmaline, titanite, danburite, uraninite, sulfides, and many other minerals. Across the Adirondack Region, individual exposures are of limited aerial extent (<10,000 m2), crosscut metasedimentary rocks, especially calc–silicate gneisses and marbles, are undeformed and are spatially and temporally associated with granitic pegmatites. Zircon U–Pb results include both Shawinigan (circa 1165 Ma) and Ottawan (circa 1050 Ma) intrusion ages, separated by the Carthage-Colton shear zone. Those of Shawinigan age (Lowlands) correspond with the timing of voluminous A-type granitic magmatism, whereas Ottawan ages (Highlands) are temporally related to orogenic collapse, voluminous leucogranite and granitic pegmatite intrusion, iron and garnet ore development, and pervasive localized hydrothermal alteration. -
Jacobsite from the Tamworth District of New South Wales
538 Jacobsite from the Tamworth district of New South Wales. By F .L. STILLWELL, D.Sc., and A. B. EDWAP~DS,D.Sc., Ph.D., D.I.C. Commonwealth Scientific and Industrial Organization, Melbourne. [Taken as read November 2, 1950.] WO new occurrences of the rare manganese mineral jacobsite T (MnF%0~) have come to light in the course of mineragraphic studies carried out as part of the research programme of the Mineragraphic Section of the Commonwealth Scientific and Industrial Research Organization. The jacobsite occurs as a constituent of small bodies of high-grade manganese ore at Weabonga, near Danglemah, and at the Mount Sally mine, about 6 miles west of Danglemah, both in the Tam- worth district of New South Wales. The deposits occur in altered sediments, within a mile or two of a granite contact. 1 They are irregular lenticular veins ranging from a few inches to several feet in thickness, between altered slate walls. The veins do not exceed a length of 200-300 feet. The lode material consists of manganese oxides, chiefly psilomelane and pyrolusite, associated with quartz, rhodonite, and iron oxide. The manganese oxides are mainly supergene, and although the deposits are of high grade near the surface, it is doubtful whether they can be worked below the depths of 50- 60 feet, owing to the increase in the amount of rhodonite and quartz relative to manganese oxides at this depth. In the Weabonga ore the jacobsite occurs as narrow seams and lenticles, about 0.5 cm. across, and 3.0 cm. long enclosed in, and partly replaced by, pyrolusite and psilomelane. -
The Wittelsbach-Graff and Hope Diamonds: Not Cut from the Same Rough
THE WITTELSBACH-GRAFF AND HOPE DIAMONDS: NOT CUT FROM THE SAME ROUGH Eloïse Gaillou, Wuyi Wang, Jeffrey E. Post, John M. King, James E. Butler, Alan T. Collins, and Thomas M. Moses Two historic blue diamonds, the Hope and the Wittelsbach-Graff, appeared together for the first time at the Smithsonian Institution in 2010. Both diamonds were apparently purchased in India in the 17th century and later belonged to European royalty. In addition to the parallels in their histo- ries, their comparable color and bright, long-lasting orange-red phosphorescence have led to speculation that these two diamonds might have come from the same piece of rough. Although the diamonds are similar spectroscopically, their dislocation patterns observed with the DiamondView differ in scale and texture, and they do not show the same internal strain features. The results indicate that the two diamonds did not originate from the same crystal, though they likely experienced similar geologic histories. he earliest records of the famous Hope and Adornment (Toison d’Or de la Parure de Couleur) in Wittelsbach-Graff diamonds (figure 1) show 1749, but was stolen in 1792 during the French T them in the possession of prominent Revolution. Twenty years later, a 45.52 ct blue dia- European royal families in the mid-17th century. mond appeared for sale in London and eventually They were undoubtedly mined in India, the world’s became part of the collection of Henry Philip Hope. only commercial source of diamonds at that time. Recent computer modeling studies have established The original ancestor of the Hope diamond was that the Hope diamond was cut from the French an approximately 115 ct stone (the Tavernier Blue) Blue, presumably to disguise its identity after the that Jean-Baptiste Tavernier sold to Louis XIV of theft (Attaway, 2005; Farges et al., 2009; Sucher et France in 1668. -
HIGHLIGHTS and BREAKTHROUGHS Sapphire, A
1 HIGHLIGHTS AND BREAKTHROUGHS 2 Sapphire, a not so simple gemstone 3 F. LIN SUTHERLAND1* 4 1Geoscience, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia. 5 *E-mail: [email protected] 6 Abstract: Sapphire is a gemstone of considerable reach and is much researched. It still delivers scientific surprises, as exemplified by a 7 recent paper in American Mineralogist that re-interprets the origin of needle-like rutile inclusions that form “silk” in sapphires. 8 Understanding of variations in sapphire genesis continues to expand. Keywords: Sapphire, inclusions, trace elements, genesis 9 Sapphire as a gem variety of corundum has wide use in the gem trade as one of the more historically valuable colored gem stones 10 (CGS) and is mined from a great variety of continental gem deposits across the world. A masterly compendium on this gemstone and its 11 ramifications is recently available (Hughes 2017). As a gem, sapphire ranges through all the colors of corundum, except where 12 sufficient Cr enters its α-alumina crystal structure and causes the red color of the variety ruby. Sapphire, as a key pillar in a wide 13 economic network of gem enhancing treatments, jewelry and other manufacturing enterprises, has elicited numerous scientific and 14 gemological enquiries into its internal nature and natural genesis and subsequent treatments. A further use of sapphire as a synthetic 15 material with a great variety of purposes also has triggered a proliferation of detailed studies on its growth, properties and other element 16 substitutional effects (Dobrovinski et al. 2009). Even with this vast range of studies, this apparently simple gemstone still yields 17 controversies and breakthroughs in understanding its genetic formation. -
Compilation of Reported Sapphire Occurrences in Montana
Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area .................................... -
Do Zircon and Monazite Consistently Record Garnet Growth in High-Grade Rocks?
Geophysical Research Abstracts Vol. 21, EGU2019-5915-1, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Do zircon and monazite consistently record garnet growth in high-grade rocks? Lorraine Tual (1,2), Ellen Kooijman (1), Melanie Schmitt (1), and Matthijs Smit (2) (1) Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden ([email protected]), (2) Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada Garnet Lu-Hf ages are used to monitor the systematics of rare earth elements (REE) and age record in accessory minerals. We performed in-situ LA-(MC-)ICPMS U-(Th-)Pb dating and REE analysis on zircon and monazite in two contrasting high-grade rock samples: dry felsic granulite xenoliths from the Pamir, Tajikistan and fluid-rich, ultrahigh-pressure (UHP) migmatites from the Western Gneiss Region (WGR), Norway. In parallel, garnet from the same samples were subjected to REE analysis and dated by Lu-Hf. The datasets are compared to see whether, and to what extent, REE systematics in accessory phases can be correlated with garnet growth. Garnet in the hydrous UHP migmatite contains abundant zircon and monazite inclusions. The Gd/Yb values and U-(Th-)Pb ages of these inclusions show significant dispersion and do not systematically correlate. Highest Gd/Yb values occur at 420-410 and c. 420 Ma for monazite and zircon, respectively. Garnet in this rock yielded a Lu-Hf garnet bulk age of c. 422 Ma. The data obtained from the dry Pamir xenoliths show a different pattern. Accessory minerals grew in distinct pulses between 50 and 11 Ma, and indicate garnet growth between 42-37 Ma [1]. -
Fine Structure in Photoluminescence Spectrum of S2 Center in Sodalite
Phys Chem Minerals (2007) 34:477–484 DOI 10.1007/s00269-007-0161-y ORIGINAL PAPER – Fine structure in photoluminescence spectrum of S2 center in sodalite Aierken Sidike Æ Alifu Sawuti Æ Xiang-Ming Wang Æ Heng-Jiang Zhu Æ S. Kobayashi Æ I. Kusachi Æ N. Yamashita Received: 18 December 2006 / Accepted: 6 April 2007 / Published online: 12 June 2007 Ó Springer-Verlag 2007 Abstract The photoluminescence and excitation spectra stretching vibration of the isotopic species of 32S34S–,a 32 – of sodalites from Greenland, Canada and Xinjiang (China) main peak due to that of the isotopic species of S2 and are observed at 300 and 10 K in detail. The features of the five peaks due to phonon sidebands of the main peak. emission and excitation spectra of the orange-yellow flu- – orescence of these sodalites are independent of the locality. Keywords Sodalite Á Photoluminescence Á S2 center Á The emission spectra at 300 and 10 K consist of a broad Heat treatment Á Fine structure band with a series of peaks and a maximum peak at 648 and 645.9 nm, respectively. The excitation spectra ob- tained by monitoring the orange-yellow fluorescence at 300 Introduction and 10 K consist of a main band with a peak at 392 nm. The luminescence efficiency of the heat-treated sodalite Natural sodalite represented by the ideal formula Na8Al6 from Xinjiang is about seven times as high as that of un- Si6O24Cl2 or 3(Na2OÁAl2O3Á2SiO2)Á2NaCl is a well-known – treated natural sodalite. The emission spectrum of the S2 fluorescent mineral emitting orange-yellow fluorescence center in sodalite at 10 K consists of a band with a clearly under ultraviolet (UV) light. -
Historical Painting Techniques, Materials, and Studio Practice
Historical Painting Techniques, Materials, and Studio Practice PUBLICATIONS COORDINATION: Dinah Berland EDITING & PRODUCTION COORDINATION: Corinne Lightweaver EDITORIAL CONSULTATION: Jo Hill COVER DESIGN: Jackie Gallagher-Lange PRODUCTION & PRINTING: Allen Press, Inc., Lawrence, Kansas SYMPOSIUM ORGANIZERS: Erma Hermens, Art History Institute of the University of Leiden Marja Peek, Central Research Laboratory for Objects of Art and Science, Amsterdam © 1995 by The J. Paul Getty Trust All rights reserved Printed in the United States of America ISBN 0-89236-322-3 The Getty Conservation Institute is committed to the preservation of cultural heritage worldwide. The Institute seeks to advance scientiRc knowledge and professional practice and to raise public awareness of conservation. Through research, training, documentation, exchange of information, and ReId projects, the Institute addresses issues related to the conservation of museum objects and archival collections, archaeological monuments and sites, and historic bUildings and cities. The Institute is an operating program of the J. Paul Getty Trust. COVER ILLUSTRATION Gherardo Cibo, "Colchico," folio 17r of Herbarium, ca. 1570. Courtesy of the British Library. FRONTISPIECE Detail from Jan Baptiste Collaert, Color Olivi, 1566-1628. After Johannes Stradanus. Courtesy of the Rijksmuseum-Stichting, Amsterdam. Library of Congress Cataloguing-in-Publication Data Historical painting techniques, materials, and studio practice : preprints of a symposium [held at] University of Leiden, the Netherlands, 26-29 June 1995/ edited by Arie Wallert, Erma Hermens, and Marja Peek. p. cm. Includes bibliographical references. ISBN 0-89236-322-3 (pbk.) 1. Painting-Techniques-Congresses. 2. Artists' materials- -Congresses. 3. Polychromy-Congresses. I. Wallert, Arie, 1950- II. Hermens, Erma, 1958- . III. Peek, Marja, 1961- ND1500.H57 1995 751' .09-dc20 95-9805 CIP Second printing 1996 iv Contents vii Foreword viii Preface 1 Leslie A. -
“Among the Most Unusual Substances on Earth, Amber Combines Alluring Physical Properties with an Unparalleled Archive of Ancient Life on Our Planet
(a.) (b.) Figure 1. a) Termites in Colombian copal showing gas bubbles; b) Close view, showing termites in Colombian copal showing gas bubbles. “Among the most unusual substances on Earth, amber combines alluring physical properties with an unparalleled archive of ancient life on our planet. No other substance brings together such richness in art and science.” David A. Grimaldi, American Museum of Natural History (Ross, 2010) 16 FUNGI Volume 11:5 2019 Figure 2. A rough piece of blue Dominican amber. y quest for mushrooms in Mushroom lovers were treated to a and so versatile. As a gemologist, amber amber and copal lasted about small, extremely rare piece of light- was an organic, semi-precious gemstone a decade, from the mid-1990s colored amber, inside which a tiny gilled for me, soft for a gemstone (only 2-2.5 Mto the early part of the 2000s. During mushroom was barely visible. Through on the Mohs scale), and with multiple this period of time, I found mushrooms a strategically placed magnifying glass, places of origin around the world. It in Mexican red amber from Chiapas, excited visitors could get a glimpse of came in multiple colors, and lended itself and in Colombian copal from the what the ancestor of today’s Mycena to carving and the creation of beautiful Santander region; these pieces make up looked like, down to its cap, delicate works of art. As a mycologist seeking the bulk of my collection. The unique gills, and stipe. Though an extinct mushrooms inside the amber, amber fossils of mushrooms, amber, and copal species and millions of years old, the was the fully polymerized tree resin that in this collection are still waiting to be fossilized mushroom looked fresh and formed millions of years ago in what studied.